imagenet_test.py 10.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import unittest

import tensorflow as tf

24
from official.resnet import imagenet_main
25
from official.utils.testing import integration
26
27
28

tf.logging.set_verbosity(tf.logging.ERROR)

29
_BATCH_SIZE = 32
30
31
32
33
34
_LABEL_CLASSES = 1001


class BaseTest(tf.test.TestCase):

35
  def tensor_shapes_helper(self, resnet_size, version, with_gpu=False):
36
37
    """Checks the tensor shapes after each phase of the ResNet model."""
    def reshape(shape):
38
39
40
      """Returns the expected dimensions depending on if a
      GPU is being used.
      """
41
42
      # If a GPU is used for the test, the shape is returned (already in NCHW
      # form). When GPU is not used, the shape is converted to NHWC.
43
44
45
46
47
48
49
50
      if with_gpu:
        return shape
      return shape[0], shape[2], shape[3], shape[1]

    graph = tf.Graph()

    with graph.as_default(), self.test_session(
        use_gpu=with_gpu, force_gpu=with_gpu):
51
52
      model = imagenet_main.ImagenetModel(
          resnet_size,
53
54
          data_format='channels_first' if with_gpu else 'channels_last',
          version=version)
55
      inputs = tf.random_uniform([1, 224, 224, 3])
56
      output = model(inputs, training=True)
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

      initial_conv = graph.get_tensor_by_name('initial_conv:0')
      max_pool = graph.get_tensor_by_name('initial_max_pool:0')
      block_layer1 = graph.get_tensor_by_name('block_layer1:0')
      block_layer2 = graph.get_tensor_by_name('block_layer2:0')
      block_layer3 = graph.get_tensor_by_name('block_layer3:0')
      block_layer4 = graph.get_tensor_by_name('block_layer4:0')
      avg_pool = graph.get_tensor_by_name('final_avg_pool:0')
      dense = graph.get_tensor_by_name('final_dense:0')

      self.assertAllEqual(initial_conv.shape, reshape((1, 64, 112, 112)))
      self.assertAllEqual(max_pool.shape, reshape((1, 64, 56, 56)))

      # The number of channels after each block depends on whether we're
      # using the building_block or the bottleneck_block.
      if resnet_size < 50:
        self.assertAllEqual(block_layer1.shape, reshape((1, 64, 56, 56)))
        self.assertAllEqual(block_layer2.shape, reshape((1, 128, 28, 28)))
        self.assertAllEqual(block_layer3.shape, reshape((1, 256, 14, 14)))
        self.assertAllEqual(block_layer4.shape, reshape((1, 512, 7, 7)))
        self.assertAllEqual(avg_pool.shape, reshape((1, 512, 1, 1)))
      else:
        self.assertAllEqual(block_layer1.shape, reshape((1, 256, 56, 56)))
        self.assertAllEqual(block_layer2.shape, reshape((1, 512, 28, 28)))
        self.assertAllEqual(block_layer3.shape, reshape((1, 1024, 14, 14)))
        self.assertAllEqual(block_layer4.shape, reshape((1, 2048, 7, 7)))
        self.assertAllEqual(avg_pool.shape, reshape((1, 2048, 1, 1)))

85
86
      self.assertAllEqual(dense.shape, (1, _LABEL_CLASSES))
      self.assertAllEqual(output.shape, (1, _LABEL_CLASSES))
87

88
89
  def test_tensor_shapes_resnet_18_v1(self):
    self.tensor_shapes_helper(18, version=1)
90

91
92
  def test_tensor_shapes_resnet_18_v2(self):
    self.tensor_shapes_helper(18, version=2)
93

94
95
  def test_tensor_shapes_resnet_34_v1(self):
    self.tensor_shapes_helper(34, version=1)
96

97
98
  def test_tensor_shapes_resnet_34_v2(self):
    self.tensor_shapes_helper(34, version=2)
99

100
101
  def test_tensor_shapes_resnet_50_v1(self):
    self.tensor_shapes_helper(50, version=1)
102

