detr.py 5.43 KB
Newer Older
Frederick Liu's avatar
Frederick Liu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""DETR configurations."""

import dataclasses
Gunho Park's avatar
Gunho Park committed
18
19
20
import os
from typing import List, Optional, Union

Frederick Liu's avatar
Frederick Liu committed
21
22
from official.core import config_definitions as cfg
from official.core import exp_factory
Gunho Park's avatar
Gunho Park committed
23
from official.modeling import hyperparams
Frederick Liu's avatar
Frederick Liu committed
24
from official.projects.detr import optimization
Gunho Park's avatar
Gunho Park committed
25
from official.vision.configs import common
Gunho Park's avatar
Gunho Park committed
26
from official.vision.configs import backbones
Frederick Liu's avatar
Frederick Liu committed
27
28


Gunho Park's avatar
Gunho Park committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# pylint: disable=missing-class-docstring
# Keep for backward compatibility.
@dataclasses.dataclass
class TfExampleDecoder(common.TfExampleDecoder):
  """A simple TF Example decoder config."""


# Keep for backward compatibility.
@dataclasses.dataclass
class TfExampleDecoderLabelMap(common.TfExampleDecoderLabelMap):
  """TF Example decoder with label map config."""


# Keep for backward compatibility.
@dataclasses.dataclass
class DataDecoder(common.DataDecoder):
  """Data decoder config."""

@dataclasses.dataclass
class DataConfig(cfg.DataConfig):
  """Input config for training."""
  input_path: str = ''
  global_batch_size: int = 0
  is_training: bool = False
  dtype: str = 'bfloat16'
  decoder: common.DataDecoder = common.DataDecoder()
  #parser: Parser = Parser()
  shuffle_buffer_size: int = 10000
  file_type: str = 'tfrecord'

Frederick Liu's avatar
Frederick Liu committed
59
@dataclasses.dataclass
Gunho Park's avatar
Gunho Park committed
60
class Losses(hyperparams.Config):
Frederick Liu's avatar
Frederick Liu committed
61
62
63
  lambda_cls: float = 1.0
  lambda_box: float = 5.0
  lambda_giou: float = 2.0
Gunho Park's avatar
Gunho Park committed
64
  background_cls_weight: float = 0.1
Gunho Park's avatar
Gunho Park committed
65
  l2_weight_decay: float = 1e-4
Frederick Liu's avatar
Frederick Liu committed
66

Gunho Park's avatar
Gunho Park committed
67
68
69
70
@dataclasses.dataclass
class Detr(hyperparams.Config):
  num_queries: int = 100
  hidden_size: int = 256
Gunho Park's avatar
Gunho Park committed
71
  num_classes: int = 91  # 0: background
Frederick Liu's avatar
Frederick Liu committed
72
73
  num_encoder_layers: int = 6
  num_decoder_layers: int = 6
Gunho Park's avatar
Gunho Park committed
74
75
76
  input_size: List[int] = dataclasses.field(default_factory=list)
  backbone: backbones.Backbone = backbones.Backbone(
      type='resnet', resnet=backbones.ResNet(
Gunho Park's avatar
Gunho Park committed
77
          model_id=50,
Gunho Park's avatar
Gunho Park committed
78
79
          bn_trainable=False))
  norm_activation: common.NormActivation = common.NormActivation()
Frederick Liu's avatar
Frederick Liu committed
80

Gunho Park's avatar
Gunho Park committed
81
82
83
84
85
86
87
88
89
90
@dataclasses.dataclass
class DetrTask(cfg.TaskConfig):
  model: Detr = Detr()
  train_data: cfg.DataConfig = cfg.DataConfig()
  validation_data: cfg.DataConfig = cfg.DataConfig()
  losses: Losses = Losses()
  init_checkpoint: Optional[str] = None
  init_checkpoint_modules: Union[
      str, List[str]] = 'all'  # all, backbone
  annotation_file: Optional[str] = None
Frederick Liu's avatar
Frederick Liu committed
91
92
  per_category_metrics: bool = False

