imagenet_test.py 11.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import unittest

import tensorflow as tf

24
from official.resnet import imagenet_main
25
from official.utils.testing import integration
26
27
28

tf.logging.set_verbosity(tf.logging.ERROR)

29
_BATCH_SIZE = 32
30
31
32
33
34
_LABEL_CLASSES = 1001


class BaseTest(tf.test.TestCase):

35
36
37
38
  def tearDown(self):
    super(BaseTest, self).tearDown()
    tf.gfile.DeleteRecursively(self.get_temp_dir())

39
  def tensor_shapes_helper(self, resnet_size, version, with_gpu=False):
40
41
    """Checks the tensor shapes after each phase of the ResNet model."""
    def reshape(shape):
42
43
44
      """Returns the expected dimensions depending on if a
      GPU is being used.
      """
45
46
      # If a GPU is used for the test, the shape is returned (already in NCHW
      # form). When GPU is not used, the shape is converted to NHWC.
47
48
49
50
51
52
53
54
      if with_gpu:
        return shape
      return shape[0], shape[2], shape[3], shape[1]

    graph = tf.Graph()

    with graph.as_default(), self.test_session(
        use_gpu=with_gpu, force_gpu=with_gpu):
55
56
      model = imagenet_main.ImagenetModel(
          resnet_size,
57
58
          data_format='channels_first' if with_gpu else 'channels_last',
          version=version)
59
      inputs = tf.random_uniform([1, 224, 224, 3])
60
      output = model(inputs, training=True)
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

      initial_conv = graph.get_tensor_by_name('initial_conv:0')
      max_pool = graph.get_tensor_by_name('initial_max_pool:0')
      block_layer1 = graph.get_tensor_by_name('block_layer1:0')
      block_layer2 = graph.get_tensor_by_name('block_layer2:0')
      block_layer3 = graph.get_tensor_by_name('block_layer3:0')
      block_layer4 = graph.get_tensor_by_name('block_layer4:0')
      avg_pool = graph.get_tensor_by_name('final_avg_pool:0')
      dense = graph.get_tensor_by_name('final_dense:0')

      self.assertAllEqual(initial_conv.shape, reshape((1, 64, 112, 112)))
      self.assertAllEqual(max_pool.shape, reshape((1, 64, 56, 56)))

      # The number of channels after each block depends on whether we're
      # using the building_block or the bottleneck_block.
      if resnet_size < 50:
        self.assertAllEqual(block_layer1.shape, reshape((1, 64, 56, 56)))
        self.assertAllEqual(block_layer2.shape, reshape((1, 128, 28, 28)))
        self.assertAllEqual(block_layer3.shape, reshape((1, 256, 14, 14)))
        self.assertAllEqual(block_layer4.shape, reshape((1, 512, 7, 7)))
        self.assertAllEqual(avg_pool.shape, reshape((1, 512, 1, 1)))
      else:
        self.assertAllEqual(block_layer1.shape, reshape((1, 256, 56, 56)))
        self.assertAllEqual(block_layer2.shape, reshape((1, 512, 28, 28)))
        self.assertAllEqual(block_layer3.shape, reshape((1, 1024, 14, 14)))
        self.assertAllEqual(block_layer4.shape, reshape((1, 2048, 7, 7)))
        self.assertAllEqual(avg_pool.shape, reshape((1, 2048, 1, 1)))

89
90
      self.assertAllEqual(dense.shape, (1, _LABEL_CLASSES))
      self.assertAllEqual(output.shape, (1, _LABEL_CLASSES))
91

92
93
  def test_tensor_shapes_resnet_18_v1(self):
    self.tensor_shapes_helper(18, version=1)
94

95
96
  def test_tensor_shapes_resnet_18_v2(self):
    self.tensor_shapes_helper(18, version=2)
97

98
99
  def test_tensor_shapes_resnet_34_v1(self):
    self.tensor_shapes_helper(34, version=1)
100

101
102
  def test_tensor_shapes_resnet_34_v2(self):
    self.tensor_shapes_helper(34, version=2)
103

104
105
  def test_tensor_shapes_resnet_50_v1(self):
    self.tensor_shapes_helper(50, version=1)
106

