cifar10_main.py 7.84 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
"""Runs a ResNet model on the CIFAR-10 dataset."""
16
17
18
19
20
21

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
22
import sys
23
24
25
26

import tensorflow as tf

import resnet_model
27
import resnet_shared
28

29
30
_HEIGHT = 32
_WIDTH = 32
31
32
_NUM_CHANNELS = 3
_DEFAULT_IMAGE_BYTES = _HEIGHT * _WIDTH * _NUM_CHANNELS
33
34
35
_NUM_CLASSES = 10
_NUM_DATA_FILES = 5

36
37
38
39
_NUM_IMAGES = {
    'train': 50000,
    'validation': 10000,
}
40
41


42
43
44
###############################################################################
# Data processing
###############################################################################
45
46
def record_dataset(filenames):
  """Returns an input pipeline Dataset from `filenames`."""
47
  record_bytes = _DEFAULT_IMAGE_BYTES + 1
48
  return tf.data.FixedLengthRecordDataset(filenames, record_bytes)
49
50


51
def get_filenames(is_training, data_dir):
52
  """Returns a list of filenames."""
53
  data_dir = os.path.join(data_dir, 'cifar-10-batches-bin')
54

55
56
57
  assert os.path.exists(data_dir), (
      'Run cifar10_download_and_extract.py first to download and extract the '
      'CIFAR-10 data.')
58

59
  if is_training:
60
61
    return [
        os.path.join(data_dir, 'data_batch_%d.bin' % i)
62
        for i in range(1, _NUM_DATA_FILES + 1)
63
64
    ]
  else:
65
    return [os.path.join(data_dir, 'test_batch.bin')]
66
67


Kathy Wu's avatar
Kathy Wu committed
68
69
def parse_record(raw_record):
  """Parse CIFAR-10 image and label from a raw record."""
70
71
72
  # Every record consists of a label followed by the image, with a fixed number
  # of bytes for each.
  label_bytes = 1
73
  record_bytes = label_bytes + _DEFAULT_IMAGE_BYTES
74

75
76
  # Convert bytes to a vector of uint8 that is record_bytes long.
  record_vector = tf.decode_raw(raw_record, tf.uint8)
77

78
79
  # The first byte represents the label, which we convert from uint8 to int32
  # and then to one-hot.
80
  label = tf.cast(record_vector[0], tf.int32)
81
  label = tf.one_hot(label, _NUM_CLASSES)
82
83
84

  # The remaining bytes after the label represent the image, which we reshape
  # from [depth * height * width] to [depth, height, width].
85
86
  depth_major = tf.reshape(record_vector[label_bytes:record_bytes],
                           [_NUM_CHANNELS, _HEIGHT, _WIDTH])
87
88
89
90
91

  # Convert from [depth, height, width] to [height, width, depth], and cast as
  # float32.
  image = tf.cast(tf.transpose(depth_major, [1, 2, 0]), tf.float32)

92
  return image, label
93
94


95
96
97
98
def preprocess_image(image, is_training):
  """Preprocess a single image of layout [height, width, depth]."""
  if is_training:
    # Resize the image to add four extra pixels on each side.
Neal Wu's avatar
Neal Wu committed
99
100
    image = tf.image.resize_image_with_crop_or_pad(
        image, _HEIGHT + 8, _WIDTH + 8)
101

102
    # Randomly crop a [_HEIGHT, _WIDTH] section of the image.
103
    image = tf.random_crop(image, [_HEIGHT, _WIDTH, _NUM_CHANNELS])
Kathy Wu's avatar
Kathy Wu committed
104

105
106
    # Randomly flip the image horizontally.
    image = tf.image.random_flip_left_right(image)
Kathy Wu's avatar
Kathy Wu committed
107
108
109

  # Subtract off the mean and divide by the variance of the pixels.
  image = tf.image.per_image_standardization(image)
110
  return image
Kathy Wu's avatar
Kathy Wu committed
111
112


113
def input_fn(is_training, data_dir, batch_size, num_epochs=1):
114
  """Input_fn using the tf.data input pipeline for CIFAR-10 dataset.
115
116

  Args:
117
    is_training: A boolean denoting whether the input is for training.
Kathy Wu's avatar
Kathy Wu committed
118
    data_dir: The directory containing the input data.
119
    batch_size: The number of samples per batch.
120
    num_epochs: The number of epochs to repeat the dataset.
121
122
123