Gunho Park's avatar
Gunho Park committed
93
COCO_INPUT_PATH_BASE = 'gs://ghpark-tfrecords/coco'
Gunho Park's avatar
Gunho Park committed
94
COCO_TRAIN_EXAMPLES = 118287
Gunho Park's avatar
Gunho Park committed
95
COCO_VAL_EXAMPLES = 5000
Frederick Liu's avatar
Frederick Liu committed
96
97
98
99

@exp_factory.register_config_factory('detr_coco')
def detr_coco() -> cfg.ExperimentConfig:
  """Config to get results that matches the paper."""
Gunho Park's avatar
Gunho Park committed
100
  train_batch_size = 32
Frederick Liu's avatar
Frederick Liu committed
101
  eval_batch_size = 64
Gunho Park's avatar
Gunho Park committed
102
  steps_per_epoch = COCO_TRAIN_EXAMPLES // train_batch_size
Gunho Park's avatar
Gunho Park committed
103
104
  train_steps = 300 * steps_per_epoch  # 300 epochs
  decay_at = train_steps - 100 * steps_per_epoch  # 200 epochs
Frederick Liu's avatar
Frederick Liu committed
105
  config = cfg.ExperimentConfig(
Gunho Park's avatar
Gunho Park committed
106
      task=DetrTask(
Gunho Park's avatar
Gunho Park committed
107
          init_checkpoint='gs://ghpark-imagenet-tfrecord/ckpt/resnet50_imagenet',
Gunho Park's avatar
Gunho Park committed
108
          init_checkpoint_modules='backbone',
Gunho Park's avatar
Gunho Park committed
109
110
          annotation_file=os.path.join(COCO_INPUT_PATH_BASE,
                                       'instances_val2017.json'),
Gunho Park's avatar
Gunho Park committed
111
112
113
114
          model=Detr(
              input_size=[1333, 1333, 3],
              norm_activation=common.NormActivation(use_sync_bn=False)),
          losses=Losses(),
Gunho Park's avatar
Gunho Park committed
115
116
          train_data=DataConfig(
              input_path=os.path.join(COCO_INPUT_PATH_BASE, 'train*'),
Frederick Liu's avatar
Frederick Liu committed
117
118
119
120
              is_training=True,
              global_batch_size=train_batch_size,
              shuffle_buffer_size=1000,
          ),
Gunho Park's avatar
Gunho Park committed
121
122
          validation_data=DataConfig(
              input_path=os.path.join(COCO_INPUT_PATH_BASE, 'val*'),
Frederick Liu's avatar
Frederick Liu committed
123
124
              is_training=False,
              global_batch_size=eval_batch_size,
Gunho Park's avatar
Gunho Park committed
125
              drop_remainder=False,
Frederick Liu's avatar
Frederick Liu committed
126
127
128
129
          )
      ),
      trainer=cfg.TrainerConfig(
          train_steps=train_steps,
Gunho Park's avatar
Gunho Park committed
130
131
132
133
134
          validation_steps=COCO_VAL_EXAMPLES // eval_batch_size,
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
          validation_interval=5*steps_per_epoch,
Frederick Liu's avatar
Frederick Liu committed
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
          max_to_keep=1,
          best_checkpoint_export_subdir='best_ckpt',
          best_checkpoint_eval_metric='AP',
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'detr_adamw',
                  'detr_adamw': {
                      'weight_decay_rate': 1e-4,
                      'global_clipnorm': 0.1,
                      # Avoid AdamW legacy behavior.
                      'gradient_clip_norm': 0.0
                  }
              },
              'learning_rate': {
                  'type': 'stepwise',
                  'stepwise': {
                      'boundaries': [decay_at],
                      'values': [0.0001, 1.0e-05]
                  }
              },
              })
          ),
      restrictions=[
          'task.train_data.is_training != None',
      ])
  return config