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
  def test_tensor_shapes_resnet_50_v2(self):
    self.tensor_shapes_helper(50, version=2)

  def test_tensor_shapes_resnet_101_v1(self):
    self.tensor_shapes_helper(101, version=1)

  def test_tensor_shapes_resnet_101_v2(self):
    self.tensor_shapes_helper(101, version=2)

  def test_tensor_shapes_resnet_152_v1(self):
    self.tensor_shapes_helper(152, version=1)

  def test_tensor_shapes_resnet_152_v2(self):
    self.tensor_shapes_helper(152, version=2)

  def test_tensor_shapes_resnet_200_v1(self):
    self.tensor_shapes_helper(200, version=1)

  def test_tensor_shapes_resnet_200_v2(self):
    self.tensor_shapes_helper(200, version=2)

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
  def test_tensor_shapes_resnet_18_with_gpu_v1(self):
    self.tensor_shapes_helper(18, version=1, with_gpu=True)

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
  def test_tensor_shapes_resnet_18_with_gpu_v2(self):
    self.tensor_shapes_helper(18, version=2, with_gpu=True)

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
  def test_tensor_shapes_resnet_34_with_gpu_v1(self):
    self.tensor_shapes_helper(34, version=1, with_gpu=True)

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
  def test_tensor_shapes_resnet_34_with_gpu_v2(self):
    self.tensor_shapes_helper(34, version=2, with_gpu=True)
143
144

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
145
146
  def test_tensor_shapes_resnet_50_with_gpu_v1(self):
    self.tensor_shapes_helper(50, version=1, with_gpu=True)
147
148

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
149
150
  def test_tensor_shapes_resnet_50_with_gpu_v2(self):
    self.tensor_shapes_helper(50, version=2, with_gpu=True)
151
152

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
153
154
  def test_tensor_shapes_resnet_101_with_gpu_v1(self):
    self.tensor_shapes_helper(101, version=1, with_gpu=True)
155
156

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
157
158
  def test_tensor_shapes_resnet_101_with_gpu_v2(self):
    self.tensor_shapes_helper(101, version=2, with_gpu=True)
159
160

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
161
162
  def test_tensor_shapes_resnet_152_with_gpu_v1(self):
    self.tensor_shapes_helper(152, version=1, with_gpu=True)
163
164

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
165
166
  def test_tensor_shapes_resnet_152_with_gpu_v2(self):
    self.tensor_shapes_helper(152, version=2, with_gpu=True)
167

168
169
170
171
172
173
174
175
176
  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
  def test_tensor_shapes_resnet_200_with_gpu_v1(self):
    self.tensor_shapes_helper(200, version=1, with_gpu=True)

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
  def test_tensor_shapes_resnet_200_with_gpu_v2(self):
    self.tensor_shapes_helper(200, version=2, with_gpu=True)

  def resnet_model_fn_helper(self, mode, version, multi_gpu=False):
177
178
179
    """Tests that the EstimatorSpec is given the appropriate arguments."""
    tf.train.create_global_step()

180
181
182
183
    input_fn = imagenet_main.get_synth_input_fn()
    dataset = input_fn(True, '', _BATCH_SIZE)
    iterator = dataset.make_one_shot_iterator()
    features, labels = iterator.get_next()
184
    spec = imagenet_main.imagenet_model_fn(
185
186
187
188
        features, labels, mode, {
            'resnet_size': 50,
            'data_format': 'channels_last',
            'batch_size': _BATCH_SIZE,
189
            'version': version,
Karmel Allison's avatar
Karmel Allison committed
190
            'multi_gpu': multi_gpu,
191
        })
192
193
194

    predictions = spec.predictions
    self.assertAllEqual(predictions['probabilities'].shape,
195
                        (_BATCH_SIZE, _LABEL_CLASSES))
196
    self.assertEqual(predictions['probabilities'].dtype, tf.float32)
197
    self.assertAllEqual(predictions['classes'].shape, (_BATCH_SIZE,))
198
199
200
201
202
203
204
205
206
207
208
209
210
211
    self.assertEqual(predictions['classes'].dtype, tf.int64)

    if mode != tf.estimator.ModeKeys.PREDICT:
      loss = spec.loss
      self.assertAllEqual(loss.shape, ())
      self.assertEqual(loss.dtype, tf.float32)

    if mode == tf.estimator.ModeKeys.EVAL:
      eval_metric_ops = spec.eval_metric_ops
      self.assertAllEqual(eval_metric_ops['accuracy'][0].shape, ())
      self.assertAllEqual(eval_metric_ops['accuracy'][1].shape, ())
      self.assertEqual(eval_metric_ops['accuracy'][0].dtype, tf.float32)
      self.assertEqual(eval_metric_ops['accuracy'][1].dtype, tf.float32)

