detr.py 3.41 KB
Newer Older
Frederick Liu's avatar
Frederick Liu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""DETR configurations."""

import dataclasses
from official.core import config_definitions as cfg
from official.core import exp_factory
from official.projects.detr import optimization
from official.projects.detr.dataloaders import coco


@dataclasses.dataclass
class DetectionConfig(cfg.TaskConfig):
  """The translation task config."""
  train_data: cfg.DataConfig = cfg.DataConfig()
  validation_data: cfg.DataConfig = cfg.DataConfig()
  lambda_cls: float = 1.0
  lambda_box: float = 5.0
  lambda_giou: float = 2.0

  init_ckpt: str = ''
  num_classes: int = 81  # 0: background
  background_cls_weight: float = 0.1
  num_encoder_layers: int = 6
  num_decoder_layers: int = 6

  # Make DETRConfig.
  num_queries: int = 100
  num_hidden: int = 256
  per_category_metrics: bool = False


@exp_factory.register_config_factory('detr_coco')
def detr_coco() -> cfg.ExperimentConfig:
  """Config to get results that matches the paper."""
  train_batch_size = 64
  eval_batch_size = 64
  num_train_data = 118287
  num_steps_per_epoch = num_train_data // train_batch_size
  train_steps = 500 * num_steps_per_epoch  # 500 epochs
  decay_at = train_steps - 100 * num_steps_per_epoch  # 400 epochs
  config = cfg.ExperimentConfig(
      task=DetectionConfig(
          train_data=coco.COCODataConfig(
              tfds_name='coco/2017',
              tfds_split='train',
              is_training=True,
              global_batch_size=train_batch_size,
              shuffle_buffer_size=1000,
          ),
          validation_data=coco.COCODataConfig(
              tfds_name='coco/2017',
              tfds_split='validation',
              is_training=False,
              global_batch_size=eval_batch_size,
              drop_remainder=False
          )
      ),
      trainer=cfg.TrainerConfig(
          train_steps=train_steps,
          validation_steps=-1,
          steps_per_loop=10000,
          summary_interval=10000,
          checkpoint_interval=10000,
          validation_interval=10000,
          max_to_keep=1,
          best_checkpoint_export_subdir='best_ckpt',
          best_checkpoint_eval_metric='AP',
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'detr_adamw',
                  'detr_adamw': {
                      'weight_decay_rate': 1e-4,
                      'global_clipnorm': 0.1,
                      # Avoid AdamW legacy behavior.
                      'gradient_clip_norm': 0.0
                  }
              },
              'learning_rate': {
                  'type': 'stepwise',
                  'stepwise': {
                      'boundaries': [decay_at],
                      'values': [0.0001, 1.0e-05]
                  }
              },
              })
          ),
      restrictions=[
          'task.train_data.is_training != None',
      ])
  return config