imagenet_test.py 13.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import unittest

Karmel Allison's avatar
Karmel Allison committed
22
import tensorflow as tf  # pylint: disable=g-bad-import-order
23

24
from official.resnet import imagenet_main
25
from official.utils.misc import keras_utils
26
from official.utils.testing import integration
27

28
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
29

30
_BATCH_SIZE = 32
31
32
33
34
35
_LABEL_CLASSES = 1001


class BaseTest(tf.test.TestCase):

36
37
  _num_validation_images = None

38
39
40
41
  @classmethod
  def setUpClass(cls):  # pylint: disable=invalid-name
    super(BaseTest, cls).setUpClass()
    imagenet_main.define_imagenet_flags()
42
43
44

  def setUp(self):
    super(BaseTest, self).setUp()
45
46
    if keras_utils.is_v2_0:
      tf.compat.v1.disable_eager_execution()
47
48
    self._num_validation_images = imagenet_main.NUM_IMAGES['validation']
    imagenet_main.NUM_IMAGES['validation'] = 4
49

50
51
  def tearDown(self):
    super(BaseTest, self).tearDown()
52
    tf.io.gfile.rmtree(self.get_temp_dir())
53
    imagenet_main.NUM_IMAGES['validation'] = self._num_validation_images
54

55
  def _tensor_shapes_helper(self, resnet_size, resnet_version, dtype, with_gpu):
56
57
    """Checks the tensor shapes after each phase of the ResNet model."""
    def reshape(shape):
Karmel Allison's avatar
Karmel Allison committed
58
59
      """Returns the expected dimensions depending on if a GPU is being used."""

60
61
      # If a GPU is used for the test, the shape is returned (already in NCHW
      # form). When GPU is not used, the shape is converted to NHWC.
62
63
64
65
66
67
68
      if with_gpu:
        return shape
      return shape[0], shape[2], shape[3], shape[1]

    graph = tf.Graph()

    with graph.as_default(), self.test_session(
69
        graph=graph, use_gpu=with_gpu, force_gpu=with_gpu):
70
      model = imagenet_main.ImagenetModel(
71
          resnet_size=resnet_size,
72
          data_format='channels_first' if with_gpu else 'channels_last',
73
          resnet_version=resnet_version,
74
75
          dtype=dtype
      )
76
      inputs = tf.random.uniform([1, 224, 224, 3])
77
      output = model(inputs, training=True)
78

79
80
81
82
83
84
85
86
      initial_conv = graph.get_tensor_by_name('resnet_model/initial_conv:0')
      max_pool = graph.get_tensor_by_name('resnet_model/initial_max_pool:0')
      block_layer1 = graph.get_tensor_by_name('resnet_model/block_layer1:0')
      block_layer2 = graph.get_tensor_by_name('resnet_model/block_layer2:0')
      block_layer3 = graph.get_tensor_by_name('resnet_model/block_layer3:0')
      block_layer4 = graph.get_tensor_by_name('resnet_model/block_layer4:0')
      reduce_mean = graph.get_tensor_by_name('resnet_model/final_reduce_mean:0')
      dense = graph.get_tensor_by_name('resnet_model/final_dense:0')
87
88
89
90
91
92
93
94
95
96
97

      self.assertAllEqual(initial_conv.shape, reshape((1, 64, 112, 112)))
      self.assertAllEqual(max_pool.shape, reshape((1, 64, 56, 56)))

