keras_common.py 17.3 KB
Newer Older
1
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
"""Common util functions and classes used by both keras cifar and imagenet."""
16
17
18
19
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

20
21
import multiprocessing
import os
22

23
24
import numpy as np

Toby Boyd's avatar
Toby Boyd committed
25
26
27
# pylint: disable=g-bad-import-order
from absl import flags
import tensorflow as tf
28

29
from official.utils.flags import core as flags_core
30
31
from official.utils.misc import keras_utils
# pylint: disable=ungrouped-imports
32
33
from tensorflow.python.keras.optimizer_v2 import (gradient_descent as
                                                  gradient_descent_v2)
34

Shining Sun's avatar
Shining Sun committed
35
FLAGS = flags.FLAGS
Shining Sun's avatar
Shining Sun committed
36
BASE_LEARNING_RATE = 0.1  # This matches Jing's version.
37
38
TRAIN_TOP_1 = 'training_accuracy_top_1'

Shining Sun's avatar
Shining Sun committed
39

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
class LearningRateBatchScheduler(tf.keras.callbacks.Callback):
  """Callback to update learning rate on every batch (not epoch boundaries).

  N.B. Only support Keras optimizers, not TF optimizers.

  Args:
      schedule: a function that takes an epoch index and a batch index as input
          (both integer, indexed from 0) and returns a new learning rate as
          output (float).
  """

  def __init__(self, schedule, batch_size, num_images):
    super(LearningRateBatchScheduler, self).__init__()
    self.schedule = schedule
    self.batches_per_epoch = num_images / batch_size
    self.batch_size = batch_size
    self.epochs = -1
    self.prev_lr = -1

  def on_epoch_begin(self, epoch, logs=None):
60
61
    if not hasattr(self.model.optimizer, 'learning_rate'):
      raise ValueError('Optimizer must have a "learning_rate" attribute.')
62
63
64
    self.epochs += 1

  def on_batch_begin(self, batch, logs=None):
65
    """Executes before step begins."""
66
67
68
69
    lr = self.schedule(self.epochs,
                       batch,
                       self.batches_per_epoch,
                       self.batch_size)
70
71
72
    if not isinstance(lr, (float, np.float32, np.float64)):
      raise ValueError('The output of the "schedule" function should be float.')
    if lr != self.prev_lr:
Shining Sun's avatar
Shining Sun committed
73
      self.model.optimizer.learning_rate = lr  # lr should be a float here
74
      self.prev_lr = lr
75
76
77
      tf.compat.v1.logging.debug(
          'Epoch %05d Batch %05d: LearningRateBatchScheduler '
          'change learning rate to %s.', self.epochs, batch, lr)
78

79

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
class PiecewiseConstantDecayWithWarmup(
    tf.keras.optimizers.schedules.LearningRateSchedule):
  """Piecewise constant decay with warmup schedule."""

  def __init__(self, batch_size, epoch_size, warmup_epochs, boundaries,
               multipliers, compute_lr_on_cpu=True, name=None):
    super(PiecewiseConstantDecayWithWarmup, self).__init__()
    if len(boundaries) != len(multipliers) - 1:
      raise ValueError('The length of boundaries must be 1 less than the '
                       'length of multipliers')

    base_lr_batch_size = 256
    num_batches_per_epoch = epoch_size // batch_size

    self.rescaled_lr = BASE_LEARNING_RATE * batch_size / base_lr_batch_size
    self.step_boundaries = [float(num_batches_per_epoch) * x
                            for x in boundaries]
    self.lr_values = [self.rescaled_lr * m for m in multipliers]
    self.warmup_steps = warmup_epochs * num_batches_per_epoch
    self.compute_lr_on_cpu = compute_lr_on_cpu
    self.name = name

102
    self.learning_rate_ops_cache = {}
103
104
105
106
107
108
109
110

  def __call__(self, step):
    if tf.executing_eagerly():
      return self._get_learning_rate(step)

