inputs.py 52.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Model input function for tf-learn object detection model."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import functools

23
import tensorflow.compat.v1 as tf
24
from object_detection.builders import dataset_builder
25
26
from object_detection.builders import image_resizer_builder
from object_detection.builders import model_builder
27
from object_detection.builders import preprocessor_builder
28
29
from object_detection.core import box_list
from object_detection.core import box_list_ops
30
from object_detection.core import densepose_ops
31
from object_detection.core import keypoint_ops
32
from object_detection.core import preprocessor
33
34
35
from object_detection.core import standard_fields as fields
from object_detection.data_decoders import tf_example_decoder
from object_detection.protos import eval_pb2
36
from object_detection.protos import image_resizer_pb2
37
from object_detection.protos import input_reader_pb2
38
from object_detection.protos import model_pb2
39
from object_detection.protos import train_pb2
40
from object_detection.utils import config_util
41
from object_detection.utils import ops as util_ops
42
from object_detection.utils import shape_utils
43

44
45
HASH_KEY = 'hash'
HASH_BINS = 1 << 31
46
SERVING_FED_EXAMPLE_KEY = 'serialized_example'
47
_LABEL_OFFSET = 1
48

49
50
51
# A map of names to methods that help build the input pipeline.
INPUT_BUILDER_UTIL_MAP = {
    'dataset_build': dataset_builder.build,
52
    'model_build': model_builder.build,
53
54
}

55

pkulzc's avatar
pkulzc committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
def _multiclass_scores_or_one_hot_labels(multiclass_scores,
                                         groundtruth_boxes,
                                         groundtruth_classes, num_classes):
  """Returns one-hot encoding of classes when multiclass_scores is empty."""
  # Replace groundtruth_classes tensor with multiclass_scores tensor when its
  # non-empty. If multiclass_scores is empty fall back on groundtruth_classes
  # tensor.
  def true_fn():
    return tf.reshape(multiclass_scores,
                      [tf.shape(groundtruth_boxes)[0], num_classes])
  def false_fn():
    return tf.one_hot(groundtruth_classes, num_classes)
  return tf.cond(tf.size(multiclass_scores) > 0, true_fn, false_fn)


71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
def _convert_labeled_classes_to_k_hot(groundtruth_labeled_classes, num_classes,
                                      map_empty_to_ones=False):
  """Returns k-hot encoding of the labeled classes.

  If map_empty_to_ones is enabled and the input labeled_classes is empty,
  this function assumes all classes are exhaustively labeled, thus returning
  an all-one encoding.

  Args:
    groundtruth_labeled_classes: a Tensor holding a sparse representation of
      labeled classes.
    num_classes: an integer representing the number of classes
    map_empty_to_ones: boolean (default: False).  Set this to be True to default
    to an all-ones result if given an empty `groundtruth_labeled_classes`.
  Returns:
    A k-hot (and 0-indexed) tensor representation of
    `groundtruth_labeled_classes`.
  """
89
90
91
92
93
94
95
96
97
98
99
100

  # If the input labeled_classes is empty, it assumes all classes are
  # exhaustively labeled, thus returning an all-one encoding.
  def true_fn():
    return tf.sparse_to_dense(
        groundtruth_labeled_classes - _LABEL_OFFSET, [num_classes],
        tf.constant(1, dtype=tf.float32),
        validate_indices=False)

  def false_fn():
    return tf.ones(num_classes, dtype=tf.float32)

101
102
103
  if map_empty_to_ones:
    return tf.cond(tf.size(groundtruth_labeled_classes) > 0, true_fn, false_fn)
  return true_fn()
104
105
106
107
108


def _remove_unrecognized_classes(class_ids, unrecognized_label):
  """Returns class ids with unrecognized classes filtered out."""

109
110
  recognized_indices = tf.squeeze(
      tf.where(tf.greater(class_ids, unrecognized_label)), -1)
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
  return tf.gather(class_ids, recognized_indices)


def assert_or_prune_invalid_boxes(boxes):
  """Makes sure boxes have valid sizes (ymax >= ymin, xmax >= xmin).

  When the hardware supports assertions, the function raises an error when
  boxes have an invalid size. If assertions are not supported (e.g. on TPU),
  boxes with invalid sizes are filtered out.

  Args:
    boxes: float tensor of shape [num_boxes, 4]

  Returns:
    boxes: float tensor of shape [num_valid_boxes, 4] with invalid boxes
      filtered out.

  Raises:
    tf.errors.InvalidArgumentError: When we detect boxes with invalid size.
      This is not supported on TPUs.
  """

  ymin, xmin, ymax, xmax = tf.split(
      boxes, num_or_size_splits=4, axis=1)

  height_check = tf.Assert(tf.reduce_all(ymax >= ymin), [ymin, ymax])
  width_check = tf.Assert(tf.reduce_all(xmax >= xmin), [xmin, xmax])

  with tf.control_dependencies([height_check, width_check]):
    boxes_tensor = tf.concat([ymin, xmin, ymax, xmax], axis=1)
    boxlist = box_list.BoxList(boxes_tensor)
    # TODO(b/149221748) Remove pruning when XLA supports assertions.
    boxlist = box_list_ops.prune_small_boxes(boxlist, 0)

  return boxlist.get()


148
149
150
151
152
153
def transform_input_data(tensor_dict,
                         model_preprocess_fn,
                         image_resizer_fn,
                         num_classes,
                         data_augmentation_fn=None,
                         merge_multiple_boxes=False,
154
                         retain_original_image=False,
155
                         use_multiclass_scores=False,
156
                         use_bfloat16=False,
157
158
                         retain_original_image_additional_channels=False,
                         keypoint_type_weight=None):
159
160
161
  """A single function that is responsible for all input data transformations.

  Data transformation functions are applied in the following order.
162
163
164
165
166
  1. If key fields.InputDataFields.image_additional_channels is present in
     tensor_dict, the additional channels will be merged into
     fields.InputDataFields.image.
  2. data_augmentation_fn (optional): applied on tensor_dict.
  3. model_preprocess_fn: applied only on image tensor in tensor_dict.
167
168
169
170
171
172
  4. keypoint_type_weight (optional): If groundtruth keypoints are in
     the tensor dictionary, per-keypoint weights are produced. These weights are
     initialized by `keypoint_type_weight` (or ones if left None).
     Then, for all keypoints that are not visible, the weights are set to 0 (to
     avoid penalizing the model in a loss function).
  5. image_resizer_fn: applied on original image and instance mask tensor in
173
     tensor_dict.
174
175
  6. one_hot_encoding: applied to classes tensor in tensor_dict.
  7. merge_multiple_boxes (optional): when groundtruth boxes are exactly the
176
177
178
179
180
181
182
183
184
     same they can be merged into a single box with an associated k-hot class
     label.

