Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
38a5d626
Commit
38a5d626
authored
Jul 03, 2022
by
Gunho Park
Browse files
Create another experiment using the tfrecord path
parent
756a6f68
Changes
5
Hide whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
343 additions
and
5 deletions
+343
-5
official/projects/detr/configs/detr.py
official/projects/detr/configs/detr.py
+72
-3
official/projects/detr/dataloaders/coco.py
official/projects/detr/dataloaders/coco.py
+158
-0
official/projects/detr/dataloaders/coco_test.py
official/projects/detr/dataloaders/coco_test.py
+111
-0
official/projects/detr/experiments/detr_r50_300epochs.sh
official/projects/detr/experiments/detr_r50_300epochs.sh
+1
-1
official/projects/detr/experiments/detr_r50_500epochs.sh
official/projects/detr/experiments/detr_r50_500epochs.sh
+1
-1
No files found.
official/projects/detr/configs/detr.py
View file @
38a5d626
...
@@ -21,10 +21,10 @@ from typing import List, Optional, Union
...
@@ -21,10 +21,10 @@ from typing import List, Optional, Union
from
official.core
import
config_definitions
as
cfg
from
official.core
import
config_definitions
as
cfg
from
official.core
import
exp_factory
from
official.core
import
exp_factory
from
official.modeling
import
hyperparams
from
official.modeling
import
hyperparams
from
official.projects.detr
import
optimization
from
official.vision.configs
import
common
from
official.vision.configs
import
common
from
official.vision.configs
import
backbones
from
official.vision.configs
import
backbones
from
official.projects.detr
import
optimization
from
official.projects.detr.dataloaders
import
coco
# pylint: disable=missing-class-docstring
# pylint: disable=missing-class-docstring
# Keep for backward compatibility.
# Keep for backward compatibility.
...
@@ -90,11 +90,80 @@ class DetrTask(cfg.TaskConfig):
...
@@ -90,11 +90,80 @@ class DetrTask(cfg.TaskConfig):
annotation_file
:
Optional
[
str
]
=
None
annotation_file
:
Optional
[
str
]
=
None
per_category_metrics
:
bool
=
False
per_category_metrics
:
bool
=
False
@
exp_factory
.
register_config_factory
(
'detr_coco'
)
def
detr_coco
()
->
cfg
.
ExperimentConfig
:
"""Config to get results that matches the paper."""
train_batch_size
=
64
eval_batch_size
=
64
num_train_data
=
118287
num_steps_per_epoch
=
num_train_data
//
train_batch_size
train_steps
=
500
*
num_steps_per_epoch
# 500 epochs
decay_at
=
train_steps
-
100
*
num_steps_per_epoch
# 400 epochs
config
=
cfg
.
ExperimentConfig
(
task
=
DetrTask
(
init_checkpoint
=
'gs://ghpark-imagenet-tfrecord/ckpt/resnet50_imagenet'
,
init_checkpoint_modules
=
'backbone'
,
model
=
Detr
(
num_classes
=
81
,
input_size
=
[
1333
,
1333
,
3
],
norm_activation
=
common
.
NormActivation
(
use_sync_bn
=
False
)),
losses
=
Losses
(),
train_data
=
coco
.
COCODataConfig
(
file_type
=
'tfrecord'
,
tfds_name
=
'coco/2017'
,
tfds_split
=
'train'
,
is_training
=
True
,
global_batch_size
=
train_batch_size
,
shuffle_buffer_size
=
1000
,
),
validation_data
=
coco
.
COCODataConfig
(
file_type
=
'tfrecord'
,
tfds_name
=
'coco/2017'
,
tfds_split
=
'validation'
,
is_training
=
False
,
global_batch_size
=
eval_batch_size
,
drop_remainder
=
False
)
),
trainer
=
cfg
.