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
  def test_tensor_shapes_resnet_50_v2(self):
    self.tensor_shapes_helper(50, version=2)

  def test_tensor_shapes_resnet_101_v1(self):
    self.tensor_shapes_helper(101, version=1)

  def test_tensor_shapes_resnet_101_v2(self):
    self.tensor_shapes_helper(101, version=2)

  def test_tensor_shapes_resnet_152_v1(self):
    self.tensor_shapes_helper(152, version=1)

  def test_tensor_shapes_resnet_152_v2(self):
    self.tensor_shapes_helper(152, version=2)

  def test_tensor_shapes_resnet_200_v1(self):
    self.tensor_shapes_helper(200, version=1)

  def test_tensor_shapes_resnet_200_v2(self):
    self.tensor_shapes_helper(200, version=2)

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
  def test_tensor_shapes_resnet_18_with_gpu_v1(self):
    self.tensor_shapes_helper(18, version=1, with_gpu=True)

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
  def test_tensor_shapes_resnet_18_with_gpu_v2(self):
    self.tensor_shapes_helper(18, version=2, with_gpu=True)

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
  def test_tensor_shapes_resnet_34_with_gpu_v1(self):
    self.tensor_shapes_helper(34, version=1, with_gpu=True)

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
  def test_tensor_shapes_resnet_34_with_gpu_v2(self):
    self.tensor_shapes_helper(34, version=2, with_gpu=True)
139
140

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
141
142
  def test_tensor_shapes_resnet_50_with_gpu_v1(self):
    self.tensor_shapes_helper(50, version=1, with_gpu=True)
143
144

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
145
146
  def test_tensor_shapes_resnet_50_with_gpu_v2(self):
    self.tensor_shapes_helper(50, version=2, with_gpu=True)
147
148

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
149
150
  def test_tensor_shapes_resnet_101_with_gpu_v1(self):
    self.tensor_shapes_helper(101, version=1, with_gpu=True)
151
152

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
153
154
  def test_tensor_shapes_resnet_101_with_gpu_v2(self):
    self.tensor_shapes_helper(101, version=2, with_gpu=True)
155
156

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
157
158
  def test_tensor_shapes_resnet_152_with_gpu_v1(self):
    self.tensor_shapes_helper(152, version=1, with_gpu=True)
159
160

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
161
162
  def test_tensor_shapes_resnet_152_with_gpu_v2(self):
    self.tensor_shapes_helper(152, version=2, with_gpu=True)
163

164
165
166
167
168
169
170
171
172
  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
  def test_tensor_shapes_resnet_200_with_gpu_v1(self):
    self.tensor_shapes_helper(200, version=1, with_gpu=True)

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
  def test_tensor_shapes_resnet_200_with_gpu_v2(self):
    self.tensor_shapes_helper(200, version=2, with_gpu=True)

  def resnet_model_fn_helper(self, mode, version, multi_gpu=False):
173
174
175
    """Tests that the EstimatorSpec is given the appropriate arguments."""
    tf.train.create_global_step()

176
177
178
179
    input_fn = imagenet_main.get_synth_input_fn()
    dataset = input_fn(True, '', _BATCH_SIZE)
    iterator = dataset.make_one_shot_iterator()
    features, labels = iterator.get_next()
180
    spec = imagenet_main.imagenet_model_fn(
181
182
183
184
        features, labels, mode, {
            'resnet_size': 50,
            'data_format': 'channels_last',
            'batch_size': _BATCH_SIZE,
185
            'version': version,
Karmel Allison's avatar
Karmel Allison committed
186
            'multi_gpu': multi_gpu,
187
        })
188
189
190

    predictions = spec.predictions
    self.assertAllEqual(predictions['probabilities'].shape,
191
                        (_BATCH_SIZE, _LABEL_CLASSES))
192
    self.assertEqual(predictions['probabilities'].dtype, tf.float32)
193
    self.assertAllEqual(predictions['classes'].shape, (_BATCH_SIZE,))
194
195
196
197
198
199
200
201
202
203
204
205
206
207
    self.assertEqual(predictions['classes'].dtype, tf.int64)