      # The number of channels after each block depends on whether we're
      # using the building_block or the bottleneck_block.
      if resnet_size < 50:
        self.assertAllEqual(block_layer1.shape, reshape((1, 64, 56, 56)))
        self.assertAllEqual(block_layer2.shape, reshape((1, 128, 28, 28)))
        self.assertAllEqual(block_layer3.shape, reshape((1, 256, 14, 14)))
        self.assertAllEqual(block_layer4.shape, reshape((1, 512, 7, 7)))
98
        self.assertAllEqual(reduce_mean.shape, reshape((1, 512, 1, 1)))
99
100
101
102
103
      else:
        self.assertAllEqual(block_layer1.shape, reshape((1, 256, 56, 56)))
        self.assertAllEqual(block_layer2.shape, reshape((1, 512, 28, 28)))
        self.assertAllEqual(block_layer3.shape, reshape((1, 1024, 14, 14)))
        self.assertAllEqual(block_layer4.shape, reshape((1, 2048, 7, 7)))
104
        self.assertAllEqual(reduce_mean.shape, reshape((1, 2048, 1, 1)))
105

106
107
      self.assertAllEqual(dense.shape, (1, _LABEL_CLASSES))
      self.assertAllEqual(output.shape, (1, _LABEL_CLASSES))
108

109
110
111
  def tensor_shapes_helper(self, resnet_size, resnet_version, with_gpu=False):
    self._tensor_shapes_helper(resnet_size=resnet_size,
                               resnet_version=resnet_version,
112
                               dtype=tf.float32, with_gpu=with_gpu)
113
114
    self._tensor_shapes_helper(resnet_size=resnet_size,
                               resnet_version=resnet_version,
115
116
                               dtype=tf.float16, with_gpu=with_gpu)

117
  def test_tensor_shapes_resnet_18_v1(self):
118
    self.tensor_shapes_helper(18, resnet_version=1)
119

120
  def test_tensor_shapes_resnet_18_v2(self):
121
    self.tensor_shapes_helper(18, resnet_version=2)
122

123
  def test_tensor_shapes_resnet_34_v1(self):
124
    self.tensor_shapes_helper(34, resnet_version=1)
125

126
  def test_tensor_shapes_resnet_34_v2(self):
127
    self.tensor_shapes_helper(34, resnet_version=2)
128

129
  def test_tensor_shapes_resnet_50_v1(self):
130
    self.tensor_shapes_helper(50, resnet_version=1)
131

132
  def test_tensor_shapes_resnet_50_v2(self):
133
    self.tensor_shapes_helper(50, resnet_version=2)
134
135

  def test_tensor_shapes_resnet_101_v1(self):
136
    self.tensor_shapes_helper(101, resnet_version=1)
137
138

  def test_tensor_shapes_resnet_101_v2(self):
139
    self.tensor_shapes_helper(101, resnet_version=2)
140
141

  def test_tensor_shapes_resnet_152_v1(self):
142
    self.tensor_shapes_helper(152, resnet_version=1)
143
144

  def test_tensor_shapes_resnet_152_v2(self):
145
    self.tensor_shapes_helper(152, resnet_version=2)
146
147

  def test_tensor_shapes_resnet_200_v1(self):
148
    self.tensor_shapes_helper(200, resnet_version=1)
149
150

  def test_tensor_shapes_resnet_200_v2(self):
151
    self.tensor_shapes_helper(200, resnet_version=2)
152
153
154

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
  def test_tensor_shapes_resnet_18_with_gpu_v1(self):
155
    self.tensor_shapes_helper(18, resnet_version=1, with_gpu=True)
156
157
158

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
  def test_tensor_shapes_resnet_18_with_gpu_v2(self):
159
    self.tensor_shapes_helper(18, resnet_version=2, with_gpu=True)
160
161
162

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
  def test_tensor_shapes_resnet_34_with_gpu_v1(self):
163
    self.tensor_shapes_helper(34, resnet_version=1, with_gpu=True)
164
165
166

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
  def test_tensor_shapes_resnet_34_with_gpu_v2(self):
167
    self.tensor_shapes_helper(34, resnet_version=2, with_gpu=True)
168
169

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
170
  def test_tensor_shapes_resnet_50_with_gpu_v1(self):
171
    self.tensor_shapes_helper(50, resnet_version=1, with_gpu=True)
172
173