    # In an eager function or graph, the current implementation of optimizer
    # repeatedly call and thus create ops for the learning rate schedule. To
    # avoid this, we cache the ops if not executing eagerly.
111
112
    graph = tf.compat.v1.get_default_graph()
    if graph not in self.learning_rate_ops_cache:
113
114
      if self.compute_lr_on_cpu:
        with tf.device('/device:CPU:0'):
115
          self.learning_rate_ops_cache[graph] = self._get_learning_rate(step)
116
      else:
117
118
        self.learning_rate_ops_cache[graph] = self._get_learning_rate(step)
    return self.learning_rate_ops_cache[graph]
119
120
121

  def _get_learning_rate(self, step):
    """Compute learning rate at given step."""
Haoyu Zhang's avatar
Haoyu Zhang committed
122
123
124
125
    with tf.compat.v1.name_scope(self.name, 'PiecewiseConstantDecayWithWarmup',
                                 [self.rescaled_lr, self.step_boundaries,
                                  self.lr_values, self.warmup_steps,
                                  self.compute_lr_on_cpu]):
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
      def warmup_lr(step):
        return self.rescaled_lr * (
            tf.cast(step, tf.float32) / tf.cast(self.warmup_steps, tf.float32))
      def piecewise_lr(step):
        return tf.compat.v1.train.piecewise_constant(
            step, self.step_boundaries, self.lr_values)
      return tf.cond(step < self.warmup_steps,
                     lambda: warmup_lr(step),
                     lambda: piecewise_lr(step))

  def get_config(self):
    return {
        'rescaled_lr': self.rescaled_lr,
        'step_boundaries': self.step_boundaries,
        'lr_values': self.lr_values,
        'warmup_steps': self.warmup_steps,
        'compute_lr_on_cpu': self.compute_lr_on_cpu,
        'name': self.name
    }


147
148
149
150
151
152
def set_gpu_thread_mode_and_count(flags_obj):
  """Set GPU thread mode and count, and adjust dataset threads count."""
  cpu_count = multiprocessing.cpu_count()
  tf.compat.v1.logging.info('Logical CPU cores: %s', cpu_count)

  # Allocate private thread pool for each GPU to schedule and launch kernels
153
  per_gpu_thread_count = flags_obj.per_gpu_thread_count or 2
154
155
156
157
158
159
160
161
162
163
  os.environ['TF_GPU_THREAD_MODE'] = flags_obj.tf_gpu_thread_mode
  os.environ['TF_GPU_THREAD_COUNT'] = str(per_gpu_thread_count)
  tf.compat.v1.logging.info('TF_GPU_THREAD_COUNT: %s',
                            os.environ['TF_GPU_THREAD_COUNT'])
  tf.compat.v1.logging.info('TF_GPU_THREAD_MODE: %s',
                            os.environ['TF_GPU_THREAD_MODE'])

  # Limit data preprocessing threadpool to CPU cores minus number of total GPU
  # private threads and memory copy threads.
  total_gpu_thread_count = per_gpu_thread_count * flags_obj.num_gpus
164
  num_runtime_threads = flags_obj.num_gpus
165
  if not flags_obj.datasets_num_private_threads:
166
167
168
    flags_obj.datasets_num_private_threads = min(
        cpu_count - total_gpu_thread_count - num_runtime_threads,
        flags_obj.num_gpus * 8)
169
170
171
172
    tf.compat.v1.logging.info('Set datasets_num_private_threads to %s',
                              flags_obj.datasets_num_private_threads)


173
def get_optimizer(learning_rate=0.1):
174
175
  """Returns optimizer to use."""
  # The learning_rate is overwritten at the beginning of each step by callback.
176
  return gradient_descent_v2.SGD(learning_rate=learning_rate, momentum=0.9)
177
178


