detr.py 5.45 KB
Newer Older
Frederick Liu's avatar
Frederick Liu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""DETR configurations."""

import dataclasses
Gunho Park's avatar
Gunho Park committed
18
19
20
import os
from typing import List, Optional, Union

Frederick Liu's avatar
Frederick Liu committed
21
22
from official.core import config_definitions as cfg
from official.core import exp_factory
Gunho Park's avatar
Gunho Park committed
23
from official.modeling import hyperparams
Frederick Liu's avatar
Frederick Liu committed
24
from official.projects.detr import optimization
Gunho Park's avatar
Gunho Park committed
25
from official.vision.configs import common
Gunho Park's avatar
Gunho Park committed
26
from official.vision.configs import backbones
Frederick Liu's avatar
Frederick Liu committed
27
28


Gunho Park's avatar
Gunho Park committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# pylint: disable=missing-class-docstring
# Keep for backward compatibility.
@dataclasses.dataclass
class TfExampleDecoder(common.TfExampleDecoder):
  """A simple TF Example decoder config."""


# Keep for backward compatibility.
@dataclasses.dataclass
class TfExampleDecoderLabelMap(common.TfExampleDecoderLabelMap):
  """TF Example decoder with label map config."""


# Keep for backward compatibility.
@dataclasses.dataclass
class DataDecoder(common.DataDecoder):
  """Data decoder config."""

@dataclasses.dataclass
class DataConfig(cfg.DataConfig):
  """Input config for training."""
  input_path: str = ''
  global_batch_size: int = 0
  is_training: bool = False
  dtype: str = 'bfloat16'
  decoder: common.DataDecoder = common.DataDecoder()
  #parser: Parser = Parser()
  shuffle_buffer_size: int = 10000
  file_type: str = 'tfrecord'

Frederick Liu's avatar
Frederick Liu committed
59
@dataclasses.dataclass
Gunho Park's avatar
Gunho Park committed
60
class Losses(hyperparams.Config):
Frederick Liu's avatar
Frederick Liu committed
61
62
63
  lambda_cls: float = 1.0
  lambda_box: float = 5.0
  lambda_giou: float = 2.0
Gunho Park's avatar
Gunho Park committed
64
  background_cls_weight: float = 0.1
Frederick Liu's avatar
Frederick Liu committed
65

Gunho Park's avatar
Gunho Park committed
66
67
68
69
@dataclasses.dataclass
class Detr(hyperparams.Config):
  num_queries: int = 100
  hidden_size: int = 256
Gunho Park's avatar
Gunho Park committed
70
  num_classes: int = 91  # 0: background
Frederick Liu's avatar
Frederick Liu committed
71
72
  num_encoder_layers: int = 6
  num_decoder_layers: int = 6
Gunho Park's avatar
Gunho Park committed
73
74
75
76
77
78
  input_size: List[int] = dataclasses.field(default_factory=list)
  backbone: backbones.Backbone = backbones.Backbone(
      type='resnet', resnet=backbones.ResNet(
          model_id=101,
          bn_trainable=False))
  norm_activation: common.NormActivation = common.NormActivation()
Frederick Liu's avatar
Frederick Liu committed
79

Gunho Park's avatar
Gunho Park committed
80
81
82
83
84
85
86
87
88
89
@dataclasses.dataclass
class DetrTask(cfg.TaskConfig):
  model: Detr = Detr()
  train_data: cfg.DataConfig = cfg.DataConfig()
  validation_data: cfg.DataConfig = cfg.DataConfig()
  losses: Losses = Losses()
  init_checkpoint: Optional[str] = None
  init_checkpoint_modules: Union[
      str, List[str]] = 'all'  # all, backbone
  annotation_file: Optional[str] = None
Frederick Liu's avatar
Frederick Liu committed
90
91
  per_category_metrics: bool = False

Gunho Park's avatar
Gunho Park committed
92
COCO_INPUT_PATH_BASE = 'gs://ghpark-tfrecords/coco'
Gunho Park's avatar
Gunho Park committed
93
94
COCO_TRAIN_EXAMPLES = 118287
#COCO_TRAIN_EXAMPLES = 9600
Gunho Park's avatar
Gunho Park committed
95
COCO_VAL_EXAMPLES = 5000
Frederick Liu's avatar
Frederick Liu committed
96
97
98
99

@exp_factory.register_config_factory('detr_coco')
def detr_coco() -> cfg.ExperimentConfig:
  """Config to get results that matches the paper."""
Gunho Park's avatar
Gunho Park committed
100
  train_batch_size = 32
Frederick Liu's avatar
Frederick Liu committed
101
102
  eval_batch_size = 64
  num_train_data = 118287
Gunho Park's avatar
Gunho Park committed
103
104
105
  steps_per_epoch = COCO_TRAIN_EXAMPLES // train_batch_size
  train_steps = 300 * steps_per_epoch  # 500 epochs
  decay_at = train_steps - 100 * steps_per_epoch  # 400 epochs
Frederick Liu's avatar
Frederick Liu committed
106
  config = cfg.ExperimentConfig(
Gunho Park's avatar
Gunho Park committed
107
108
109
      task=DetrTask(
          init_checkpoint='gs://ghpark-imagenet-tfrecord/ckpt/resnet101_imagenet',
          init_checkpoint_modules='backbone',
Gunho Park's avatar
Gunho Park committed
110
111
          annotation_file=os.path.join(COCO_INPUT_PATH_BASE,
                                       'instances_val2017.json'),
Gunho Park's avatar
Gunho Park committed
112
113
114
115
          model=Detr(
              input_size=[1333, 1333, 3],
              norm_activation=common.NormActivation(use_sync_bn=False)),
          losses=Losses(),
Gunho Park's avatar
Gunho Park committed
116
117
          train_data=DataConfig(
              input_path=os.path.join(COCO_INPUT_PATH_BASE, 'train*'),
Frederick Liu's avatar
Frederick Liu committed
118
119
120
121
              is_training=True,
              global_batch_size=train_batch_size,
              shuffle_buffer_size=1000,
          ),
Gunho Park's avatar
Gunho Park committed
122
123
          validation_data=DataConfig(
              input_path=os.path.join(COCO_INPUT_PATH_BASE, 'val*'),
Frederick Liu's avatar
Frederick Liu committed
124
125
              is_training=False,
              global_batch_size=eval_batch_size,
Gunho Park's avatar
Gunho Park committed
126
              drop_remainder=False,
Frederick Liu's avatar
Frederick Liu committed
127
128
129
130
          )
      ),
      trainer=cfg.TrainerConfig(
          train_steps=train_steps,
Gunho Park's avatar
Gunho Park committed
131
132
133
134
135
          validation_steps=COCO_VAL_EXAMPLES // eval_batch_size,
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
          validation_interval=5*steps_per_epoch,
Frederick Liu's avatar
Frederick Liu committed
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
          max_to_keep=1,
          best_checkpoint_export_subdir='best_ckpt',
          best_checkpoint_eval_metric='AP',
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'detr_adamw',
                  'detr_adamw': {
                      'weight_decay_rate': 1e-4,
                      'global_clipnorm': 0.1,
                      # Avoid AdamW legacy behavior.
                      'gradient_clip_norm': 0.0
                  }
              },
              'learning_rate': {
                  'type': 'stepwise',
                  'stepwise': {
                      'boundaries': [decay_at],
                      'values': [0.0001, 1.0e-05]
                  }
              },
              })
          ),
      restrictions=[
          'task.train_data.is_training != None',
      ])
  return config