  Args:
    tensor_dict: dictionary containing input tensors keyed by
      fields.InputDataFields.
    model_preprocess_fn: model's preprocess function to apply on image tensor.
      This function must take in a 4-D float tensor and return a 4-D preprocess
      float tensor and a tensor containing the true image shape.
185
186
187
188
    image_resizer_fn: image resizer function to apply on groundtruth instance
      `masks. This function must take a 3-D float tensor of an image and a 3-D
      tensor of instance masks and return a resized version of these along with
      the true shapes.
189
190
191
192
193
194
195
196
    num_classes: number of max classes to one-hot (or k-hot) encode the class
      labels.
    data_augmentation_fn: (optional) data augmentation function to apply on
      input `tensor_dict`.
    merge_multiple_boxes: (optional) whether to merge multiple groundtruth boxes
      and classes for a given image if the boxes are exactly the same.
    retain_original_image: (optional) whether to retain original image in the
      output dictionary.
pkulzc's avatar
pkulzc committed
197
198
199
200
    use_multiclass_scores: whether to use multiclass scores as class targets
      instead of one-hot encoding of `groundtruth_classes`. When
      this is True and multiclass_scores is empty, one-hot encoding of
      `groundtruth_classes` is used as a fallback.
201
    use_bfloat16: (optional) a bool, whether to use bfloat16 in training.
202
203
    retain_original_image_additional_channels: (optional) Whether to retain
      original image additional channels in the output dictionary.
204
205
206
    keypoint_type_weight: A list (of length num_keypoints) containing
      groundtruth loss weights to use for each keypoint. If None, will use a
      weight of 1.
207
208
209
210

  Returns:
    A dictionary keyed by fields.InputDataFields containing the tensors obtained
    after applying all the transformations.
211
212
213
214
215

  Raises:
    KeyError: If both groundtruth_labeled_classes and groundtruth_image_classes
      are provided by the decoder in tensor_dict since both fields are
      considered to contain the same information.
216
  """
pkulzc's avatar
pkulzc committed
217
  out_tensor_dict = tensor_dict.copy()
218

219
220
221
222
223
224
  input_fields = fields.InputDataFields
  labeled_classes_field = input_fields.groundtruth_labeled_classes
  image_classes_field = input_fields.groundtruth_image_classes
  verified_neg_classes_field = input_fields.groundtruth_verified_neg_classes
  not_exhaustive_field = input_fields.groundtruth_not_exhaustive_classes

225
226
227
228
229
  if (labeled_classes_field in out_tensor_dict and
      image_classes_field in out_tensor_dict):
    raise KeyError('groundtruth_labeled_classes and groundtruth_image_classes'
                   'are provided by the decoder, but only one should be set.')

230
231
232
233
234
  for field, map_empty_to_ones in [
      (labeled_classes_field, True),
      (image_classes_field, True),
      (verified_neg_classes_field, False),
      (not_exhaustive_field, False)]:
235
236
237
238
    if field in out_tensor_dict:
      out_tensor_dict[field] = _remove_unrecognized_classes(
          out_tensor_dict[field], unrecognized_label=-1)
      out_tensor_dict[field] = _convert_labeled_classes_to_k_hot(
239
          out_tensor_dict[field], num_classes, map_empty_to_ones)
240
241

  if input_fields.multiclass_scores in out_tensor_dict:
pkulzc's avatar
pkulzc committed
242
    out_tensor_dict[
243
        input_fields
pkulzc's avatar
pkulzc committed
244
        .multiclass_scores] = _multiclass_scores_or_one_hot_labels(
245
246
247
            out_tensor_dict[input_fields.multiclass_scores],
            out_tensor_dict[input_fields.groundtruth_boxes],
            out_tensor_dict[input_fields.groundtruth_classes],
pkulzc's avatar
pkulzc committed
248
249
            num_classes)

250
  if input_fields.groundtruth_boxes in out_tensor_dict:
pkulzc's avatar
pkulzc committed
251
252
253
    out_tensor_dict = util_ops.filter_groundtruth_with_nan_box_coordinates(
        out_tensor_dict)
    out_tensor_dict = util_ops.filter_unrecognized_classes(out_tensor_dict)
254

255
  if retain_original_image:
256
257
    out_tensor_dict[input_fields.original_image] = tf.cast(
        image_resizer_fn(out_tensor_dict[input_fields.image],
pkulzc's avatar
pkulzc committed
258
                         None)[0], tf.uint8)
259

260
261
262
263
  if input_fields.image_additional_channels in out_tensor_dict:
    channels = out_tensor_dict[input_fields.image_additional_channels]
    out_tensor_dict[input_fields.image] = tf.concat(
        [out_tensor_dict[input_fields.image], channels], axis=2)
264
265
    if retain_original_image_additional_channels:
      out_tensor_dict[
266
          input_fields.image_additional_channels] = tf.cast(
267
              image_resizer_fn(channels, None)[0], tf.uint8)
268

269
270
  # Apply data augmentation ops.
  if data_augmentation_fn is not None:
pkulzc's avatar
pkulzc committed
271
    out_tensor_dict = data_augmentation_fn(out_tensor_dict)
272
273

  # Apply model preprocessing ops and resize instance masks.
274
  image = out_tensor_dict[input_fields.image]
275
  preprocessed_resized_image, true_image_shape = model_preprocess_fn(
276
      tf.expand_dims(tf.cast(image, dtype=tf.float32), axis=0))
277
278
279
280
281
282
283
284
285
286

  preprocessed_shape = tf.shape(preprocessed_resized_image)
  new_height, new_width = preprocessed_shape[1], preprocessed_shape[2]

  im_box = tf.stack([
      0.0, 0.0,
      tf.to_float(new_height) / tf.to_float(true_image_shape[0, 0]),
      tf.to_float(new_width) / tf.to_float(true_image_shape[0, 1])
  ])

287
288
  if input_fields.groundtruth_boxes in tensor_dict:
    bboxes = out_tensor_dict[input_fields.groundtruth_boxes]
289
290
    boxlist = box_list.BoxList(bboxes)
    realigned_bboxes = box_list_ops.change_coordinate_frame(boxlist, im_box)
291
292
293

    realigned_boxes_tensor = realigned_bboxes.get()
    valid_boxes_tensor = assert_or_prune_invalid_boxes(realigned_boxes_tensor)
294
    out_tensor_dict[
295
        input_fields.groundtruth_boxes] = valid_boxes_tensor
296

297
298
  if input_fields.groundtruth_keypoints in tensor_dict:
    keypoints = out_tensor_dict[input_fields.groundtruth_keypoints]
299
300
301
    realigned_keypoints = keypoint_ops.change_coordinate_frame(keypoints,
                                                               im_box)
    out_tensor_dict[
302
303
304
305
        input_fields.groundtruth_keypoints] = realigned_keypoints
    flds_gt_kpt = input_fields.groundtruth_keypoints
    flds_gt_kpt_vis = input_fields.groundtruth_keypoint_visibilities
    flds_gt_kpt_weights = input_fields.groundtruth_keypoint_weights
306
307
308
309
    if flds_gt_kpt_vis not in out_tensor_dict:
      out_tensor_dict[flds_gt_kpt_vis] = tf.ones_like(
          out_tensor_dict[flds_gt_kpt][:, :, 0],
          dtype=tf.bool)
310
311
312
313
314
315
316
317
    flds_gt_kpt_depth = fields.InputDataFields.groundtruth_keypoint_depths
    flds_gt_kpt_depth_weight = (
        fields.InputDataFields.groundtruth_keypoint_depth_weights)
    if flds_gt_kpt_depth in out_tensor_dict:
      out_tensor_dict[flds_gt_kpt_depth] = out_tensor_dict[flds_gt_kpt_depth]
      out_tensor_dict[flds_gt_kpt_depth_weight] = out_tensor_dict[
          flds_gt_kpt_depth_weight]