179
def get_callbacks(learning_rate_schedule_fn, num_images):
180
  """Returns common callbacks."""
181
  time_callback = keras_utils.TimeHistory(FLAGS.batch_size, FLAGS.log_steps)
182
183
184
185
186
187
188
189
  callbacks = [time_callback]

  if not FLAGS.use_tensor_lr:
    lr_callback = LearningRateBatchScheduler(
        learning_rate_schedule_fn,
        batch_size=FLAGS.batch_size,
        num_images=num_images)
    callbacks.append(lr_callback)
190
191
192
193
194
195
196

  if FLAGS.enable_tensorboard:
    tensorboard_callback = tf.keras.callbacks.TensorBoard(
        log_dir=FLAGS.model_dir)
    callbacks.append(tensorboard_callback)

  if FLAGS.profile_steps:
197
198
199
200
    profiler_callback = keras_utils.get_profiler_callback(
        FLAGS.model_dir,
        FLAGS.profile_steps,
        FLAGS.enable_tensorboard)
201
202
203
204
205
206
    callbacks.append(profiler_callback)

  return callbacks


def build_stats(history, eval_output, callbacks):
207
208
209
210
211
212
213
  """Normalizes and returns dictionary of stats.

  Args:
    history: Results of the training step. Supports both categorical_accuracy
      and sparse_categorical_accuracy.
    eval_output: Output of the eval step. Assumes first value is eval_loss and
      second value is accuracy_top_1.
214
215
    callbacks: a list of callbacks which might include a time history callback
      used during keras.fit.
216
217
218
219
220
221
222
223

  Returns:
    Dictionary of normalized results.
  """
  stats = {}
  if eval_output:
    stats['accuracy_top_1'] = eval_output[1].item()
    stats['eval_loss'] = eval_output[0].item()
224

225
226
227
228
229
230
231
232
233
234
  if history and history.history:
    train_hist = history.history
    # Gets final loss from training.
    stats['loss'] = train_hist['loss'][-1].item()
    # Gets top_1 training accuracy.
    if 'categorical_accuracy' in train_hist:
      stats[TRAIN_TOP_1] = train_hist['categorical_accuracy'][-1].item()
    elif 'sparse_categorical_accuracy' in train_hist:
      stats[TRAIN_TOP_1] = train_hist['sparse_categorical_accuracy'][-1].item()

235
236
237
238
239
240
241
242
243
244
245
246
247
248
  if not callbacks:
    return stats

  # Look for the time history callback which was used during keras.fit
  for callback in callbacks:
    if isinstance(callback, keras_utils.TimeHistory):
      timestamp_log = callback.timestamp_log
      stats['step_timestamp_log'] = timestamp_log
      stats['train_finish_time'] = callback.train_finish_time
      if len(timestamp_log) > 1:
        stats['avg_exp_per_second'] = (
            callback.batch_size * callback.log_steps *
            (len(callback.timestamp_log)-1) /
            (timestamp_log[-1].timestamp - timestamp_log[0].timestamp))
249
250
251
  return stats


252
def define_keras_flags(dynamic_loss_scale=True):
253
  """Define flags for Keras models."""
254
255
256
257
258
259
260
  flags_core.define_base(run_eagerly=True)
  flags_core.define_performance(num_parallel_calls=False,
                                tf_gpu_thread_mode=True,
                                datasets_num_private_threads=True,
                                dynamic_loss_scale=dynamic_loss_scale,
                                loss_scale=True,
                                tf_data_experimental_slack=True,
261
262
                                enable_xla=True,
                                force_v2_in_keras_compile=True)
263
264
265
  flags_core.define_image()
  flags_core.define_benchmark()
  flags.adopt_module_key_flags(flags_core)
266

