imagenet_test.py 9.75 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import unittest

import tensorflow as tf

24
from official.resnet import imagenet_main
25
26
27

tf.logging.set_verbosity(tf.logging.ERROR)

28
_BATCH_SIZE = 32
29
30
31
32
33
_LABEL_CLASSES = 1001


class BaseTest(tf.test.TestCase):

34
  def tensor_shapes_helper(self, resnet_size, version, with_gpu=False):
35
36
    """Checks the tensor shapes after each phase of the ResNet model."""
    def reshape(shape):
37
38
39
      """Returns the expected dimensions depending on if a
      GPU is being used.
      """
40
41
      # If a GPU is used for the test, the shape is returned (already in NCHW
      # form). When GPU is not used, the shape is converted to NHWC.
42
43
44
45
46
47
48
49
      if with_gpu:
        return shape
      return shape[0], shape[2], shape[3], shape[1]

    graph = tf.Graph()

    with graph.as_default(), self.test_session(
        use_gpu=with_gpu, force_gpu=with_gpu):
50
51
      model = imagenet_main.ImagenetModel(
          resnet_size,
52
53
          data_format='channels_first' if with_gpu else 'channels_last',
          version=version)
54
      inputs = tf.random_uniform([1, 224, 224, 3])
55
      output = model(inputs, training=True)
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

      initial_conv = graph.get_tensor_by_name('initial_conv:0')
      max_pool = graph.get_tensor_by_name('initial_max_pool:0')
      block_layer1 = graph.get_tensor_by_name('block_layer1:0')
      block_layer2 = graph.get_tensor_by_name('block_layer2:0')
      block_layer3 = graph.get_tensor_by_name('block_layer3:0')
      block_layer4 = graph.get_tensor_by_name('block_layer4:0')
      avg_pool = graph.get_tensor_by_name('final_avg_pool:0')
      dense = graph.get_tensor_by_name('final_dense:0')

      self.assertAllEqual(initial_conv.shape, reshape((1, 64, 112, 112)))
      self.assertAllEqual(max_pool.shape, reshape((1, 64, 56, 56)))

      # The number of channels after each block depends on whether we're
      # using the building_block or the bottleneck_block.
      if resnet_size < 50:
        self.assertAllEqual(block_layer1.shape, reshape((1, 64, 56, 56)))
        self.assertAllEqual(block_layer2.shape, reshape((1, 128, 28, 28)))
        self.assertAllEqual(block_layer3.shape, reshape((1, 256, 14, 14)))
        self.assertAllEqual(block_layer4.shape, reshape((1, 512, 7, 7)))
        self.assertAllEqual(avg_pool.shape, reshape((1, 512, 1, 1)))
      else:
        self.assertAllEqual(block_layer1.shape, reshape((1, 256, 56, 56)))
        self.assertAllEqual(block_layer2.shape, reshape((1, 512, 28, 28)))
        self.assertAllEqual(block_layer3.shape, reshape((1, 1024, 14, 14)))
        self.assertAllEqual(block_layer4.shape, reshape((1, 2048, 7, 7)))
        self.assertAllEqual(avg_pool.shape, reshape((1, 2048, 1, 1)))

84
85
      self.assertAllEqual(dense.shape, (1, _LABEL_CLASSES))
      self.assertAllEqual(output.shape, (1, _LABEL_CLASSES))
86

87
88
  def test_tensor_shapes_resnet_18_v1(self):
    self.tensor_shapes_helper(18, version=1)
89

90
91
  def test_tensor_shapes_resnet_18_v2(self):
    self.tensor_shapes_helper(18, version=2)
92

93
94
  def test_tensor_shapes_resnet_34_v1(self):
    self.tensor_shapes_helper(34, version=1)
95

96
97
  def test_tensor_shapes_resnet_34_v2(self):
    self.tensor_shapes_helper(34, version=2)
98

99
100
  def test_tensor_shapes_resnet_50_v1(self):
    self.tensor_shapes_helper(50, version=1)
101

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
  def test_tensor_shapes_resnet_50_v2(self):
    self.tensor_shapes_helper(50, version=2)

  def test_tensor_shapes_resnet_101_v1(self):
    self.tensor_shapes_helper(101, version=1)

  def test_tensor_shapes_resnet_101_v2(self):
    self.tensor_shapes_helper(101, version=2)

  def test_tensor_shapes_resnet_152_v1(self):
    self.tensor_shapes_helper(152, version=1)

  def test_tensor_shapes_resnet_152_v2(self):
    self.tensor_shapes_helper(152, version=2)

  def test_tensor_shapes_resnet_200_v1(self):
    self.tensor_shapes_helper(200, version=1)

  def test_tensor_shapes_resnet_200_v2(self):
    self.tensor_shapes_helper(200, version=2)

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
  def test_tensor_shapes_resnet_18_with_gpu_v1(self):
    self.tensor_shapes_helper(18, version=1, with_gpu=True)

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
  def test_tensor_shapes_resnet_18_with_gpu_v2(self):
    self.tensor_shapes_helper(18, version=2, with_gpu=True)

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
  def test_tensor_shapes_resnet_34_with_gpu_v1(self):
    self.tensor_shapes_helper(34, version=1, with_gpu=True)

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
  def test_tensor_shapes_resnet_34_with_gpu_v2(self):
    self.tensor_shapes_helper(34, version=2, with_gpu=True)
138
139

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
140
141
  def test_tensor_shapes_resnet_50_with_gpu_v1(self):
    self.tensor_shapes_helper(50, version=1, with_gpu=True)
142
143