TrainerConfig
(
train_steps
=
train_steps
,
validation_steps
=-
1
,
steps_per_loop
=
10000
,
summary_interval
=
10000
,
checkpoint_interval
=
10000
,
validation_interval
=
10000
,
max_to_keep
=
1
,
best_checkpoint_export_subdir
=
'best_ckpt'
,
best_checkpoint_eval_metric
=
'AP'
,
optimizer_config
=
optimization
.
OptimizationConfig
({
'optimizer'
:
{
'type'
:
'detr_adamw'
,
'detr_adamw'
:
{
'weight_decay_rate'
:
1e-4
,
'global_clipnorm'
:
0.1
,
# Avoid AdamW legacy behavior.
'gradient_clip_norm'
:
0.0
}
},
'learning_rate'
:
{
'type'
:
'stepwise'
,
'stepwise'
:
{
'boundaries'
:
[
decay_at
],
'values'
:
[
0.0001
,
1.0e-05
]
}
},
})
),
restrictions
=
[
'task.train_data.is_training != None'
,
])
return
config
COCO_INPUT_PATH_BASE
=
'gs://ghpark-tfrecords/coco'
COCO_INPUT_PATH_BASE
=
'gs://ghpark-tfrecords/coco'
COCO_TRAIN_EXAMPLES
=
118287
COCO_TRAIN_EXAMPLES
=
118287
COCO_VAL_EXAMPLES
=
5000
COCO_VAL_EXAMPLES
=
5000
@
exp_factory
.
register_config_factory
(
'detr_coco'
)
@
exp_factory
.
register_config_factory
(
'detr_coco
_tfrecord
'
)
def
detr_coco
()
->
cfg
.
ExperimentConfig
:
def
detr_coco
()
->
cfg
.
ExperimentConfig
:
"""Config to get results that matches the paper."""
"""Config to get results that matches the paper."""
train_batch_size
=
64
train_batch_size
=
64
...
...
official/projects/detr/dataloaders/coco.py
0 → 100644
View file @
38a5d626
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""COCO data loader for DETR."""
import
dataclasses
from
typing
import
Optional
,
Tuple
import
tensorflow
as
tf
from
official.core
import
config_definitions
as
cfg
from
official.core
import
input_reader
from
official.vision.ops
import
box_ops
from
official.vision.ops
import
preprocess_ops
@
dataclasses
.
dataclass
class
COCODataConfig
(
cfg
.
DataConfig
):
"""Data config for COCO."""
file_type
:
str
=
'tfrecord'
output_size
:
Tuple
[
int
,
int
]
=
(
1333
,
1333
)
max_num_boxes
:
int
=
100
resize_scales
:
Tuple
[
int
,
...]
=
(
480
,
512
,
544
,
576
,
608
,
640
,
672
,
704
,
736
,
768
,
800
)
class
COCODataLoader
():
"""A class to load dataset for COCO detection task."""
def
__init__
(
self
,
params
:
COCODataConfig
):
self
.
_params
=
params
def
preprocess
(
self
,
inputs
):
"""Preprocess COCO for DETR."""
image
=
inputs
[
'image'
]
boxes
=
inputs
[
'objects'
][
'bbox'
]
classes
=
inputs
[
'objects'
][
'label'
]
+
1
is_crowd
=
inputs
[
'objects'
][
'is_crowd'
]
image
=
preprocess_ops
.
normalize_image
(
image
)
if
self
.
_params
.
is_training
:
image
,
boxes
,
_
=
preprocess_ops
.
random_horizontal_flip
(
image
,
boxes
)
do_crop
=
tf
.
greater
(
tf
.
random
.
uniform
([]),
0.5
)
if
do_crop
:
# Rescale
boxes
=
box_ops
.
denormalize_boxes
(
boxes
,
tf
.
shape
(
image
)[:
2
])
index
=
tf
.
random
.
categorical
(
tf
.
zeros
([
1
,
3
]),
1
)[
0
]
scales
=
tf
.
gather
([
400.0
,
500.0
,
600.0
],
index
,
axis
=
0
)
short_side
=
scales
[
0
]
image
,
image_info
=
preprocess_ops
.