  Returns:
    A tuple of images and labels.
124
  """
125
  dataset = record_dataset(get_filenames(is_training, data_dir))
126

127
  if is_training:
128
    # When choosing shuffle buffer sizes, larger sizes result in better
129
130
131
    # randomness, while smaller sizes have better performance. Because CIFAR-10
    # is a relatively small dataset, we choose to shuffle the full epoch.
    dataset = dataset.shuffle(buffer_size=_NUM_IMAGES['train'])
132

133
  dataset = dataset.map(parse_record)
134
  dataset = dataset.map(
135
136
      lambda image, label: (preprocess_image(image, is_training), label))

137
  dataset = dataset.prefetch(2 * batch_size)
138

Neal Wu's avatar
Neal Wu committed
139
140
  # We call repeat after shuffling, rather than before, to prevent separate
  # epochs from blending together.
141
  dataset = dataset.repeat(num_epochs)
142
143
144

  # Batch results by up to batch_size, and then fetch the tuple from the
  # iterator.
Neal Wu's avatar
Neal Wu committed
145
146
  dataset = dataset.batch(batch_size)
  iterator = dataset.make_one_shot_iterator()
147
148
149
150
151
  images, labels = iterator.get_next()

  return images, labels


152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
###############################################################################
# Running the model
###############################################################################
class Cifar10Model(resnet_model.Model):

  def __init__(self, resnet_size, data_format=None):
    """These are the parameters that work for CIFAR-10 data.
    """
    if resnet_size % 6 != 2:
      raise ValueError('resnet_size must be 6n + 2:', resnet_size)

    num_blocks = (resnet_size - 2) // 6

    super(Cifar10Model, self).__init__(
        resnet_size=resnet_size,
        num_classes=_NUM_CLASSES,
        num_filters=16,
        kernel_size=3,
        conv_stride=1,
        first_pool_size=None,
        first_pool_stride=None,
        second_pool_size=8,
        second_pool_stride=1,
        block_fn=resnet_model.building_block,
        block_sizes=[num_blocks] * 3,
        block_strides=[1, 2, 2],
        final_size=64,
        data_format=data_format)
180
181


182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
def cifar10_model_fn(features, labels, mode, params):
  """Model function for CIFAR-10."""
  features = tf.reshape(features, [-1, _HEIGHT, _WIDTH, _NUM_CHANNELS])

  learning_rate_fn = resnet_shared.learning_rate_with_decay(
      batch_size=params['batch_size'], batch_denom=128,
      num_images=_NUM_IMAGES['train'], boundary_epochs=[100, 150, 200],
      decay_rates=[1, 0.1, 0.01, 0.001])

  # We use a weight decay of 0.0002, which performs better
  # than the 0.0001 that was originally suggested.
  weight_decay = 2e-4

  # Empirical testing showed that including batch_normalization variables
  # in the calculation of regularized loss helped validation accuracy
  # for the CIFAR-10 dataset, perhaps because the regularization prevents
  # overfitting on the small data set. We therefore include all vars when
  # regularizing and computing loss during training.
  def loss_filter_fn(name):
    return True

  return resnet_shared.resnet_model_fn(features, labels, mode, Cifar10Model,
                                       resnet_size=params['resnet_size'],
                                       weight_decay=weight_decay,
                                       learning_rate_fn=learning_rate_fn,
                                       momentum=0.9,
                                       data_format=params['data_format'],
                                       loss_filter_fn=loss_filter_fn)
210
211
212


def main(unused_argv):
213
  resnet_shared.resnet_main(FLAGS, cifar10_model_fn, input_fn)
214
215
216
217


if __name__ == '__main__':
  tf.logging.set_verbosity(tf.logging.INFO)
218
219
220
221
222
223
224
225
226
227

  parser = resnet_shared.ResnetArgParser()
  # Set defaults that are reasonable for this model.
  parser.set_defaults(data_dir='/tmp/cifar10_data',
                      model_dir='/tmp/cifar10_model',
                      resnet_size=32,
                      train_epochs=250,
                      epochs_per_eval=10,
                      batch_size=128)

228
229
  FLAGS, unparsed = parser.parse_known_args()
  tf.app.run(argv=[sys.argv[0]] + unparsed)