318
319
320
321
    out_tensor_dict[flds_gt_kpt_weights] = (
        keypoint_ops.keypoint_weights_from_visibilities(
            out_tensor_dict[flds_gt_kpt_vis],
            keypoint_type_weight))
322

323
  dp_surface_coords_fld = input_fields.groundtruth_dp_surface_coords
324
325
326
327
328
329
  if dp_surface_coords_fld in tensor_dict:
    dp_surface_coords = out_tensor_dict[dp_surface_coords_fld]
    realigned_dp_surface_coords = densepose_ops.change_coordinate_frame(
        dp_surface_coords, im_box)
    out_tensor_dict[dp_surface_coords_fld] = realigned_dp_surface_coords

330
331
332
  if use_bfloat16:
    preprocessed_resized_image = tf.cast(
        preprocessed_resized_image, tf.bfloat16)
333
334
335
336
    if input_fields.context_features in out_tensor_dict:
      out_tensor_dict[input_fields.context_features] = tf.cast(
          out_tensor_dict[input_fields.context_features], tf.bfloat16)
  out_tensor_dict[input_fields.image] = tf.squeeze(
337
      preprocessed_resized_image, axis=0)
338
  out_tensor_dict[input_fields.true_image_shape] = tf.squeeze(
339
      true_image_shape, axis=0)
340
341
  if input_fields.groundtruth_instance_masks in out_tensor_dict:
    masks = out_tensor_dict[input_fields.groundtruth_instance_masks]
342
    _, resized_masks, _ = image_resizer_fn(image, masks)
343
344
    if use_bfloat16:
      resized_masks = tf.cast(resized_masks, tf.bfloat16)
pkulzc's avatar
pkulzc committed
345
    out_tensor_dict[
346
        input_fields.groundtruth_instance_masks] = resized_masks
347

pkulzc's avatar
pkulzc committed
348
  zero_indexed_groundtruth_classes = out_tensor_dict[
349
      input_fields.groundtruth_classes] - _LABEL_OFFSET
350
  if use_multiclass_scores:
pkulzc's avatar
pkulzc committed
351
    out_tensor_dict[
352
353
        input_fields.groundtruth_classes] = out_tensor_dict[
            input_fields.multiclass_scores]
pkulzc's avatar
pkulzc committed
354
  else:
355
    out_tensor_dict[input_fields.groundtruth_classes] = tf.one_hot(
pkulzc's avatar
pkulzc committed
356
        zero_indexed_groundtruth_classes, num_classes)
357
  out_tensor_dict.pop(input_fields.multiclass_scores, None)
358

359
  if input_fields.groundtruth_confidences in out_tensor_dict:
pkulzc's avatar
pkulzc committed
360
    groundtruth_confidences = out_tensor_dict[
361
        input_fields.groundtruth_confidences]
362
    # Map the confidences to the one-hot encoding of classes
363
    out_tensor_dict[input_fields.groundtruth_confidences] = (
364
        tf.reshape(groundtruth_confidences, [-1, 1]) *
365
        out_tensor_dict[input_fields.groundtruth_classes])
366
367
368
  else:
    groundtruth_confidences = tf.ones_like(
        zero_indexed_groundtruth_classes, dtype=tf.float32)
369
370
    out_tensor_dict[input_fields.groundtruth_confidences] = (
        out_tensor_dict[input_fields.groundtruth_classes])
371

372
  if merge_multiple_boxes:
373
374
    merged_boxes, merged_classes, merged_confidences, _ = (
        util_ops.merge_boxes_with_multiple_labels(
375
            out_tensor_dict[input_fields.groundtruth_boxes],
376
377
378
            zero_indexed_groundtruth_classes,
            groundtruth_confidences,
            num_classes))
379
    merged_classes = tf.cast(merged_classes, tf.float32)
380
381
382
    out_tensor_dict[input_fields.groundtruth_boxes] = merged_boxes
    out_tensor_dict[input_fields.groundtruth_classes] = merged_classes
    out_tensor_dict[input_fields.groundtruth_confidences] = (
383
        merged_confidences)
384
385
386
  if input_fields.groundtruth_boxes in out_tensor_dict:
    out_tensor_dict[input_fields.num_groundtruth_boxes] = tf.shape(
        out_tensor_dict[input_fields.groundtruth_boxes])[0]
387

pkulzc's avatar
pkulzc committed
388
  return out_tensor_dict
389
390


391
392
393
394
395
def pad_input_data_to_static_shapes(tensor_dict,
                                    max_num_boxes,
                                    num_classes,
                                    spatial_image_shape=None,
                                    max_num_context_features=None,
396
397
                                    context_feature_length=None,
                                    max_dp_points=336):
398
399
  """Pads input tensors to static shapes.

400
401
402
  In case num_additional_channels > 0, we assume that the additional channels
  have already been concatenated to the base image.

403
404
405
406
407
408
409
410
  Args:
    tensor_dict: Tensor dictionary of input data
    max_num_boxes: Max number of groundtruth boxes needed to compute shapes for
      padding.
    num_classes: Number of classes in the dataset needed to compute shapes for
      padding.
    spatial_image_shape: A list of two integers of the form [height, width]
      containing expected spatial shape of the image.
411
412
413
    max_num_context_features (optional): The maximum number of context
      features needed to compute shapes padding.
    context_feature_length (optional): The length of the context feature.
414
415
416
417
418
    max_dp_points (optional): The maximum number of DensePose sampled points per
      instance. The default (336) is selected since the original DensePose paper
      (https://arxiv.org/pdf/1802.00434.pdf) indicates that the maximum number
      of samples per part is 14, and therefore 24 * 14 = 336 is the maximum
      sampler per instance.
419
420
421
422
423
424

  Returns:
    A dictionary keyed by fields.InputDataFields containing padding shapes for
    tensors in the dataset.

  Raises:
425
    ValueError: If groundtruth classes is neither rank 1 nor rank 2, or if we
426
427
428
      detect that additional channels have not been concatenated yet, or if
      max_num_context_features is not specified and context_features is in the
      tensor dict.
429
430
431
432
433
434
  """
  if not spatial_image_shape or spatial_image_shape == [-1, -1]:
    height, width = None, None
  else:
    height, width = spatial_image_shape  # pylint: disable=unpacking-non-sequence

435
  input_fields = fields.InputDataFields
436
  num_additional_channels = 0
437
  if input_fields.image_additional_channels in tensor_dict:
438
    num_additional_channels = shape_utils.get_dim_as_int(tensor_dict[
439
        input_fields.image_additional_channels].shape[2])
440
441
442
443

  # We assume that if num_additional_channels > 0, then it has already been
  # concatenated to the base image (but not the ground truth).
  num_channels = 3
444
  if input_fields.image in tensor_dict:
445
    num_channels = shape_utils.get_dim_as_int(
446
        tensor_dict[input_fields.image].shape[2])
447
448
449
450
451
452

  if num_additional_channels:
    if num_additional_channels >= num_channels:
      raise ValueError(
          'Image must be already concatenated with additional channels.')