    if mode != tf.estimator.ModeKeys.PREDICT:
      loss = spec.loss
      self.assertAllEqual(loss.shape, ())
      self.assertEqual(loss.dtype, tf.float32)

    if mode == tf.estimator.ModeKeys.EVAL:
      eval_metric_ops = spec.eval_metric_ops
      self.assertAllEqual(eval_metric_ops['accuracy'][0].shape, ())
      self.assertAllEqual(eval_metric_ops['accuracy'][1].shape, ())
      self.assertEqual(eval_metric_ops['accuracy'][0].dtype, tf.float32)
      self.assertEqual(eval_metric_ops['accuracy'][1].dtype, tf.float32)

208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
  def test_resnet_model_fn_train_mode_v1(self):
    self.resnet_model_fn_helper(tf.estimator.ModeKeys.TRAIN, version=1)

  def test_resnet_model_fn_train_mode_v2(self):
    self.resnet_model_fn_helper(tf.estimator.ModeKeys.TRAIN, version=2)

  def test_resnet_model_fn_train_mode_multi_gpu_v1(self):
    self.resnet_model_fn_helper(tf.estimator.ModeKeys.TRAIN, version=1,
                                multi_gpu=True)

  def test_resnet_model_fn_train_mode_multi_gpu_v2(self):
    self.resnet_model_fn_helper(tf.estimator.ModeKeys.TRAIN, version=2,
                                multi_gpu=True)

  def test_resnet_model_fn_eval_mode_v1(self):
    self.resnet_model_fn_helper(tf.estimator.ModeKeys.EVAL, version=1)
224

225
226
  def test_resnet_model_fn_eval_mode_v2(self):
    self.resnet_model_fn_helper(tf.estimator.ModeKeys.EVAL, version=2)
Karmel Allison's avatar
Karmel Allison committed
227

228
229
  def test_resnet_model_fn_predict_mode_v1(self):
    self.resnet_model_fn_helper(tf.estimator.ModeKeys.PREDICT, version=1)
230

231
232
  def test_resnet_model_fn_predict_mode_v2(self):
    self.resnet_model_fn_helper(tf.estimator.ModeKeys.PREDICT, version=2)
233

Neal Wu's avatar
Neal Wu committed
234
235
236
237
  def test_imagenetmodel_shape(self):
    batch_size = 135
    num_classes = 246

238
239
240
241
242
    for version in (1, 2):
      model = imagenet_main.ImagenetModel(50, data_format='channels_last',
                                      num_classes=num_classes, version=version)
      fake_input = tf.random_uniform([batch_size, 224, 224, 3])
      output = model(fake_input, training=True)
Neal Wu's avatar
Neal Wu committed
243

244
      self.assertAllEqual(output.shape, (batch_size, num_classes))
Neal Wu's avatar
Neal Wu committed
245

246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
  def test_imagenet_end_to_end_synthetic_v1(self):
    integration.run_synthetic(main=imagenet_main.main, extra_flags=['-v', '1'])

  def test_imagenet_end_to_end_synthetic_v2(self):
    integration.run_synthetic(main=imagenet_main.main, extra_flags=['-v', '2'])

  def test_imagenet_end_to_end_synthetic_v1_tiny(self):
    integration.run_synthetic(main=imagenet_main.main,
                              extra_flags=['-v', '1', '-rs', '18'])

  def test_imagenet_end_to_end_synthetic_v2_tiny(self):
    integration.run_synthetic(main=imagenet_main.main,
                              extra_flags=['-v', '2', '-rs', '18'])

  def test_imagenet_end_to_end_synthetic_v1_huge(self):
    integration.run_synthetic(main=imagenet_main.main,
                              extra_flags=['-v', '1', '-rs', '200'])

  def test_imagenet_end_to_end_synthetic_v2_huge(self):
    integration.run_synthetic(main=imagenet_main.main,
                              extra_flags=['-v', '2', '-rs', '200'])
267
268
269

if __name__ == '__main__':
  tf.test.main()
Karmel Allison's avatar
Karmel Allison committed
270