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
174
  def test_tensor_shapes_resnet_50_with_gpu_v2(self):
175
    self.tensor_shapes_helper(50, resnet_version=2, with_gpu=True)
176
177

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
178
  def test_tensor_shapes_resnet_101_with_gpu_v1(self):
179
    self.tensor_shapes_helper(101, resnet_version=1, with_gpu=True)
180
181

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
182
  def test_tensor_shapes_resnet_101_with_gpu_v2(self):
183
    self.tensor_shapes_helper(101, resnet_version=2, with_gpu=True)
184
185

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
186
  def test_tensor_shapes_resnet_152_with_gpu_v1(self):
187
    self.tensor_shapes_helper(152, resnet_version=1, with_gpu=True)
188
189

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
190
  def test_tensor_shapes_resnet_152_with_gpu_v2(self):
191
    self.tensor_shapes_helper(152, resnet_version=2, with_gpu=True)
192

193
194
  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
  def test_tensor_shapes_resnet_200_with_gpu_v1(self):
195
    self.tensor_shapes_helper(200, resnet_version=1, with_gpu=True)
196
197
198

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
  def test_tensor_shapes_resnet_200_with_gpu_v2(self):
199
    self.tensor_shapes_helper(200, resnet_version=2, with_gpu=True)
200

201
  def resnet_model_fn_helper(self, mode, resnet_version, dtype):
202
    """Tests that the EstimatorSpec is given the appropriate arguments."""
203
    tf.compat.v1.train.create_global_step()
204

Toby Boyd's avatar
Toby Boyd committed
205
    input_fn = imagenet_main.get_synth_input_fn(dtype)
206
    dataset = input_fn(True, '', _BATCH_SIZE)
207
    iterator = tf.compat.v1.data.make_initializable_iterator(dataset)
208
209
210
211
212
213
214
    features, labels = iterator.get_next()
    spec = imagenet_main.imagenet_model_fn(
        features, labels, mode, {
            'dtype': dtype,
            'resnet_size': 50,
            'data_format': 'channels_last',
            'batch_size': _BATCH_SIZE,
215
            'resnet_version': resnet_version,
216
            'loss_scale': 128 if dtype == tf.float16 else 1,
Zac Wellmer's avatar
Zac Wellmer committed
217
            'fine_tune': False,
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
        })

    predictions = spec.predictions
    self.assertAllEqual(predictions['probabilities'].shape,
                        (_BATCH_SIZE, _LABEL_CLASSES))
    self.assertEqual(predictions['probabilities'].dtype, tf.float32)
    self.assertAllEqual(predictions['classes'].shape, (_BATCH_SIZE,))
    self.assertEqual(predictions['classes'].dtype, tf.int64)

    if mode != tf.estimator.ModeKeys.PREDICT:
      loss = spec.loss
      self.assertAllEqual(loss.shape, ())
      self.assertEqual(loss.dtype, tf.float32)

    if mode == tf.estimator.ModeKeys.EVAL:
      eval_metric_ops = spec.eval_metric_ops
      self.assertAllEqual(eval_metric_ops['accuracy'][0].shape, ())
      self.assertAllEqual(eval_metric_ops['accuracy'][1].shape, ())
      self.assertEqual(eval_metric_ops['accuracy'][0].dtype, tf.float32)
      self.assertEqual(eval_metric_ops['accuracy'][1].dtype, tf.float32)
238

239
  def test_resnet_model_fn_train_mode_v1(self):
240
    self.resnet_model_fn_helper(tf.estimator.ModeKeys.TRAIN, resnet_version=1,
241
                                dtype=tf.float32)
242

243
  def test_resnet_model_fn_train_mode_v2(self):
244
    self.resnet_model_fn_helper(tf.estimator.ModeKeys.TRAIN, resnet_version=2,
245
                                dtype=tf.float32)
246
247

  def test_resnet_model_fn_eval_mode_v1(self):
248
    self.resnet_model_fn_helper(tf.estimator.ModeKeys.EVAL, resnet_version=1,
249
                                dtype=tf.float32)
250