453
    if (input_fields.original_image in tensor_dict and
454
        shape_utils.get_dim_as_int(
455
            tensor_dict[input_fields.original_image].shape[2]) ==
456
457
458
459
        num_channels):
      raise ValueError(
          'Image must be already concatenated with additional channels.')

460
  if input_fields.context_features in tensor_dict and (
461
462
463
464
465
      max_num_context_features is None):
    raise ValueError('max_num_context_features must be specified in the model '
                     'config if include_context is specified in the input '
                     'config')

466
  padding_shapes = {
467
468
469
      input_fields.image: [height, width, num_channels],
      input_fields.original_image_spatial_shape: [2],
      input_fields.image_additional_channels: [
470
471
          height, width, num_additional_channels
      ],
472
473
474
475
476
477
478
      input_fields.source_id: [],
      input_fields.filename: [],
      input_fields.key: [],
      input_fields.groundtruth_difficult: [max_num_boxes],
      input_fields.groundtruth_boxes: [max_num_boxes, 4],
      input_fields.groundtruth_classes: [max_num_boxes, num_classes],
      input_fields.groundtruth_instance_masks: [
479
480
          max_num_boxes, height, width
      ],
481
482
483
484
485
      input_fields.groundtruth_is_crowd: [max_num_boxes],
      input_fields.groundtruth_group_of: [max_num_boxes],
      input_fields.groundtruth_area: [max_num_boxes],
      input_fields.groundtruth_weights: [max_num_boxes],
      input_fields.groundtruth_confidences: [
486
487
          max_num_boxes, num_classes
      ],
488
489
490
491
492
493
494
      input_fields.num_groundtruth_boxes: [],
      input_fields.groundtruth_label_types: [max_num_boxes],
      input_fields.groundtruth_label_weights: [max_num_boxes],
      input_fields.true_image_shape: [3],
      input_fields.groundtruth_image_classes: [num_classes],
      input_fields.groundtruth_image_confidences: [num_classes],
      input_fields.groundtruth_labeled_classes: [num_classes],
495
496
  }

497
498
  if input_fields.original_image in tensor_dict:
    padding_shapes[input_fields.original_image] = [
499
        height, width,
500
        shape_utils.get_dim_as_int(tensor_dict[input_fields.
501
                                               original_image].shape[2])
502
    ]
503
  if input_fields.groundtruth_keypoints in tensor_dict:
504
    tensor_shape = (
505
        tensor_dict[input_fields.groundtruth_keypoints].shape)
506
507
508
    padding_shape = [max_num_boxes,
                     shape_utils.get_dim_as_int(tensor_shape[1]),
                     shape_utils.get_dim_as_int(tensor_shape[2])]
509
510
511
    padding_shapes[input_fields.groundtruth_keypoints] = padding_shape
  if input_fields.groundtruth_keypoint_visibilities in tensor_dict:
    tensor_shape = tensor_dict[input_fields.
512
                               groundtruth_keypoint_visibilities].shape
513
    padding_shape = [max_num_boxes, shape_utils.get_dim_as_int(tensor_shape[1])]
514
    padding_shapes[input_fields.
515
516
                   groundtruth_keypoint_visibilities] = padding_shape

517
518
519
520
521
522
523
524
525
  if fields.InputDataFields.groundtruth_keypoint_depths in tensor_dict:
    tensor_shape = tensor_dict[fields.InputDataFields.
                               groundtruth_keypoint_depths].shape
    padding_shape = [max_num_boxes, shape_utils.get_dim_as_int(tensor_shape[1])]
    padding_shapes[fields.InputDataFields.
                   groundtruth_keypoint_depths] = padding_shape
    padding_shapes[fields.InputDataFields.
                   groundtruth_keypoint_depth_weights] = padding_shape

526
  if input_fields.groundtruth_keypoint_weights in tensor_dict:
527
    tensor_shape = (
528
        tensor_dict[input_fields.groundtruth_keypoint_weights].shape)
529
    padding_shape = [max_num_boxes, shape_utils.get_dim_as_int(tensor_shape[1])]
530
    padding_shapes[input_fields.
531
                   groundtruth_keypoint_weights] = padding_shape
532
  if input_fields.groundtruth_dp_num_points in tensor_dict:
533
    padding_shapes[
534
        input_fields.groundtruth_dp_num_points] = [max_num_boxes]
535
    padding_shapes[
536
        input_fields.groundtruth_dp_part_ids] = [
537
538
            max_num_boxes, max_dp_points]
    padding_shapes[
539
        input_fields.groundtruth_dp_surface_coords] = [
540
            max_num_boxes, max_dp_points, 4]
541
542
543
544
545
546
547
548
  if input_fields.groundtruth_track_ids in tensor_dict:
    padding_shapes[
        input_fields.groundtruth_track_ids] = [max_num_boxes]

  if input_fields.groundtruth_verified_neg_classes in tensor_dict:
    padding_shapes[
        input_fields.groundtruth_verified_neg_classes] = [num_classes]
  if input_fields.groundtruth_not_exhaustive_classes in tensor_dict:
549
    padding_shapes[
550
        input_fields.groundtruth_not_exhaustive_classes] = [num_classes]
551
552

  # Prepare for ContextRCNN related fields.
553
  if input_fields.context_features in tensor_dict:
554
    padding_shape = [max_num_context_features, context_feature_length]
555
    padding_shapes[input_fields.context_features] = padding_shape
556
557

    tensor_shape = tf.shape(
558
559
560
561
562
563
564
565
        tensor_dict[fields.InputDataFields.context_features])
    tensor_dict[fields.InputDataFields.valid_context_size] = tensor_shape[0]
    padding_shapes[fields.InputDataFields.valid_context_size] = []
  if fields.InputDataFields.context_feature_length in tensor_dict:
    padding_shapes[fields.InputDataFields.context_feature_length] = []
  if fields.InputDataFields.context_features_image_id_list in tensor_dict:
    padding_shapes[fields.InputDataFields.context_features_image_id_list] = [
        max_num_context_features]
566

567
568
  if input_fields.is_annotated in tensor_dict:
    padding_shapes[input_fields.is_annotated] = []
569

570
571
  padded_tensor_dict = {}
  for tensor_name in tensor_dict:
572
573
    padded_tensor_dict[tensor_name] = shape_utils.pad_or_clip_nd(
        tensor_dict[tensor_name], padding_shapes[tensor_name])
574
575
576

  # Make sure that the number of groundtruth boxes now reflects the
  # padded/clipped tensors.
577
578
  if input_fields.num_groundtruth_boxes in padded_tensor_dict:
    padded_tensor_dict[input_fields.num_groundtruth_boxes] = (
579
        tf.minimum(
580
            padded_tensor_dict[input_fields.num_groundtruth_boxes],
581
            max_num_boxes))
582
583
584
  return padded_tensor_dict


585
586
587
588
589
590
591
592
593
594
595
596
597
598
def augment_input_data(tensor_dict, data_augmentation_options):
  """Applies data augmentation ops to input tensors.

