detr.py 10.3 KB
Newer Older
Frederick Liu's avatar
Frederick Liu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""DETR configurations."""

import dataclasses
Gunho Park's avatar
Gunho Park committed
18
19
20
import os
from typing import List, Optional, Union

Frederick Liu's avatar
Frederick Liu committed
21
22
from official.core import config_definitions as cfg
from official.core import exp_factory
Gunho Park's avatar
Gunho Park committed
23
from official.modeling import hyperparams
Gunho Park's avatar
Gunho Park committed
24
from official.vision.configs import common
Gunho Park's avatar
Gunho Park committed
25
from official.vision.configs import backbones
26
27
from official.projects.detr import optimization
from official.projects.detr.dataloaders import coco
Frederick Liu's avatar
Frederick Liu committed
28

Gunho Park's avatar
Gunho Park committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# pylint: disable=missing-class-docstring
# Keep for backward compatibility.
@dataclasses.dataclass
class TfExampleDecoder(common.TfExampleDecoder):
  """A simple TF Example decoder config."""


# Keep for backward compatibility.
@dataclasses.dataclass
class TfExampleDecoderLabelMap(common.TfExampleDecoderLabelMap):
  """TF Example decoder with label map config."""


# Keep for backward compatibility.
@dataclasses.dataclass
class DataDecoder(common.DataDecoder):
  """Data decoder config."""

@dataclasses.dataclass
class DataConfig(cfg.DataConfig):
  """Input config for training."""
  input_path: str = ''
  global_batch_size: int = 0
  is_training: bool = False
  dtype: str = 'bfloat16'
  decoder: common.DataDecoder = common.DataDecoder()
  #parser: Parser = Parser()
  shuffle_buffer_size: int = 10000
  file_type: str = 'tfrecord'

Frederick Liu's avatar
Frederick Liu committed
59
@dataclasses.dataclass
Gunho Park's avatar
Gunho Park committed
60
class Losses(hyperparams.Config):
Gunho Park's avatar
Gunho Park committed
61
  class_offset: int = 0
Frederick Liu's avatar
Frederick Liu committed
62
63
64
  lambda_cls: float = 1.0
  lambda_box: float = 5.0
  lambda_giou: float = 2.0
Gunho Park's avatar
Gunho Park committed
65
  background_cls_weight: float = 0.1
Gunho Park's avatar
Gunho Park committed
66
  l2_weight_decay: float = 1e-4
Frederick Liu's avatar
Frederick Liu committed
67

Gunho Park's avatar
Gunho Park committed
68
69
70
71
@dataclasses.dataclass
class Detr(hyperparams.Config):
  num_queries: int = 100
  hidden_size: int = 256
Gunho Park's avatar
Gunho Park committed
72
  num_classes: int = 91  # 0: background
Frederick Liu's avatar
Frederick Liu committed
73
74
  num_encoder_layers: int = 6
  num_decoder_layers: int = 6
Gunho Park's avatar
Gunho Park committed
75
76
77
  input_size: List[int] = dataclasses.field(default_factory=list)
  backbone: backbones.Backbone = backbones.Backbone(
      type='resnet', resnet=backbones.ResNet(
Gunho Park's avatar
Gunho Park committed
78
          model_id=50,
Gunho Park's avatar
Gunho Park committed
79
80
          bn_trainable=False))
  norm_activation: common.NormActivation = common.NormActivation()
Frederick Liu's avatar
Frederick Liu committed
81

Gunho Park's avatar
Gunho Park committed
82
83
84
85
86
87
88
89
90
91
@dataclasses.dataclass
class DetrTask(cfg.TaskConfig):
  model: Detr = Detr()
  train_data: cfg.DataConfig = cfg.DataConfig()
  validation_data: cfg.DataConfig = cfg.DataConfig()
  losses: Losses = Losses()
  init_checkpoint: Optional[str] = None
  init_checkpoint_modules: Union[
      str, List[str]] = 'all'  # all, backbone
  annotation_file: Optional[str] = None
Frederick Liu's avatar
Frederick Liu committed
92
93
  per_category_metrics: bool = False