resize_image
(
image
,
short_side
)
boxes
=
preprocess_ops
.
resize_and_crop_boxes
(
boxes
,
image_info
[
2
,
:],
image_info
[
1
,
:],
image_info
[
3
,
:])
boxes
=
box_ops
.
normalize_boxes
(
boxes
,
image_info
[
1
,
:])
# Do croping
shape
=
tf
.
cast
(
image_info
[
1
],
dtype
=
tf
.
int32
)
h
=
tf
.
random
.
uniform
(
[],
384
,
tf
.
math
.
minimum
(
shape
[
0
],
600
),
dtype
=
tf
.
int32
)
w
=
tf
.
random
.
uniform
(
[],
384
,
tf
.
math
.
minimum
(
shape
[
1
],
600
),
dtype
=
tf
.
int32
)
i
=
tf
.
random
.
uniform
([],
0
,
shape
[
0
]
-
h
+
1
,
dtype
=
tf
.
int32
)
j
=
tf
.
random
.
uniform
([],
0
,
shape
[
1
]
-
w
+
1
,
dtype
=
tf
.
int32
)
image
=
tf
.
image
.
crop_to_bounding_box
(
image
,
i
,
j
,
h
,
w
)
boxes
=
tf
.
clip_by_value
(
(
boxes
[...,
:]
*
tf
.
cast
(
tf
.
stack
([
shape
[
0
],
shape
[
1
],
shape
[
0
],
shape
[
1
]]),
dtype
=
tf
.
float32
)
-
tf
.
cast
(
tf
.
stack
([
i
,
j
,
i
,
j
]),
dtype
=
tf
.
float32
))
/
tf
.
cast
(
tf
.
stack
([
h
,
w
,
h
,
w
]),
dtype
=
tf
.
float32
),
0.0
,
1.0
)
scales
=
tf
.
constant
(
self
.
_params
.
resize_scales
,
dtype
=
tf
.
float32
)
index
=
tf
.
random
.
categorical
(
tf
.
zeros
([
1
,
11
]),
1
)[
0
]
scales
=
tf
.
gather
(
scales
,
index
,
axis
=
0
)
else
:
scales
=
tf
.
constant
([
self
.
_params
.
resize_scales
[
-
1
]],
tf
.
float32
)
image_shape
=
tf
.
shape
(
image
)[:
2
]
boxes
=
box_ops
.
denormalize_boxes
(
boxes
,
image_shape
)
gt_boxes
=
boxes
short_side
=
scales
[
0
]
image
,
image_info
=
preprocess_ops
.
resize_image
(
image
,
short_side
,
max
(
self
.
_params
.
output_size
))
boxes
=
preprocess_ops
.
resize_and_crop_boxes
(
boxes
,
image_info
[
2
,
:],
image_info
[
1
,
:],
image_info
[
3
,
:])
boxes
=
box_ops
.
normalize_boxes
(
boxes
,
image_info
[
1
,
:])
# Filters out ground truth boxes that are all zeros.
indices
=
box_ops
.
get_non_empty_box_indices
(
boxes
)
boxes
=
tf
.
gather
(
boxes
,
indices
)
classes
=
tf
.
gather
(
classes
,
indices
)
is_crowd
=
tf
.
gather
(
is_crowd
,
indices
)
boxes
=
box_ops
.
yxyx_to_cycxhw
(
boxes
)
image
=
tf
.
image
.
pad_to_bounding_box
(
image
,
0
,
0
,
self
.
_params
.
output_size
[
0
],
self
.
_params
.
output_size
[
1
])
labels
=
{
'classes'
:
preprocess_ops
.
clip_or_pad_to_fixed_size
(
classes
,
self
.
_params
.
max_num_boxes
),
'boxes'
:
preprocess_ops
.
clip_or_pad_to_fixed_size
(
boxes
,
self
.
_params
.
max_num_boxes
)
}
if
not
self
.
_params
.
is_training
:
labels
.
update
({
'id'
:
inputs
[
'image/id'
],
'image_info'
:
image_info
,
'is_crowd'
:
preprocess_ops
.
clip_or_pad_to_fixed_size
(
is_crowd
,
self
.