  Args:
    tensor_dict: A dictionary of input tensors keyed by fields.InputDataFields.
    data_augmentation_options: A list of tuples, where each tuple contains a
      function and a dictionary that contains arguments and their values.
      Usually, this is the output of core/preprocessor.build.

  Returns:
    A dictionary of tensors obtained by applying data augmentation ops to the
    input tensor dictionary.
  """
  tensor_dict[fields.InputDataFields.image] = tf.expand_dims(
599
      tf.cast(tensor_dict[fields.InputDataFields.image], dtype=tf.float32), 0)
600
601
602
603
604

  include_instance_masks = (fields.InputDataFields.groundtruth_instance_masks
                            in tensor_dict)
  include_keypoints = (fields.InputDataFields.groundtruth_keypoints
                       in tensor_dict)
605
606
  include_keypoint_visibilities = (
      fields.InputDataFields.groundtruth_keypoint_visibilities in tensor_dict)
607
608
  include_keypoint_depths = (
      fields.InputDataFields.groundtruth_keypoint_depths in tensor_dict)
609
610
611
612
  include_label_weights = (fields.InputDataFields.groundtruth_weights
                           in tensor_dict)
  include_label_confidences = (fields.InputDataFields.groundtruth_confidences
                               in tensor_dict)
613
614
  include_multiclass_scores = (fields.InputDataFields.multiclass_scores in
                               tensor_dict)
615
616
617
618
  dense_pose_fields = [fields.InputDataFields.groundtruth_dp_num_points,
                       fields.InputDataFields.groundtruth_dp_part_ids,
                       fields.InputDataFields.groundtruth_dp_surface_coords]
  include_dense_pose = all(field in tensor_dict for field in dense_pose_fields)
619
620
621
  tensor_dict = preprocessor.preprocess(
      tensor_dict, data_augmentation_options,
      func_arg_map=preprocessor.get_default_func_arg_map(
622
623
          include_label_weights=include_label_weights,
          include_label_confidences=include_label_confidences,
624
          include_multiclass_scores=include_multiclass_scores,
625
          include_instance_masks=include_instance_masks,
626
          include_keypoints=include_keypoints,
627
          include_keypoint_visibilities=include_keypoint_visibilities,
628
629
          include_dense_pose=include_dense_pose,
          include_keypoint_depths=include_keypoint_depths))
630
631
632
633
634
  tensor_dict[fields.InputDataFields.image] = tf.squeeze(
      tensor_dict[fields.InputDataFields.image], axis=0)
  return tensor_dict


635
636
637
638
639
640
def _get_labels_dict(input_dict):
  """Extracts labels dict from input dict."""
  required_label_keys = [
      fields.InputDataFields.num_groundtruth_boxes,
      fields.InputDataFields.groundtruth_boxes,
      fields.InputDataFields.groundtruth_classes,
641
      fields.InputDataFields.groundtruth_weights,
642
643
644
645
646
647
  ]
  labels_dict = {}
  for key in required_label_keys:
    labels_dict[key] = input_dict[key]

  optional_label_keys = [
648
      fields.InputDataFields.groundtruth_confidences,
649
      fields.InputDataFields.groundtruth_labeled_classes,
650
      fields.InputDataFields.groundtruth_keypoints,
651
652
      fields.InputDataFields.groundtruth_keypoint_depths,
      fields.InputDataFields.groundtruth_keypoint_depth_weights,
653
654
655
      fields.InputDataFields.groundtruth_instance_masks,
      fields.InputDataFields.groundtruth_area,
      fields.InputDataFields.groundtruth_is_crowd,
656
      fields.InputDataFields.groundtruth_group_of,
657
658
659
      fields.InputDataFields.groundtruth_difficult,
      fields.InputDataFields.groundtruth_keypoint_visibilities,
      fields.InputDataFields.groundtruth_keypoint_weights,
660
661
      fields.InputDataFields.groundtruth_dp_num_points,
      fields.InputDataFields.groundtruth_dp_part_ids,
662
      fields.InputDataFields.groundtruth_dp_surface_coords,
663
664
665
      fields.InputDataFields.groundtruth_track_ids,
      fields.InputDataFields.groundtruth_verified_neg_classes,
      fields.InputDataFields.groundtruth_not_exhaustive_classes
666
667
668
669
670
671
672
673
674
675
676
  ]

  for key in optional_label_keys:
    if key in input_dict:
      labels_dict[key] = input_dict[key]
  if fields.InputDataFields.groundtruth_difficult in labels_dict:
    labels_dict[fields.InputDataFields.groundtruth_difficult] = tf.cast(
        labels_dict[fields.InputDataFields.groundtruth_difficult], tf.int32)
  return labels_dict


677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
def _replace_empty_string_with_random_number(string_tensor):
  """Returns string unchanged if non-empty, and random string tensor otherwise.

  The random string is an integer 0 and 2**63 - 1, casted as string.


  Args:
    string_tensor: A tf.tensor of dtype string.

  Returns:
    out_string: A tf.tensor of dtype string. If string_tensor contains the empty
      string, out_string will contain a random integer casted to a string.
      Otherwise string_tensor is returned unchanged.

  """

  empty_string = tf.constant('', dtype=tf.string, name='EmptyString')

  random_source_id = tf.as_string(
      tf.random_uniform(shape=[], maxval=2**63 - 1, dtype=tf.int64))

  out_string = tf.cond(
      tf.equal(string_tensor, empty_string),
      true_fn=lambda: random_source_id,
      false_fn=lambda: string_tensor)

  return out_string


706
def _get_features_dict(input_dict, include_source_id=False):
707
  """Extracts features dict from input dict."""
708
709
710
711
712

  source_id = _replace_empty_string_with_random_number(
      input_dict[fields.InputDataFields.source_id])

  hash_from_source_id = tf.string_to_hash_bucket_fast(source_id, HASH_BINS)
713
714
715
716
717
  features = {
      fields.InputDataFields.image:
          input_dict[fields.InputDataFields.image],
      HASH_KEY: tf.cast(hash_from_source_id, tf.int32),
      fields.InputDataFields.true_image_shape:
pkulzc's avatar
pkulzc committed
718
719
720
          input_dict[fields.InputDataFields.true_image_shape],
      fields.InputDataFields.original_image_spatial_shape:
          input_dict[fields.InputDataFields.original_image_spatial_shape]
721
  }
722
723
  if include_source_id:
    features[fields.InputDataFields.source_id] = source_id
724
725
726
  if fields.InputDataFields.original_image in input_dict:
    features[fields.InputDataFields.original_image] = input_dict[
        fields.InputDataFields.original_image]
727
728
729
  if fields.InputDataFields.image_additional_channels in input_dict:
    features[fields.InputDataFields.image_additional_channels] = input_dict[
        fields.InputDataFields.image_additional_channels]
730
731
732
733
734
735
  if fields.InputDataFields.context_features in input_dict:
    features[fields.InputDataFields.context_features] = input_dict[
        fields.InputDataFields.context_features]
  if fields.InputDataFields.valid_context_size in input_dict:
    features[fields.InputDataFields.valid_context_size] = input_dict[
        fields.InputDataFields.valid_context_size]
736
737
738
  if fields.InputDataFields.context_features_image_id_list in input_dict:
    features[fields.InputDataFields.context_features_image_id_list] = (
        input_dict[fields.InputDataFields.context_features_image_id_list])
739
740
741
  return features


742
743
def create_train_input_fn(train_config, train_input_config,
                          model_config):
744
745
746
747
748
  """Creates a train `input` function for `Estimator`.