251
  def test_resnet_model_fn_eval_mode_v2(self):
252
    self.resnet_model_fn_helper(tf.estimator.ModeKeys.EVAL, resnet_version=2,
253
                                dtype=tf.float32)
Karmel Allison's avatar
Karmel Allison committed
254

255
  def test_resnet_model_fn_predict_mode_v1(self):
256
    self.resnet_model_fn_helper(tf.estimator.ModeKeys.PREDICT, resnet_version=1,
257
                                dtype=tf.float32)
258

259
  def test_resnet_model_fn_predict_mode_v2(self):
260
    self.resnet_model_fn_helper(tf.estimator.ModeKeys.PREDICT, resnet_version=2,
261
                                dtype=tf.float32)
262

263
  def _test_imagenetmodel_shape(self, resnet_version):
Neal Wu's avatar
Neal Wu committed
264
265
266
    batch_size = 135
    num_classes = 246

267
268
    model = imagenet_main.ImagenetModel(
        50, data_format='channels_last', num_classes=num_classes,
269
        resnet_version=resnet_version)
270

271
    fake_input = tf.random.uniform([batch_size, 224, 224, 3])
272
273
274
275
276
    output = model(fake_input, training=True)

    self.assertAllEqual(output.shape, (batch_size, num_classes))

  def test_imagenetmodel_shape_v1(self):
277
    self._test_imagenetmodel_shape(resnet_version=1)
Neal Wu's avatar
Neal Wu committed
278

279
  def test_imagenetmodel_shape_v2(self):
280
    self._test_imagenetmodel_shape(resnet_version=2)
Neal Wu's avatar
Neal Wu committed
281

282
  def test_imagenet_end_to_end_synthetic_v1(self):
283
    integration.run_synthetic(
284
        main=imagenet_main.run_imagenet, tmp_root=self.get_temp_dir(),
285
        extra_flags=['-resnet_version', '1', '-batch_size', '4']
286
    )
287
288

  def test_imagenet_end_to_end_synthetic_v2(self):
289
    integration.run_synthetic(
290
        main=imagenet_main.run_imagenet, tmp_root=self.get_temp_dir(),
291
        extra_flags=['-resnet_version', '2', '-batch_size', '4']
292
    )
293
294

  def test_imagenet_end_to_end_synthetic_v1_tiny(self):
295
    integration.run_synthetic(
296
        main=imagenet_main.run_imagenet, tmp_root=self.get_temp_dir(),
297
298
        extra_flags=['-resnet_version', '1', '-batch_size', '4',
                     '-resnet_size', '18']
299
    )
300
301

  def test_imagenet_end_to_end_synthetic_v2_tiny(self):
302
    integration.run_synthetic(
303
        main=imagenet_main.run_imagenet, tmp_root=self.get_temp_dir(),
304
305
        extra_flags=['-resnet_version', '2', '-batch_size', '4',
                     '-resnet_size', '18']
306
    )
307
308

  def test_imagenet_end_to_end_synthetic_v1_huge(self):
309
    integration.run_synthetic(
310
        main=imagenet_main.run_imagenet, tmp_root=self.get_temp_dir(),
311
312
        extra_flags=['-resnet_version', '1', '-batch_size', '4',
                     '-resnet_size', '200']
313
    )
314
315

  def test_imagenet_end_to_end_synthetic_v2_huge(self):
316
    integration.run_synthetic(
317
        main=imagenet_main.run_imagenet, tmp_root=self.get_temp_dir(),
318
319
320
321
        extra_flags=['-resnet_version', '2', '-batch_size', '4',
                     '-resnet_size', '200']
    )

322

323
324
if __name__ == '__main__':
  tf.test.main()