imagenet_test.py 6.74 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import unittest

import tensorflow as tf

import imagenet_main
import resnet_model

tf.logging.set_verbosity(tf.logging.ERROR)

29
_BATCH_SIZE = 32
30
31
32
33
34
35
36
37
_LABEL_CLASSES = 1001


class BaseTest(tf.test.TestCase):

  def tensor_shapes_helper(self, resnet_size, with_gpu=False):
    """Checks the tensor shapes after each phase of the ResNet model."""
    def reshape(shape):
38
39
40
      """Returns the expected dimensions depending on if a GPU is being used."""
      # If a GPU is used for the test, the shape is returned (already in NCHW
      # form). When GPU is not used, the shape is converted to NHWC.
41
42
43
44
45
46
47
48
      if with_gpu:
        return shape
      return shape[0], shape[2], shape[3], shape[1]

    graph = tf.Graph()

    with graph.as_default(), self.test_session(
        use_gpu=with_gpu, force_gpu=with_gpu):
49
      model = resnet_model.imagenet_resnet_v2(
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
          resnet_size, 456,
          data_format='channels_first' if with_gpu else 'channels_last')
      inputs = tf.random_uniform([1, 224, 224, 3])
      output = model(inputs, is_training=True)

      initial_conv = graph.get_tensor_by_name('initial_conv:0')
      max_pool = graph.get_tensor_by_name('initial_max_pool:0')
      block_layer1 = graph.get_tensor_by_name('block_layer1:0')
      block_layer2 = graph.get_tensor_by_name('block_layer2:0')
      block_layer3 = graph.get_tensor_by_name('block_layer3:0')
      block_layer4 = graph.get_tensor_by_name('block_layer4:0')
      avg_pool = graph.get_tensor_by_name('final_avg_pool:0')
      dense = graph.get_tensor_by_name('final_dense:0')

      self.assertAllEqual(initial_conv.shape, reshape((1, 64, 112, 112)))
      self.assertAllEqual(max_pool.shape, reshape((1, 64, 56, 56)))

      # The number of channels after each block depends on whether we're
      # using the building_block or the bottleneck_block.
      if resnet_size < 50:
        self.assertAllEqual(block_layer1.shape, reshape((1, 64, 56, 56)))
        self.assertAllEqual(block_layer2.shape, reshape((1, 128, 28, 28)))
        self.assertAllEqual(block_layer3.shape, reshape((1, 256, 14, 14)))
        self.assertAllEqual(block_layer4.shape, reshape((1, 512, 7, 7)))
        self.assertAllEqual(avg_pool.shape, reshape((1, 512, 1, 1)))
      else:
        self.assertAllEqual(block_layer1.shape, reshape((1, 256, 56, 56)))
        self.assertAllEqual(block_layer2.shape, reshape((1, 512, 28, 28)))
        self.assertAllEqual(block_layer3.shape, reshape((1, 1024, 14, 14)))
        self.assertAllEqual(block_layer4.shape, reshape((1, 2048, 7, 7)))
        self.assertAllEqual(avg_pool.shape, reshape((1, 2048, 1, 1)))

      self.assertAllEqual(dense.shape, (1, 456))
      self.assertAllEqual(output.shape, (1, 456))

  def test_tensor_shapes_resnet_18(self):
    self.tensor_shapes_helper(18)

  def test_tensor_shapes_resnet_34(self):
    self.tensor_shapes_helper(34)

  def test_tensor_shapes_resnet_50(self):
    self.tensor_shapes_helper(50)

  def test_tensor_shapes_resnet_101(self):
    self.tensor_shapes_helper(101)

  def test_tensor_shapes_resnet_152(self):
    self.tensor_shapes_helper(152)

  def test_tensor_shapes_resnet_200(self):
    self.tensor_shapes_helper(200)

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
  def test_tensor_shapes_resnet_18_with_gpu(self):
    self.tensor_shapes_helper(18, True)

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
  def test_tensor_shapes_resnet_34_with_gpu(self):
    self.tensor_shapes_helper(34, True)

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
  def test_tensor_shapes_resnet_50_with_gpu(self):
    self.tensor_shapes_helper(50, True)

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
  def test_tensor_shapes_resnet_101_with_gpu(self):
    self.tensor_shapes_helper(101, True)

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
  def test_tensor_shapes_resnet_152_with_gpu(self):
    self.tensor_shapes_helper(152, True)

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
  def test_tensor_shapes_resnet_200_with_gpu(self):
    self.tensor_shapes_helper(200, True)

  def input_fn(self):
    """Provides random features and labels."""
129
    features = tf.random_uniform([_BATCH_SIZE, 224, 224, 3])
130
131
    labels = tf.one_hot(
        tf.random_uniform(
132
            [_BATCH_SIZE], maxval=_LABEL_CLASSES - 1,
133
134
135
136
137
138
139
140
141
142
            dtype=tf.int32),
        _LABEL_CLASSES)

    return features, labels

  def resnet_model_fn_helper(self, mode):
    """Tests that the EstimatorSpec is given the appropriate arguments."""
    tf.train.create_global_step()

    features, labels = self.input_fn()
143
144
145
146
147
148
    spec = imagenet_main.resnet_model_fn(
        features, labels, mode, {
            'resnet_size': 50,
            'data_format': 'channels_last',
            'batch_size': _BATCH_SIZE,
        })
149
150
151

    predictions = spec.predictions
    self.assertAllEqual(predictions['probabilities'].shape,
152
                        (_BATCH_SIZE, _LABEL_CLASSES))
153
    self.assertEqual(predictions['probabilities'].dtype, tf.float32)
154
    self.assertAllEqual(predictions['classes'].shape, (_BATCH_SIZE,))
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
    self.assertEqual(predictions['classes'].dtype, tf.int64)

    if mode != tf.estimator.ModeKeys.PREDICT:
      loss = spec.loss
      self.assertAllEqual(loss.shape, ())
      self.assertEqual(loss.dtype, tf.float32)

    if mode == tf.estimator.ModeKeys.EVAL:
      eval_metric_ops = spec.eval_metric_ops
      self.assertAllEqual(eval_metric_ops['accuracy'][0].shape, ())
      self.assertAllEqual(eval_metric_ops['accuracy'][1].shape, ())
      self.assertEqual(eval_metric_ops['accuracy'][0].dtype, tf.float32)
      self.assertEqual(eval_metric_ops['accuracy'][1].dtype, tf.float32)

  def test_resnet_model_fn_train_mode(self):
    self.resnet_model_fn_helper(tf.estimator.ModeKeys.TRAIN)

  def test_resnet_model_fn_eval_mode(self):
    self.resnet_model_fn_helper(tf.estimator.ModeKeys.EVAL)

  def test_resnet_model_fn_predict_mode(self):
    self.resnet_model_fn_helper(tf.estimator.ModeKeys.PREDICT)


if __name__ == '__main__':
  tf.test.main()