94
95
96
97
98
99
100
101
102
103
104
@exp_factory.register_config_factory('detr_coco')
def detr_coco() -> cfg.ExperimentConfig:
  """Config to get results that matches the paper."""
  train_batch_size = 64
  eval_batch_size = 64
  num_train_data = 118287
  num_steps_per_epoch = num_train_data // train_batch_size
  train_steps = 500 * num_steps_per_epoch  # 500 epochs
  decay_at = train_steps - 100 * num_steps_per_epoch  # 400 epochs
  config = cfg.ExperimentConfig(
      task=DetrTask(
Gunho Park's avatar
Gunho Park committed
105
          init_checkpoint='gs://tf_model_garden/vision/resnet50_imagenet/ckpt-62400',
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
          init_checkpoint_modules='backbone',
          model=Detr(
              num_classes=81,
              input_size=[1333, 1333, 3],
              norm_activation=common.NormActivation(use_sync_bn=False)),
          losses=Losses(),
          train_data=coco.COCODataConfig(
              tfds_name='coco/2017',
              tfds_split='train',
              is_training=True,
              global_batch_size=train_batch_size,
              shuffle_buffer_size=1000,
          ),
          validation_data=coco.COCODataConfig(
              tfds_name='coco/2017',
              tfds_split='validation',
              is_training=False,
              global_batch_size=eval_batch_size,
              drop_remainder=False
          )
      ),
      trainer=cfg.TrainerConfig(
          train_steps=train_steps,
          validation_steps=-1,
          steps_per_loop=10000,
          summary_interval=10000,
          checkpoint_interval=10000,
          validation_interval=10000,
          max_to_keep=1,
          best_checkpoint_export_subdir='best_ckpt',
          best_checkpoint_eval_metric='AP',
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'detr_adamw',
                  'detr_adamw': {
                      'weight_decay_rate': 1e-4,
                      'global_clipnorm': 0.1,
                      # Avoid AdamW legacy behavior.
                      'gradient_clip_norm': 0.0
                  }
              },
              'learning_rate': {
                  'type': 'stepwise',
                  'stepwise': {
                      'boundaries': [decay_at],
                      'values': [0.0001, 1.0e-05]
                  }
              },
              })
          ),
      restrictions=[
          'task.train_data.is_training != None',
      ])
  return config

Gunho Park's avatar
Gunho Park committed
161
COCO_INPUT_PATH_BASE = ''
Gunho Park's avatar
Gunho Park committed
162
COCO_TRAIN_EXAMPLES = 118287
Gunho Park's avatar
Gunho Park committed
163
COCO_VAL_EXAMPLES = 5000
Frederick Liu's avatar
Frederick Liu committed
164