Shining Sun's avatar
Shining Sun committed
267
  flags.DEFINE_boolean(name='enable_eager', default=False, help='Enable eager?')
268
  flags.DEFINE_boolean(name='skip_eval', default=False, help='Skip evaluation?')
269
270
271
272
273
274
275
276
277
  # TODO(b/135607288): Remove this flag once we understand the root cause of
  # slowdown when setting the learning phase in Keras backend.
  flags.DEFINE_boolean(
      name='set_learning_phase_to_train', default=True,
      help='If skip eval, also set Keras learning phase to 1 (training).')
  flags.DEFINE_boolean(
      name='explicit_gpu_placement', default=False,
      help='If not using distribution strategy, explicitly set device scope '
      'for the Keras training loop.')
Haoyu Zhang's avatar
Haoyu Zhang committed
278
279
  flags.DEFINE_boolean(name='use_trivial_model', default=False,
                       help='Whether to use a trivial Keras model.')
280
281
  flags.DEFINE_boolean(name='report_accuracy_metrics', default=True,
                       help='Report metrics during training and evaluation.')
282
283
  flags.DEFINE_boolean(name='use_tensor_lr', default=False,
                       help='Use learning rate tensor instead of a callback.')
284
285
286
  flags.DEFINE_boolean(
      name='enable_tensorboard', default=False,
      help='Whether to enable Tensorboard callback.')
Shining Sun's avatar
Shining Sun committed
287
  flags.DEFINE_integer(
288
289
      name='train_steps', default=None,
      help='The number of steps to run for training. If it is larger than '
Shining Sun's avatar
Shining Sun committed
290
      '# batches per epoch, then use # batches per epoch. When this flag is '
291
      'set, only one epoch is going to run for training.')
292
293
294
295
296
297
298
299
  flags.DEFINE_string(
      name='profile_steps', default=None,
      help='Save profiling data to model dir at given range of steps. The '
      'value must be a comma separated pair of positive integers, specifying '
      'the first and last step to profile. For example, "--profile_steps=2,4" '
      'triggers the profiler to process 3 steps, starting from the 2nd step. '
      'Note that profiler has a non-trivial performance overhead, and the '
      'output file can be gigantic if profiling many steps.')
300
  flags.DEFINE_boolean(
301
      name='data_delay_prefetch', default=False,
302
303
304
305
306
      help='Add a small delay in tf.data prefetch to prioritize memory copy of '
      'other tensors over the data minibatch for the (T+1)th step. It should '
      'help improve performance using EagerIterator and function. The codepath '
      'when enabling this feature is experimental and will be removed once the '
      'corresponding performance features are fully supported in TensorFlow.')
307
308
309
  flags.DEFINE_boolean(
      name='batchnorm_spatial_persistent', default=True,
      help='Enable the spacial persistent mode for CuDNN batch norm kernel.')
310
311
312
  flags.DEFINE_boolean(
      name='enable_get_next_as_optional', default=False,
      help='Enable get_next_as_optional behavior in DistributedIterator.')
313
314
315
  flags.DEFINE_boolean(
      name='automatic_mixed_precision', default=False,
      help='Enable automatic mixed precision training via a graph rewrite.')
Shining Sun's avatar
Shining Sun committed
316
317

def get_synth_input_fn(height, width, num_channels, num_classes,
318
                       dtype=tf.float32, drop_remainder=True):
Shining Sun's avatar
Shining Sun committed
319
320
321
322
323
  """Returns an input function that returns a dataset with random data.

  This input_fn returns a data set that iterates over a set of random data and
  bypasses all preprocessing, e.g. jpeg decode and copy. The host to device
  copy is still included. This used to find the upper throughput bound when
Shining Sun's avatar
Shining Sun committed
324
  tuning the full input pipeline.
Shining Sun's avatar
Shining Sun committed
325
326
327
328
329
330
331
332

  Args:
    height: Integer height that will be used to create a fake image tensor.
    width: Integer width that will be used to create a fake image tensor.
    num_channels: Integer depth that will be used to create a fake image tensor.
    num_classes: Number of classes that should be represented in the fake labels
      tensor
    dtype: Data type for features/images.
333
334
    drop_remainder: A boolean indicates whether to drop the remainder of the
      batches. If True, the batch dimension will be static.
Shining Sun's avatar
Shining Sun committed
335
336
337
338
339
340
341
342
343