212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
  def test_resnet_model_fn_train_mode_v1(self):
    self.resnet_model_fn_helper(tf.estimator.ModeKeys.TRAIN, version=1)

  def test_resnet_model_fn_train_mode_v2(self):
    self.resnet_model_fn_helper(tf.estimator.ModeKeys.TRAIN, version=2)

  def test_resnet_model_fn_train_mode_multi_gpu_v1(self):
    self.resnet_model_fn_helper(tf.estimator.ModeKeys.TRAIN, version=1,
                                multi_gpu=True)

  def test_resnet_model_fn_train_mode_multi_gpu_v2(self):
    self.resnet_model_fn_helper(tf.estimator.ModeKeys.TRAIN, version=2,
                                multi_gpu=True)

  def test_resnet_model_fn_eval_mode_v1(self):
    self.resnet_model_fn_helper(tf.estimator.ModeKeys.EVAL, version=1)
228

229
230
  def test_resnet_model_fn_eval_mode_v2(self):
    self.resnet_model_fn_helper(tf.estimator.ModeKeys.EVAL, version=2)
Karmel Allison's avatar
Karmel Allison committed
231

232
233
  def test_resnet_model_fn_predict_mode_v1(self):
    self.resnet_model_fn_helper(tf.estimator.ModeKeys.PREDICT, version=1)
234

235
236
  def test_resnet_model_fn_predict_mode_v2(self):
    self.resnet_model_fn_helper(tf.estimator.ModeKeys.PREDICT, version=2)
237

Neal Wu's avatar
Neal Wu committed
238
239
240
241
  def test_imagenetmodel_shape(self):
    batch_size = 135
    num_classes = 246

242
243
244
245
246
    for version in (1, 2):
      model = imagenet_main.ImagenetModel(50, data_format='channels_last',
                                      num_classes=num_classes, version=version)
      fake_input = tf.random_uniform([batch_size, 224, 224, 3])
      output = model(fake_input, training=True)
Neal Wu's avatar
Neal Wu committed
247

248
      self.assertAllEqual(output.shape, (batch_size, num_classes))
Neal Wu's avatar
Neal Wu committed
249

250
  def test_imagenet_end_to_end_synthetic_v1(self):
251
252
253
254
    integration.run_synthetic(
        main=imagenet_main.main, tmp_root=self.get_temp_dir(),
        extra_flags=['-v', '1']
    )
255
256

  def test_imagenet_end_to_end_synthetic_v2(self):
257
258
259
260
    integration.run_synthetic(
        main=imagenet_main.main, tmp_root=self.get_temp_dir(),
        extra_flags=['-v', '2']
    )
261
262

  def test_imagenet_end_to_end_synthetic_v1_tiny(self):
263
264
265
266
    integration.run_synthetic(
        main=imagenet_main.main, tmp_root=self.get_temp_dir(),
        extra_flags=['-v', '1', '-rs', '18']
    )
267
268

  def test_imagenet_end_to_end_synthetic_v2_tiny(self):
269
270
271
272
    integration.run_synthetic(
        main=imagenet_main.main, tmp_root=self.get_temp_dir(),
        extra_flags=['-v', '2', '-rs', '18']
    )
273
274

  def test_imagenet_end_to_end_synthetic_v1_huge(self):
275
276
277
278
    integration.run_synthetic(
        main=imagenet_main.main, tmp_root=self.get_temp_dir(),
        extra_flags=['-v', '1', '-rs', '200']
    )
279
280

  def test_imagenet_end_to_end_synthetic_v2_huge(self):
281
282
283
284
    integration.run_synthetic(
        main=imagenet_main.main, tmp_root=self.get_temp_dir(),
        extra_flags=['-v', '2', '-rs', '200']
    )
285
286
287

if __name__ == '__main__':
  tf.test.main()
Karmel Allison's avatar
Karmel Allison committed
288