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
144
145
  def test_tensor_shapes_resnet_50_with_gpu_v2(self):
    self.tensor_shapes_helper(50, version=2, with_gpu=True)
146
147

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
148
149
  def test_tensor_shapes_resnet_101_with_gpu_v1(self):
    self.tensor_shapes_helper(101, version=1, with_gpu=True)
150
151

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
152
153
  def test_tensor_shapes_resnet_101_with_gpu_v2(self):
    self.tensor_shapes_helper(101, version=2, with_gpu=True)
154
155

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
156
157
  def test_tensor_shapes_resnet_152_with_gpu_v1(self):
    self.tensor_shapes_helper(152, version=1, with_gpu=True)
158
159

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
160
161
  def test_tensor_shapes_resnet_152_with_gpu_v2(self):
    self.tensor_shapes_helper(152, version=2, with_gpu=True)
162

163
164
165
166
167
168
169
170
171
  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
  def test_tensor_shapes_resnet_200_with_gpu_v1(self):
    self.tensor_shapes_helper(200, version=1, with_gpu=True)

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
  def test_tensor_shapes_resnet_200_with_gpu_v2(self):
    self.tensor_shapes_helper(200, version=2, with_gpu=True)

  def resnet_model_fn_helper(self, mode, version, multi_gpu=False):
172
173
174
    """Tests that the EstimatorSpec is given the appropriate arguments."""
    tf.train.create_global_step()

175
176
177
178
    input_fn = imagenet_main.get_synth_input_fn()
    dataset = input_fn(True, '', _BATCH_SIZE)
    iterator = dataset.make_one_shot_iterator()
    features, labels = iterator.get_next()
179
    spec = imagenet_main.imagenet_model_fn(
180
181
182
183
        features, labels, mode, {
            'resnet_size': 50,
            'data_format': 'channels_last',
            'batch_size': _BATCH_SIZE,
184
            'version': version,
Karmel Allison's avatar
Karmel Allison committed
185
            'multi_gpu': multi_gpu,
186
        })
187
188
189

    predictions = spec.predictions
    self.assertAllEqual(predictions['probabilities'].shape,
190
                        (_BATCH_SIZE, _LABEL_CLASSES))
191
    self.assertEqual(predictions['probabilities'].dtype, tf.float32)
192
    self.assertAllEqual(predictions['classes'].shape, (_BATCH_SIZE,))
193
194
195
196
197
198
199
200
201
202
203
204
205
206
    self.assertEqual(predictions['classes'].dtype, tf.int64)

    if mode != tf.estimator.ModeKeys.PREDICT:
      loss = spec.loss
      self.assertAllEqual(loss.shape, ())
      self.assertEqual(loss.dtype, tf.float32)

    if mode == tf.estimator.ModeKeys.EVAL:
      eval_metric_ops = spec.eval_metric_ops
      self.assertAllEqual(eval_metric_ops['accuracy'][0].shape, ())
      self.assertAllEqual(eval_metric_ops['accuracy'][1].shape, ())
      self.assertEqual(eval_metric_ops['accuracy'][0].dtype, tf.float32)
      self.assertEqual(eval_metric_ops['accuracy'][1].dtype, tf.float32)

207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
  def test_resnet_model_fn_train_mode_v1(self):
    self.resnet_model_fn_helper(tf.estimator.ModeKeys.TRAIN, version=1)

  def test_resnet_model_fn_train_mode_v2(self):
    self.resnet_model_fn_helper(tf.estimator.ModeKeys.TRAIN, version=2)

  def test_resnet_model_fn_train_mode_multi_gpu_v1(self):
    self.resnet_model_fn_helper(tf.estimator.ModeKeys.TRAIN, version=1,
                                multi_gpu=True)

  def test_resnet_model_fn_train_mode_multi_gpu_v2(self):
    self.resnet_model_fn_helper(tf.estimator.ModeKeys.TRAIN, version=2,
                                multi_gpu=True)

  def test_resnet_model_fn_eval_mode_v1(self):
    self.resnet_model_fn_helper(tf.estimator.ModeKeys.EVAL, version=1)
223

224
225
  def test_resnet_model_fn_eval_mode_v2(self):
    self.resnet_model_fn_helper(tf.estimator.ModeKeys.EVAL, version=2)
Karmel Allison's avatar
Karmel Allison committed
226

227
228
  def test_resnet_model_fn_predict_mode_v1(self):
    self.resnet_model_fn_helper(tf.estimator.ModeKeys.PREDICT, version=1)
229

230
231
  def test_resnet_model_fn_predict_mode_v2(self):
    self.resnet_model_fn_helper(tf.estimator.ModeKeys.PREDICT, version=2)
232

Neal Wu's avatar
Neal Wu committed
233
234
235
236
  def test_imagenetmodel_shape(self):
    batch_size = 135
    num_classes = 246

237
238
239
240
241
    for version in (1, 2):
      model = imagenet_main.ImagenetModel(50, data_format='channels_last',
                                      num_classes=num_classes, version=version)
      fake_input = tf.random_uniform([batch_size, 224, 224, 3])
      output = model(fake_input, training=True)
Neal Wu's avatar
Neal Wu committed
242

243
      self.assertAllEqual(output.shape, (batch_size, num_classes))
Neal Wu's avatar
Neal Wu committed
244

245
246
247

if __name__ == '__main__':
  tf.test.main()
Karmel Allison's avatar
Karmel Allison committed
248