  Returns:
    An input_fn that can be used in place of a real one to return a dataset
    that can be used for iteration.
  """
  # pylint: disable=unused-argument
  def input_fn(is_training, data_dir, batch_size, *args, **kwargs):
    """Returns dataset filled with random data."""
    # Synthetic input should be within [0, 255].
344
345
346
347
348
349
350
351
352
353
354
    inputs = tf.random.truncated_normal([height, width, num_channels],
                                        dtype=dtype,
                                        mean=127,
                                        stddev=60,
                                        name='synthetic_inputs')

    labels = tf.random.uniform([1],
                               minval=0,
                               maxval=num_classes - 1,
                               dtype=tf.int32,
                               name='synthetic_labels')
355
356
357
    # Cast to float32 for Keras model.
    labels = tf.cast(labels, dtype=tf.float32)

Shining Sun's avatar
Shining Sun committed
358
    data = tf.data.Dataset.from_tensors((inputs, labels)).repeat()
359
360

    # `drop_remainder` will make dataset produce outputs with known shapes.
361
    data = data.batch(batch_size, drop_remainder=drop_remainder)
362
    data = data.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)
Shining Sun's avatar
Shining Sun committed
363
364
365
    return data

  return input_fn
Shining Sun's avatar
Shining Sun committed
366
367


368
def data_delay_prefetch():
369
370
371
372
373
  """Use unstable code for perf tuning purposes."""
  if not FLAGS.use_synthetic_data:
    _monkey_patch_org_create_device_dataset()


374
def set_cudnn_batchnorm_mode():
Toby Boyd's avatar
Toby Boyd committed
375
376
377
378
379
  """Set CuDNN batchnorm mode for better performance.

     Note: Spatial Persistent mode may lead to accuracy losses for certain
     models.
  """
380
381
382
  if FLAGS.batchnorm_spatial_persistent:
    os.environ['TF_USE_CUDNN_BATCHNORM_SPATIAL_PERSISTENT'] = '1'
  else:
383
    os.environ.pop('TF_USE_CUDNN_BATCHNORM_SPATIAL_PERSISTENT', None)
384
385


386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
# TODO(haoyuzhang): remove this monkey patch when the "prefetch with slack"
# feature is available in tf.data.
def _monkey_patch_org_create_device_dataset():
  """Monkey-patch `_create_device_dataset` method with delayed prefetch."""

  import ast  # pylint: disable=g-import-not-at-top
  import inspect  # pylint: disable=g-import-not-at-top
  from tensorflow.python.data.ops import multi_device_iterator_ops  # pylint: disable=g-import-not-at-top

  tf.compat.v1.logging.info(
      'Using monkey-patched version of MultiDeviceIterator. It should be '
      'removed when the prefetch with slack feature is implemented in tf.data.')
  cls_multi_device_iterator = ast.parse(
      inspect.getsource(multi_device_iterator_ops.MultiDeviceIterator))
  org_create_device_dataset_code = inspect.getsource(
      multi_device_iterator_ops.MultiDeviceIterator._create_device_dataset)  # pylint: disable=protected-access
  code_lines = org_create_device_dataset_code.split('\n')
  # Insert in reverse order to avoid line number shift by previous insertions
  code_lines.insert(5, '      ds = ds.apply(sleep_ops.sleep(11000))')  # 11ms
  code_lines.insert(2, '    from tensorflow.python.data.experimental.ops import sleep as sleep_ops')  # pylint: disable=line-too-long
  patched_code = '\n'.join(line[2:] for line in code_lines)
  cls_multi_device_iterator.body[0].body[2] = ast.parse(patched_code).body[0]
  exec(compile(cls_multi_device_iterator, '<string>', 'exec'),  # pylint: disable=exec-used
       multi_device_iterator_ops.__dict__)