_params
.
max_num_boxes
),
'gt_boxes'
:
preprocess_ops
.
clip_or_pad_to_fixed_size
(
gt_boxes
,
self
.
_params
.
max_num_boxes
),
})
return
image
,
labels
def
_transform_and_batch_fn
(
self
,
dataset
,
input_context
:
Optional
[
tf
.
distribute
.
InputContext
]
=
None
):
"""Preprocess and batch."""
dataset
=
dataset
.
map
(
self
.
preprocess
,
num_parallel_calls
=
tf
.
data
.
experimental
.
AUTOTUNE
)
per_replica_batch_size
=
input_context
.
get_per_replica_batch_size
(
self
.
_params
.
global_batch_size
)
if
input_context
else
self
.
_params
.
global_batch_size
dataset
=
dataset
.
batch
(
per_replica_batch_size
,
drop_remainder
=
self
.
_params
.
is_training
)
return
dataset
def
load
(
self
,
input_context
:
Optional
[
tf
.
distribute
.
InputContext
]
=
None
):
"""Returns a tf.dataset.Dataset."""
reader
=
input_reader
.
InputReader
(
params
=
self
.
_params
,
decoder_fn
=
None
,
transform_and_batch_fn
=
self
.
_transform_and_batch_fn
)
return
reader
.
read
(
input_context
)
official/projects/detr/dataloaders/coco_test.py
0 → 100644
View file @
38a5d626
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for tensorflow_models.official.projects.detr.dataloaders.coco."""
from
absl.testing
import
parameterized
import
numpy
as
np
import
tensorflow
as
tf
import
tensorflow_datasets
as
tfds
from
official.projects.detr.dataloaders
import
coco
def
_gen_fn
():
h
=
np
.
random
.
randint
(
0
,
300
)
w
=
np
.
random
.
randint
(
0
,
300
)
num_boxes
=
np
.
random
.
randint
(
0
,
50
)
return
{
'image'
:
np
.
ones
(
shape
=
(
h
,
w
,
3
),
dtype
=
np
.
uint8
),
'image/id'
:
np
.
random
.
randint
(
0
,
100
),
'image/filename'
:
'test'
,
'objects'
:
{
'is_crowd'
:
np
.
ones
(
shape
=
(
num_boxes
),
dtype
=
np
.
bool
),
'bbox'
:
np
.
ones
(
shape
=
(
num_boxes
,
4
),
dtype
=
np
.
float32
),
'label'
:
np
.
ones
(
shape
=
(
num_boxes
),
dtype
=
np
.
int64
),
'id'
:
np
.
ones
(
shape
=
(
num_boxes
),
dtype
=
np
.
int64
),
'area'
:
np
.
ones
(
shape
=
(
num_boxes
),
dtype
=
np
.
int64
),
}
}
class
CocoDataloaderTest
(
tf
.
test
.
TestCase
,
parameterized
.
TestCase
):
def
test_load_dataset
(
self
):
output_size
=
1280
max_num_boxes
=
100
batch_size
=
2
data_config
=
coco
.
COCODataConfig
(
tfds_name
=
'coco/2017'
,
tfds_split
=
'validation'
,
is_training
=
False
,
global_batch_size
=
batch_size
,
output_size
=
(
output_size
,
output_size
),
max_num_boxes
=
max_num_boxes
,
)
num_examples
=
10
def
as_dataset
(
self
,
*
args
,
**
kwargs
):
del
args
del
kwargs
return
tf
.
data
.
Dataset
.
from_generator
(
lambda
:
(
_gen_fn
()
for
i
in
range
(
num_examples
)),
output_types
=
self
.
info
.
features
.
dtype
,
output_shapes
=
self
.
info
.
features
.
shape
,
)
with
tfds
.
testing
.
mock_data
(
num_examples
=
num_examples
,
as_dataset_fn
=
as_dataset
):
dataset
=
coco
.