  Args:
    train_config: A train_pb2.TrainConfig.
    train_input_config: An input_reader_pb2.InputReader.
749
    model_config: A model_pb2.DetectionModel.
750
751
752
753
754

  Returns:
    `input_fn` for `Estimator` in TRAIN mode.
  """

755
  def _train_input_fn(params=None):
756
757
    return train_input(train_config, train_input_config, model_config,
                       params=params)
758

759
  return _train_input_fn
760

761

762
def train_input(train_config, train_input_config,
763
                model_config, model=None, params=None, input_context=None):
764
765
766
767
768
769
770
771
772
  """Returns `features` and `labels` tensor dictionaries for training.

  Args:
    train_config: A train_pb2.TrainConfig.
    train_input_config: An input_reader_pb2.InputReader.
    model_config: A model_pb2.DetectionModel.
    model: A pre-constructed Detection Model.
      If None, one will be created from the config.
    params: Parameter dictionary passed from the estimator.
773
774
775
    input_context: optional, A tf.distribute.InputContext object used to
      shard filenames and compute per-replica batch_size when this function
      is being called per-replica.
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808

  Returns:
    A tf.data.Dataset that holds (features, labels) tuple.

    features: Dictionary of feature tensors.
      features[fields.InputDataFields.image] is a [batch_size, H, W, C]
        float32 tensor with preprocessed images.
      features[HASH_KEY] is a [batch_size] int32 tensor representing unique
        identifiers for the images.
      features[fields.InputDataFields.true_image_shape] is a [batch_size, 3]
        int32 tensor representing the true image shapes, as preprocessed
        images could be padded.
      features[fields.InputDataFields.original_image] (optional) is a
        [batch_size, H, W, C] float32 tensor with original images.
    labels: Dictionary of groundtruth tensors.
      labels[fields.InputDataFields.num_groundtruth_boxes] is a [batch_size]
        int32 tensor indicating the number of groundtruth boxes.
      labels[fields.InputDataFields.groundtruth_boxes] is a
        [batch_size, num_boxes, 4] float32 tensor containing the corners of
        the groundtruth boxes.
      labels[fields.InputDataFields.groundtruth_classes] is a
        [batch_size, num_boxes, num_classes] float32 one-hot tensor of
        classes.
      labels[fields.InputDataFields.groundtruth_weights] is a
        [batch_size, num_boxes] float32 tensor containing groundtruth weights
        for the boxes.
      -- Optional --
      labels[fields.InputDataFields.groundtruth_instance_masks] is a
        [batch_size, num_boxes, H, W] float32 tensor containing only binary
        values, which represent instance masks for objects.
      labels[fields.InputDataFields.groundtruth_keypoints] is a
        [batch_size, num_boxes, num_keypoints, 2] float32 tensor containing
        keypoints for each box.
809
810
811
812
813
814
      labels[fields.InputDataFields.groundtruth_weights] is a
        [batch_size, num_boxes, num_keypoints] float32 tensor containing
        groundtruth weights for the keypoints.
      labels[fields.InputDataFields.groundtruth_visibilities] is a
        [batch_size, num_boxes, num_keypoints] bool tensor containing
        groundtruth visibilities for each keypoint.
815
816
      labels[fields.InputDataFields.groundtruth_labeled_classes] is a
        [batch_size, num_classes] float32 k-hot tensor of classes.
817
818
819
820
821
822
823
824
825
826
827
      labels[fields.InputDataFields.groundtruth_dp_num_points] is a
        [batch_size, num_boxes] int32 tensor with the number of sampled
        DensePose points per object.
      labels[fields.InputDataFields.groundtruth_dp_part_ids] is a
        [batch_size, num_boxes, max_sampled_points] int32 tensor with the
        DensePose part ids (0-indexed) per object.
      labels[fields.InputDataFields.groundtruth_dp_surface_coords] is a
        [batch_size, num_boxes, max_sampled_points, 4] float32 tensor with the
        DensePose surface coordinates. The format is (y, x, v, u), where (y, x)
        are normalized image coordinates and (v, u) are normalized surface part
        coordinates.
828
829
      labels[fields.InputDataFields.groundtruth_track_ids] is a
        [batch_size, num_boxes] int32 tensor with the track ID for each object.
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850

  Raises:
    TypeError: if the `train_config`, `train_input_config` or `model_config`
      are not of the correct type.
  """
  if not isinstance(train_config, train_pb2.TrainConfig):
    raise TypeError('For training mode, the `train_config` must be a '
                    'train_pb2.TrainConfig.')
  if not isinstance(train_input_config, input_reader_pb2.InputReader):
    raise TypeError('The `train_input_config` must be a '
                    'input_reader_pb2.InputReader.')
  if not isinstance(model_config, model_pb2.DetectionModel):
    raise TypeError('The `model_config` must be a '
                    'model_pb2.DetectionModel.')

  if model is None:
    model_preprocess_fn = INPUT_BUILDER_UTIL_MAP['model_build'](
        model_config, is_training=True).preprocess
  else:
    model_preprocess_fn = model.preprocess

851
852
  num_classes = config_util.get_number_of_classes(model_config)

853
854
855
856
857
858
859
860
861
862
863
864
  def transform_and_pad_input_data_fn(tensor_dict):
    """Combines transform and pad operation."""
    data_augmentation_options = [
        preprocessor_builder.build(step)
        for step in train_config.data_augmentation_options
    ]
    data_augmentation_fn = functools.partial(
        augment_input_data,
        data_augmentation_options=data_augmentation_options)

    image_resizer_config = config_util.get_image_resizer_config(model_config)
    image_resizer_fn = image_resizer_builder.build(image_resizer_config)
865
    keypoint_type_weight = train_input_config.keypoint_type_weight or None
866
867
868
    transform_data_fn = functools.partial(
        transform_input_data, model_preprocess_fn=model_preprocess_fn,
        image_resizer_fn=image_resizer_fn,
869
        num_classes=num_classes,
870
871
872
873
        data_augmentation_fn=data_augmentation_fn,
        merge_multiple_boxes=train_config.merge_multiple_label_boxes,
        retain_original_image=train_config.retain_original_images,
        use_multiclass_scores=train_config.use_multiclass_scores,
874
875
        use_bfloat16=train_config.use_bfloat16,
        keypoint_type_weight=keypoint_type_weight)
876
877
878
879

    tensor_dict = pad_input_data_to_static_shapes(
        tensor_dict=transform_data_fn(tensor_dict),
        max_num_boxes=train_input_config.max_number_of_boxes,
880
        num_classes=num_classes,
881
        spatial_image_shape=config_util.get_spatial_image_size(
882
883
884
885
886
887
888
889
            image_resizer_config),
        max_num_context_features=config_util.get_max_num_context_features(
            model_config),
        context_feature_length=config_util.get_context_feature_length(
            model_config))
    include_source_id = train_input_config.include_source_id
    return (_get_features_dict(tensor_dict, include_source_id),
            _get_labels_dict(tensor_dict))
890
  reduce_to_frame_fn = get_reduce_to_frame_fn(train_input_config, True)
891
892
893
894

  dataset = INPUT_BUILDER_UTIL_MAP['dataset_build'](
      train_input_config,
      transform_input_data_fn=transform_and_pad_input_data_fn,
895
      batch_size=params['batch_size'] if params else train_config.batch_size,
896
897
      input_context=input_context,
      reduce_to_frame_fn=reduce_to_frame_fn)
898
  return dataset
899
900


901
def create_eval_input_fn(eval_config, eval_input_config, model_config):
902
903
904
905
906
  """Creates an eval `input` function for `Estimator`.

  Args:
    eval_config: An eval_pb2.EvalConfig.
    eval_input_config: An input_reader_pb2.InputReader.
907
    model_config: A model_pb2.DetectionModel.
908
909
910
911
912

  Returns:
    `input_fn` for `Estimator` in EVAL mode.
  """

913
  def _eval_input_fn(params=None):
914
915
    return eval_input(eval_config, eval_input_config, model_config,
                      params=params)
916

917
  return _eval_input_fn
918

919

920
def eval_input(eval_config, eval_input_config, model_config,
921
               model=None, params=None, input_context=None):
922
923
924
925
926
927
928
929
930
  """Returns `features` and `labels` tensor dictionaries for evaluation.

  Args:
    eval_config: An eval_pb2.EvalConfig.
    eval_input_config: An input_reader_pb2.InputReader.
    model_config: A model_pb2.DetectionModel.
    model: A pre-constructed Detection Model.
      If None, one will be created from the config.
    params: Parameter dictionary passed from the estimator.
931
932
933
    input_context: optional, A tf.distribute.InputContext object used to
      shard filenames and compute per-replica batch_size when this function
      is being called per-replica.
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962

  Returns:
    A tf.data.Dataset that holds (features, labels) tuple.

    features: Dictionary of feature tensors.
      features[fields.InputDataFields.image] is a [1, H, W, C] float32 tensor
        with preprocessed images.
      features[HASH_KEY] is a [1] int32 tensor representing unique
        identifiers for the images.
      features[fields.InputDataFields.true_image_shape] is a [1, 3]
        int32 tensor representing the true image shapes, as preprocessed
        images could be padded.
      features[fields.InputDataFields.original_image] is a [1, H', W', C]
        float32 tensor with the original image.
    labels: Dictionary of groundtruth tensors.
      labels[fields.InputDataFields.groundtruth_boxes] is a [1, num_boxes, 4]
        float32 tensor containing the corners of the groundtruth boxes.
      labels[fields.InputDataFields.groundtruth_classes] is a
        [num_boxes, num_classes] float32 one-hot tensor of classes.
      labels[fields.InputDataFields.groundtruth_area] is a [1, num_boxes]
        float32 tensor containing object areas.
      labels[fields.InputDataFields.groundtruth_is_crowd] is a [1, num_boxes]
        bool tensor indicating if the boxes enclose a crowd.
      labels[fields.InputDataFields.groundtruth_difficult] is a [1, num_boxes]
        int32 tensor indicating if the boxes represent difficult instances.
      -- Optional --
      labels[fields.InputDataFields.groundtruth_instance_masks] is a
        [1, num_boxes, H, W] float32 tensor containing only binary values,
        which represent instance masks for objects.
963
964
965
966
967
968
      labels[fields.InputDataFields.groundtruth_weights] is a
        [batch_size, num_boxes, num_keypoints] float32 tensor containing
        groundtruth weights for the keypoints.
      labels[fields.InputDataFields.groundtruth_visibilities] is a
        [batch_size, num_boxes, num_keypoints] bool tensor containing
        groundtruth visibilities for each keypoint.
969
970
971
972
973
      labels[fields.InputDataFields.groundtruth_group_of] is a [1, num_boxes]
        bool tensor indicating if the box covers more than 5 instances of the
        same class which heavily occlude each other.
      labels[fields.InputDataFields.groundtruth_labeled_classes] is a
        [num_boxes, num_classes] float32 k-hot tensor of classes.
974
975
976
977
978
979
980
981
982
983
984
      labels[fields.InputDataFields.groundtruth_dp_num_points] is a
        [batch_size, num_boxes] int32 tensor with the number of sampled
        DensePose points per object.
      labels[fields.InputDataFields.groundtruth_dp_part_ids] is a
        [batch_size, num_boxes, max_sampled_points] int32 tensor with the
        DensePose part ids (0-indexed) per object.
      labels[fields.InputDataFields.groundtruth_dp_surface_coords] is a
        [batch_size, num_boxes, max_sampled_points, 4] float32 tensor with the
        DensePose surface coordinates. The format is (y, x, v, u), where (y, x)
        are normalized image coordinates and (v, u) are normalized surface part
        coordinates.
985
986
      labels[fields.InputDataFields.groundtruth_track_ids] is a
        [batch_size, num_boxes] int32 tensor with the track ID for each object.
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002

  Raises:
    TypeError: if the `eval_config`, `eval_input_config` or `model_config`
      are not of the correct type.
  """
  params = params or {}
  if not isinstance(eval_config, eval_pb2.EvalConfig):
    raise TypeError('For eval mode, the `eval_config` must be a '
                    'train_pb2.EvalConfig.')
  if not isinstance(eval_input_config, input_reader_pb2.InputReader):
    raise TypeError('The `eval_input_config` must be a '
                    'input_reader_pb2.InputReader.')
  if not isinstance(model_config, model_pb2.DetectionModel):
    raise TypeError('The `model_config` must be a '
                    'model_pb2.DetectionModel.')

1003
1004
1005
1006
1007
1008
1009
1010
  if eval_config.force_no_resize:
    arch = model_config.WhichOneof('model')
    arch_config = getattr(model_config, arch)
    image_resizer_proto = image_resizer_pb2.ImageResizer()
    image_resizer_proto.identity_resizer.CopyFrom(
        image_resizer_pb2.IdentityResizer())
    arch_config.image_resizer.CopyFrom(image_resizer_proto)

1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
  if model is None:
    model_preprocess_fn = INPUT_BUILDER_UTIL_MAP['model_build'](
        model_config, is_training=False).preprocess
  else:
    model_preprocess_fn = model.preprocess

  def transform_and_pad_input_data_fn(tensor_dict):
    """Combines transform and pad operation."""
    num_classes = config_util.get_number_of_classes(model_config)

    image_resizer_config = config_util.get_image_resizer_config(model_config)
    image_resizer_fn = image_resizer_builder.build(image_resizer_config)
1023
    keypoint_type_weight = eval_input_config.keypoint_type_weight or None
1024
1025
1026
1027
1028
1029

    transform_data_fn = functools.partial(
        transform_input_data, model_preprocess_fn=model_preprocess_fn,
        image_resizer_fn=image_resizer_fn,
        num_classes=num_classes,
        data_augmentation_fn=None,
1030
1031
        retain_original_image=eval_config.retain_original_images,
        retain_original_image_additional_channels=
1032
1033
        eval_config.retain_original_image_additional_channels,
        keypoint_type_weight=keypoint_type_weight)
1034
1035
1036
1037
1038
    tensor_dict = pad_input_data_to_static_shapes(
        tensor_dict=transform_data_fn(tensor_dict),
        max_num_boxes=eval_input_config.max_number_of_boxes,
        num_classes=config_util.get_number_of_classes(model_config),
        spatial_image_shape=config_util.get_spatial_image_size(
1039
1040
1041
1042
1043
1044
1045
1046
            image_resizer_config),
        max_num_context_features=config_util.get_max_num_context_features(
            model_config),
        context_feature_length=config_util.get_context_feature_length(
            model_config))
    include_source_id = eval_input_config.include_source_id
    return (_get_features_dict(tensor_dict, include_source_id),
            _get_labels_dict(tensor_dict))
1047
1048
1049

  reduce_to_frame_fn = get_reduce_to_frame_fn(eval_input_config, False)

1050
1051
1052
  dataset = INPUT_BUILDER_UTIL_MAP['dataset_build'](
      eval_input_config,
      batch_size=params['batch_size'] if params else eval_config.batch_size,
1053
      transform_input_data_fn=transform_and_pad_input_data_fn,
1054
      input_context=input_context,
1055
      reduce_to_frame_fn=reduce_to_frame_fn)
1056
  return dataset
1057
1058


1059
def create_predict_input_fn(model_config, predict_input_config):
1060
1061
  """Creates a predict `input` function for `Estimator`.

1062
1063
  Args:
    model_config: A model_pb2.DetectionModel.
1064
    predict_input_config: An input_reader_pb2.InputReader.
1065

1066
1067
1068
1069
  Returns:
    `input_fn` for `Estimator` in PREDICT mode.
  """

1070
  def _predict_input_fn(params=None):
1071
1072
    """Decodes serialized tf.Examples and returns `ServingInputReceiver`.

1073
1074
1075
    Args:
      params: Parameter dictionary passed from the estimator.

1076
1077
1078
    Returns:
      `ServingInputReceiver`.
    """
1079
    del params
1080
    example = tf.placeholder(dtype=tf.string, shape=[], name='tf_example')
1081

1082
    num_classes = config_util.get_number_of_classes(model_config)
1083
1084
1085
    model_preprocess_fn = INPUT_BUILDER_UTIL_MAP['model_build'](
        model_config, is_training=False).preprocess

1086
1087
    image_resizer_config = config_util.get_image_resizer_config(model_config)
    image_resizer_fn = image_resizer_builder.build(image_resizer_config)
1088

1089
    transform_fn = functools.partial(
1090
        transform_input_data, model_preprocess_fn=model_preprocess_fn,
1091
1092
1093
1094
        image_resizer_fn=image_resizer_fn,
        num_classes=num_classes,
        data_augmentation_fn=None)

1095
1096
1097
    decoder = tf_example_decoder.TfExampleDecoder(
        load_instance_masks=False,
        num_additional_channels=predict_input_config.num_additional_channels)
1098
    input_dict = transform_fn(decoder.decode(example))
1099
    images = tf.cast(input_dict[fields.InputDataFields.image], dtype=tf.float32)
1100
    images = tf.expand_dims(images, axis=0)
1101
1102
    true_image_shape = tf.expand_dims(
        input_dict[fields.InputDataFields.true_image_shape], axis=0)
1103
1104

    return tf.estimator.export.ServingInputReceiver(
1105
1106
1107
        features={
            fields.InputDataFields.image: images,
            fields.InputDataFields.true_image_shape: true_image_shape},
1108
1109
1110
        receiver_tensors={SERVING_FED_EXAMPLE_KEY: example})

  return _predict_input_fn
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131


def get_reduce_to_frame_fn(input_reader_config, is_training):
  """Returns a function reducing sequence tensors to single frame tensors.

  If the input type is not TF_SEQUENCE_EXAMPLE, the tensors are passed through
  this function unchanged. Otherwise, when in training mode, a single frame is
  selected at random from the sequence example, and the tensors for that frame
  are converted to single frame tensors, with all associated context features.
  In evaluation mode all frames are converted to single frame tensors with
  copied context tensors. After the sequence example tensors are converted into
  one or many single frame tensors, the images from each frame are decoded.

  Args:
    input_reader_config: An input_reader_pb2.InputReader.
    is_training: Whether we are in training mode.

  Returns:
    `reduce_to_frame_fn` for the dataset builder
  """
  if input_reader_config.input_type != (
1132
1133
      input_reader_pb2.InputType.Value('TF_SEQUENCE_EXAMPLE')):
    return lambda dataset, dataset_map_fn, batch_size, config: dataset
1134
  else:
1135
1136
    def reduce_to_frame(dataset, dataset_map_fn, batch_size,
                        input_reader_config):
1137
1138
1139
1140
      """Returns a function reducing sequence tensors to single frame tensors.

      Args:
        dataset: A tf dataset containing sequence tensors.
1141
1142
1143
1144
1145
1146
        dataset_map_fn: A function that handles whether to
          map_with_legacy_function for this dataset
        batch_size: used if map_with_legacy_function is true to determine
          num_parallel_calls
        input_reader_config: used if map_with_legacy_function is true to
          determine num_parallel_calls
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167

      Returns:
        A tf dataset containing single frame tensors.
      """
      if is_training:
        def get_single_frame(tensor_dict):
          """Returns a random frame from a sequence.

          Picks a random frame and returns slices of sequence tensors
          corresponding to the random frame. Returns non-sequence tensors
          unchanged.

          Args:
            tensor_dict: A dictionary containing sequence tensors.

          Returns:
            Tensors for a single random frame within the sequence.
          """
          num_frames = tf.cast(
              tf.shape(tensor_dict[fields.InputDataFields.source_id])[0],
              dtype=tf.int32)
1168
1169
1170
1171
1172
1173
          if input_reader_config.frame_index == -1:
            frame_index = tf.random.uniform((), minval=0, maxval=num_frames,
                                            dtype=tf.int32)
          else:
            frame_index = tf.constant(input_reader_config.frame_index,
                                      dtype=tf.int32)
1174
1175
1176
1177
1178
1179
1180
1181
1182
          out_tensor_dict = {}
          for key in tensor_dict:
            if key in fields.SEQUENCE_FIELDS:
              # Slice random frame from sequence tensors
              out_tensor_dict[key] = tensor_dict[key][frame_index]
            else:
              # Copy all context tensors.
              out_tensor_dict[key] = tensor_dict[key]
          return out_tensor_dict
1183
1184
        dataset = dataset_map_fn(dataset, get_single_frame, batch_size,
                                 input_reader_config)
1185
      else:
1186
1187
        dataset = dataset_map_fn(dataset, util_ops.tile_context_tensors,
                                 batch_size, input_reader_config)
1188
1189
        dataset = dataset.unbatch()
      # Decode frame here as SequenceExample tensors contain encoded images.
1190
1191
      dataset = dataset_map_fn(dataset, util_ops.decode_image, batch_size,
                               input_reader_config)
1192
1193
      return dataset
    return reduce_to_frame