165
@exp_factory.register_config_factory('detr_coco_tfrecord')
Frederick Liu's avatar
Frederick Liu committed
166
167
def detr_coco() -> cfg.ExperimentConfig:
  """Config to get results that matches the paper."""
Gunho Park's avatar
Gunho Park committed
168
  train_batch_size = 64
Frederick Liu's avatar
Frederick Liu committed
169
  eval_batch_size = 64
Gunho Park's avatar
Gunho Park committed
170
  steps_per_epoch = COCO_TRAIN_EXAMPLES // train_batch_size
Gunho Park's avatar
Gunho Park committed
171
172
  train_steps = 300 * steps_per_epoch  # 300 epochs
  decay_at = train_steps - 100 * steps_per_epoch  # 200 epochs
Frederick Liu's avatar
Frederick Liu committed
173
  config = cfg.ExperimentConfig(
Gunho Park's avatar
Gunho Park committed
174
      task=DetrTask(
Gunho Park's avatar
Gunho Park committed
175
          init_checkpoint='gs://tf_model_garden/vision/resnet50_imagenet/ckpt-62400',
Gunho Park's avatar
Gunho Park committed
176
          init_checkpoint_modules='backbone',
Gunho Park's avatar
Gunho Park committed
177
178
          annotation_file=os.path.join(COCO_INPUT_PATH_BASE,
                                       'instances_val2017.json'),
Gunho Park's avatar
Gunho Park committed
179
180
181
182
          model=Detr(
              input_size=[1333, 1333, 3],
              norm_activation=common.NormActivation(use_sync_bn=False)),
          losses=Losses(),
Gunho Park's avatar
Gunho Park committed
183
184
          train_data=DataConfig(
              input_path=os.path.join(COCO_INPUT_PATH_BASE, 'train*'),
Frederick Liu's avatar
Frederick Liu committed
185
186
187
188
              is_training=True,
              global_batch_size=train_batch_size,
              shuffle_buffer_size=1000,
          ),
Gunho Park's avatar
Gunho Park committed
189
190
          validation_data=DataConfig(
              input_path=os.path.join(COCO_INPUT_PATH_BASE, 'val*'),
Frederick Liu's avatar
Frederick Liu committed
191
192
              is_training=False,
              global_batch_size=eval_batch_size,
Gunho Park's avatar
Gunho Park committed
193
              drop_remainder=False,
Frederick Liu's avatar
Frederick Liu committed
194
195
196
197
          )
      ),
      trainer=cfg.TrainerConfig(
          train_steps=train_steps,
Gunho Park's avatar
Gunho Park committed
198
199
200
201
202
          validation_steps=COCO_VAL_EXAMPLES // eval_batch_size,
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
          validation_interval=5*steps_per_epoch,
Frederick Liu's avatar
Frederick Liu committed
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
          max_to_keep=1,
          best_checkpoint_export_subdir='best_ckpt',
          best_checkpoint_eval_metric='AP',
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'detr_adamw',
                  'detr_adamw': {
                      'weight_decay_rate': 1e-4,
                      'global_clipnorm': 0.1,
                      # Avoid AdamW legacy behavior.
                      'gradient_clip_norm': 0.0
                  }
              },
              'learning_rate': {
                  'type': 'stepwise',
                  'stepwise': {
                      'boundaries': [decay_at],
                      'values': [0.0001, 1.0e-05]
                  }
              },
              })
          ),
      restrictions=[
          'task.train_data.is_training != None',
      ])
  return config
Gunho Park's avatar
Gunho Park committed
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296

@exp_factory.register_config_factory('detr_coco_tfds')
def detr_coco() -> cfg.ExperimentConfig:
  """Config to get results that matches the paper."""
  train_batch_size = 64
  eval_batch_size = 64
  steps_per_epoch = COCO_TRAIN_EXAMPLES // train_batch_size
  train_steps = 300 * steps_per_epoch  # 300 epochs
  decay_at = train_steps - 100 * steps_per_epoch  # 200 epochs
  config = cfg.ExperimentConfig(
      task=DetrTask(
          init_checkpoint='gs://tf_model_garden/vision/resnet50_imagenet/ckpt-62400',
          init_checkpoint_modules='backbone',
          model=Detr(
              num_classes=81,
              input_size=[1333, 1333, 3],
              norm_activation=common.NormActivation(use_sync_bn=False)),
          losses=Losses(
              class_offset=1
          ),
          train_data=DataConfig(
              tfds_name='coco/2017',
              tfds_split='train',
              is_training=True,
              global_batch_size=train_batch_size,
              shuffle_buffer_size=1000,
          ),
          validation_data=DataConfig(
              tfds_name='coco/2017',
              tfds_split='validation',
              is_training=False,
              global_batch_size=eval_batch_size,
              drop_remainder=False
          )
      ),
      trainer=cfg.TrainerConfig(
          train_steps=train_steps,
          validation_steps=COCO_VAL_EXAMPLES // eval_batch_size,
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
          validation_interval=5*steps_per_epoch,
          max_to_keep=1,
          best_checkpoint_export_subdir='best_ckpt',
          best_checkpoint_eval_metric='AP',
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'detr_adamw',
                  'detr_adamw': {
                      'weight_decay_rate': 1e-4,
                      'global_clipnorm': 0.1,
                      # Avoid AdamW legacy behavior.
                      'gradient_clip_norm': 0.0
                  }
              },
              'learning_rate': {
                  'type': 'stepwise',
                  'stepwise': {
                      'boundaries': [decay_at],
                      'values': [0.0001, 1.0e-05]
                  }
              },
              })
          ),
      restrictions=[
          'task.train_data.is_training != None',
      ])
  return config