COCODataLoader
(
data_config
).
load
()
dataset_iter
=
iter
(
dataset
)
images
,
labels
=
next
(
dataset_iter
)
self
.
assertEqual
(
images
.
shape
,
(
batch_size
,
output_size
,
output_size
,
3
))
self
.
assertEqual
(
labels
[
'classes'
].
shape
,
(
batch_size
,
max_num_boxes
))
self
.
assertEqual
(
labels
[
'boxes'
].
shape
,
(
batch_size
,
max_num_boxes
,
4
))
self
.
assertEqual
(
labels
[
'id'
].
shape
,
(
batch_size
,))
self
.
assertEqual
(
labels
[
'image_info'
].
shape
,
(
batch_size
,
4
,
2
))
self
.
assertEqual
(
labels
[
'is_crowd'
].
shape
,
(
batch_size
,
max_num_boxes
))
@
parameterized
.
named_parameters
(
(
'training'
,
True
),
(
'validation'
,
False
))
def
test_preprocess
(
self
,
is_training
):
output_size
=
1280
max_num_boxes
=
100
batch_size
=
2
data_config
=
coco
.
COCODataConfig
(
tfds_name
=
'coco/2017'
,
tfds_split
=
'validation'
,
is_training
=
is_training
,
global_batch_size
=
batch_size
,
output_size
=
(
output_size
,
output_size
),
max_num_boxes
=
max_num_boxes
,
)
dl
=
coco
.
COCODataLoader
(
data_config
)
inputs
=
_gen_fn
()
image
,
label
=
dl
.
preprocess
(
inputs
)
self
.
assertEqual
(
image
.
shape
,
(
output_size
,
output_size
,
3
))
self
.
assertEqual
(
label
[
'classes'
].
shape
,
(
max_num_boxes
))
self
.
assertEqual
(
label
[
'boxes'
].
shape
,
(
max_num_boxes
,
4
))
if
not
is_training
:
self
.
assertDTypeEqual
(
label
[
'id'
],
int
)
self
.
assertEqual
(
label
[
'image_info'
].
shape
,
(
4
,
2
))
self
.
assertEqual
(
label
[
'is_crowd'
].
shape
,
(
max_num_boxes
))
if
__name__
==
'__main__'
:
tf
.
test
.
main
()
official/projects/detr/experiments/detr_r50_300epochs.sh
View file @
38a5d626
...
@@ -3,4 +3,4 @@ python3 official/projects/detr/train.py \
...
@@ -3,4 +3,4 @@ python3 official/projects/detr/train.py \
--experiment
=
detr_coco
\
--experiment
=
detr_coco
\
--mode
=
train_and_eval
\
--mode
=
train_and_eval
\
--model_dir
=
/tmp/logging_dir/
\
--model_dir
=
/tmp/logging_dir/
\
--params_override
=
task.init_c
kp
t
=
'gs://tf_model_garden/vision/resnet50_imagenet/ckpt-62400'
,trainer.train_steps
=
554400
--params_override
=
task.init_c
heckpoin
t
=
'gs://tf_model_garden/vision/resnet50_imagenet/ckpt-62400'
,trainer.train_steps
=
554400
official/projects/detr/experiments/detr_r50_500epochs.sh
View file @
38a5d626
...
@@ -3,4 +3,4 @@ python3 official/projects/detr/train.py \
...
@@ -3,4 +3,4 @@ python3 official/projects/detr/train.py \
--experiment
=
detr_coco
\
--experiment
=
detr_coco
\
--mode
=
train_and_eval
\
--mode
=
train_and_eval
\
--model_dir
=
/tmp/logging_dir/
\
--model_dir
=
/tmp/logging_dir/
\
--params_override
=
task.init_c
kp
t
=
'gs://tf_model_garden/vision/resnet50_imagenet/ckpt-62400'
--params_override
=
task.init_c
heckpoin
t
=
'gs://tf_model_garden/vision/resnet50_imagenet/ckpt-62400'
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment