"cuda/utils/timer.hh" did not exist on "2b5672e53f057838e2a81ed247c9bf6bc9c03d5b"
inputs.py 30.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Model input function for tf-learn object detection model."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import functools

import tensorflow as tf
from object_detection.builders import dataset_builder
25
26
from object_detection.builders import image_resizer_builder
from object_detection.builders import model_builder
27
from object_detection.builders import preprocessor_builder
28
from object_detection.core import preprocessor
29
30
31
32
from object_detection.core import standard_fields as fields
from object_detection.data_decoders import tf_example_decoder
from object_detection.protos import eval_pb2
from object_detection.protos import input_reader_pb2
33
from object_detection.protos import model_pb2
34
from object_detection.protos import train_pb2
35
from object_detection.utils import config_util
36
from object_detection.utils import ops as util_ops
37
from object_detection.utils import shape_utils
38

39
40
HASH_KEY = 'hash'
HASH_BINS = 1 << 31
41
42
SERVING_FED_EXAMPLE_KEY = 'serialized_example'

43
44
45
# A map of names to methods that help build the input pipeline.
INPUT_BUILDER_UTIL_MAP = {
    'dataset_build': dataset_builder.build,
46
    'model_build': model_builder.build,
47
48
}

49

pkulzc's avatar
pkulzc committed
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
def _multiclass_scores_or_one_hot_labels(multiclass_scores,
                                         groundtruth_boxes,
                                         groundtruth_classes, num_classes):
  """Returns one-hot encoding of classes when multiclass_scores is empty."""
  # Replace groundtruth_classes tensor with multiclass_scores tensor when its
  # non-empty. If multiclass_scores is empty fall back on groundtruth_classes
  # tensor.
  def true_fn():
    return tf.reshape(multiclass_scores,
                      [tf.shape(groundtruth_boxes)[0], num_classes])
  def false_fn():
    return tf.one_hot(groundtruth_classes, num_classes)

  return tf.cond(tf.size(multiclass_scores) > 0, true_fn, false_fn)


66
67
68
69
70
71
def transform_input_data(tensor_dict,
                         model_preprocess_fn,
                         image_resizer_fn,
                         num_classes,
                         data_augmentation_fn=None,
                         merge_multiple_boxes=False,
72
                         retain_original_image=False,
73
                         use_multiclass_scores=False,
74
                         use_bfloat16=False):
75
76
77
  """A single function that is responsible for all input data transformations.

  Data transformation functions are applied in the following order.
78
79
80
81
82
83
  1. If key fields.InputDataFields.image_additional_channels is present in
     tensor_dict, the additional channels will be merged into
     fields.InputDataFields.image.
  2. data_augmentation_fn (optional): applied on tensor_dict.
  3. model_preprocess_fn: applied only on image tensor in tensor_dict.
  4. image_resizer_fn: applied on original image and instance mask tensor in
84
     tensor_dict.
85
86
  5. one_hot_encoding: applied to classes tensor in tensor_dict.
  6. merge_multiple_boxes (optional): when groundtruth boxes are exactly the
87
88
89
90
91
92
93
94
95
     same they can be merged into a single box with an associated k-hot class
     label.

  Args:
    tensor_dict: dictionary containing input tensors keyed by
      fields.InputDataFields.
    model_preprocess_fn: model's preprocess function to apply on image tensor.
      This function must take in a 4-D float tensor and return a 4-D preprocess
      float tensor and a tensor containing the true image shape.
96
97
98
99
    image_resizer_fn: image resizer function to apply on groundtruth instance
      `masks. This function must take a 3-D float tensor of an image and a 3-D
      tensor of instance masks and return a resized version of these along with
      the true shapes.
100
101
102
103
104
105
106
107
    num_classes: number of max classes to one-hot (or k-hot) encode the class
      labels.
    data_augmentation_fn: (optional) data augmentation function to apply on
      input `tensor_dict`.
    merge_multiple_boxes: (optional) whether to merge multiple groundtruth boxes
      and classes for a given image if the boxes are exactly the same.
    retain_original_image: (optional) whether to retain original image in the
      output dictionary.
pkulzc's avatar
pkulzc committed
108
109
110
111
    use_multiclass_scores: whether to use multiclass scores as class targets
      instead of one-hot encoding of `groundtruth_classes`. When
      this is True and multiclass_scores is empty, one-hot encoding of
      `groundtruth_classes` is used as a fallback.
112
    use_bfloat16: (optional) a bool, whether to use bfloat16 in training.
113
114
115
116
117

  Returns:
    A dictionary keyed by fields.InputDataFields containing the tensors obtained
    after applying all the transformations.
  """
pkulzc's avatar
pkulzc committed
118
119
120
121
122
123
124
125
126
127
128
129
130
131
  out_tensor_dict = tensor_dict.copy()
  if fields.InputDataFields.multiclass_scores in out_tensor_dict:
    out_tensor_dict[
        fields.InputDataFields
        .multiclass_scores] = _multiclass_scores_or_one_hot_labels(
            out_tensor_dict[fields.InputDataFields.multiclass_scores],
            out_tensor_dict[fields.InputDataFields.groundtruth_boxes],
            out_tensor_dict[fields.InputDataFields.groundtruth_classes],
            num_classes)

  if fields.InputDataFields.groundtruth_boxes in out_tensor_dict:
    out_tensor_dict = util_ops.filter_groundtruth_with_nan_box_coordinates(
        out_tensor_dict)
    out_tensor_dict = util_ops.filter_unrecognized_classes(out_tensor_dict)
132

133
  if retain_original_image:
pkulzc's avatar
pkulzc committed
134
135
136
    out_tensor_dict[fields.InputDataFields.original_image] = tf.cast(
        image_resizer_fn(out_tensor_dict[fields.InputDataFields.image],
                         None)[0], tf.uint8)
137

pkulzc's avatar
pkulzc committed
138
139
140
141
  if fields.InputDataFields.image_additional_channels in out_tensor_dict:
    channels = out_tensor_dict[fields.InputDataFields.image_additional_channels]
    out_tensor_dict[fields.InputDataFields.image] = tf.concat(
        [out_tensor_dict[fields.InputDataFields.image], channels], axis=2)
142

143
144
  # Apply data augmentation ops.
  if data_augmentation_fn is not None:
pkulzc's avatar
pkulzc committed
145
    out_tensor_dict = data_augmentation_fn(out_tensor_dict)
146
147

  # Apply model preprocessing ops and resize instance masks.
pkulzc's avatar
pkulzc committed
148
  image = out_tensor_dict[fields.InputDataFields.image]
149
  preprocessed_resized_image, true_image_shape = model_preprocess_fn(
150
      tf.expand_dims(tf.cast(image, dtype=tf.float32), axis=0))
151
152
153
  if use_bfloat16:
    preprocessed_resized_image = tf.cast(
        preprocessed_resized_image, tf.bfloat16)
pkulzc's avatar
pkulzc committed
154
  out_tensor_dict[fields.InputDataFields.image] = tf.squeeze(
155
      preprocessed_resized_image, axis=0)
pkulzc's avatar
pkulzc committed
156
  out_tensor_dict[fields.InputDataFields.true_image_shape] = tf.squeeze(
157
      true_image_shape, axis=0)
pkulzc's avatar
pkulzc committed
158
159
  if fields.InputDataFields.groundtruth_instance_masks in out_tensor_dict:
    masks = out_tensor_dict[fields.InputDataFields.groundtruth_instance_masks]
160
    _, resized_masks, _ = image_resizer_fn(image, masks)
161
162
    if use_bfloat16:
      resized_masks = tf.cast(resized_masks, tf.bfloat16)
pkulzc's avatar
pkulzc committed
163
164
    out_tensor_dict[
        fields.InputDataFields.groundtruth_instance_masks] = resized_masks
165
166

  label_offset = 1
pkulzc's avatar
pkulzc committed
167
  zero_indexed_groundtruth_classes = out_tensor_dict[
168
      fields.InputDataFields.groundtruth_classes] - label_offset
169
  if use_multiclass_scores:
pkulzc's avatar
pkulzc committed
170
171
172
173
174
175
176
    out_tensor_dict[
        fields.InputDataFields.groundtruth_classes] = out_tensor_dict[
            fields.InputDataFields.multiclass_scores]
  else:
    out_tensor_dict[fields.InputDataFields.groundtruth_classes] = tf.one_hot(
        zero_indexed_groundtruth_classes, num_classes)
  out_tensor_dict.pop(fields.InputDataFields.multiclass_scores, None)
177

pkulzc's avatar
pkulzc committed
178
179
  if fields.InputDataFields.groundtruth_confidences in out_tensor_dict:
    groundtruth_confidences = out_tensor_dict[
180
        fields.InputDataFields.groundtruth_confidences]
181
    # Map the confidences to the one-hot encoding of classes
pkulzc's avatar
pkulzc committed
182
    out_tensor_dict[fields.InputDataFields.groundtruth_confidences] = (
183
        tf.reshape(groundtruth_confidences, [-1, 1]) *
pkulzc's avatar
pkulzc committed
184
        out_tensor_dict[fields.InputDataFields.groundtruth_classes])
185
186
187
  else:
    groundtruth_confidences = tf.ones_like(
        zero_indexed_groundtruth_classes, dtype=tf.float32)
pkulzc's avatar
pkulzc committed
188
189
    out_tensor_dict[fields.InputDataFields.groundtruth_confidences] = (
        out_tensor_dict[fields.InputDataFields.groundtruth_classes])
190

191
  if merge_multiple_boxes:
192
193
    merged_boxes, merged_classes, merged_confidences, _ = (
        util_ops.merge_boxes_with_multiple_labels(
pkulzc's avatar
pkulzc committed
194
            out_tensor_dict[fields.InputDataFields.groundtruth_boxes],
195
196
197
            zero_indexed_groundtruth_classes,
            groundtruth_confidences,
            num_classes))
198
    merged_classes = tf.cast(merged_classes, tf.float32)
pkulzc's avatar
pkulzc committed
199
200
201
    out_tensor_dict[fields.InputDataFields.groundtruth_boxes] = merged_boxes
    out_tensor_dict[fields.InputDataFields.groundtruth_classes] = merged_classes
    out_tensor_dict[fields.InputDataFields.groundtruth_confidences] = (
202
        merged_confidences)
pkulzc's avatar
pkulzc committed
203
204
205
  if fields.InputDataFields.groundtruth_boxes in out_tensor_dict:
    out_tensor_dict[fields.InputDataFields.num_groundtruth_boxes] = tf.shape(
        out_tensor_dict[fields.InputDataFields.groundtruth_boxes])[0]
206

pkulzc's avatar
pkulzc committed
207
  return out_tensor_dict
208
209


210
211
212
213
def pad_input_data_to_static_shapes(tensor_dict, max_num_boxes, num_classes,
                                    spatial_image_shape=None):
  """Pads input tensors to static shapes.

214
215
216
  In case num_additional_channels > 0, we assume that the additional channels
  have already been concatenated to the base image.

217
218
219
220
221
222
223
224
225
226
227
228
229
230
  Args:
    tensor_dict: Tensor dictionary of input data
    max_num_boxes: Max number of groundtruth boxes needed to compute shapes for
      padding.
    num_classes: Number of classes in the dataset needed to compute shapes for
      padding.
    spatial_image_shape: A list of two integers of the form [height, width]
      containing expected spatial shape of the image.

  Returns:
    A dictionary keyed by fields.InputDataFields containing padding shapes for
    tensors in the dataset.

  Raises:
231
232
    ValueError: If groundtruth classes is neither rank 1 nor rank 2, or if we
      detect that additional channels have not been concatenated yet.
233
234
235
236
237
238
239
240
241
  """

  if not spatial_image_shape or spatial_image_shape == [-1, -1]:
    height, width = None, None
  else:
    height, width = spatial_image_shape  # pylint: disable=unpacking-non-sequence

  num_additional_channels = 0
  if fields.InputDataFields.image_additional_channels in tensor_dict:
242
243
    num_additional_channels = shape_utils.get_dim_as_int(tensor_dict[
        fields.InputDataFields.image_additional_channels].shape[2])
244
245
246
247

  # We assume that if num_additional_channels > 0, then it has already been
  # concatenated to the base image (but not the ground truth).
  num_channels = 3
248
  if fields.InputDataFields.image in tensor_dict:
249
250
    num_channels = shape_utils.get_dim_as_int(
        tensor_dict[fields.InputDataFields.image].shape[2])
251
252
253
254
255
256
257

  if num_additional_channels:
    if num_additional_channels >= num_channels:
      raise ValueError(
          'Image must be already concatenated with additional channels.')

    if (fields.InputDataFields.original_image in tensor_dict and
258
259
        shape_utils.get_dim_as_int(
            tensor_dict[fields.InputDataFields.original_image].shape[2]) ==
260
261
262
263
        num_channels):
      raise ValueError(
          'Image must be already concatenated with additional channels.')

264
265
  padding_shapes = {
      fields.InputDataFields.image: [
266
          height, width, num_channels
267
      ],
pkulzc's avatar
pkulzc committed
268
      fields.InputDataFields.original_image_spatial_shape: [2],
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
      fields.InputDataFields.image_additional_channels: [
          height, width, num_additional_channels
      ],
      fields.InputDataFields.source_id: [],
      fields.InputDataFields.filename: [],
      fields.InputDataFields.key: [],
      fields.InputDataFields.groundtruth_difficult: [max_num_boxes],
      fields.InputDataFields.groundtruth_boxes: [max_num_boxes, 4],
      fields.InputDataFields.groundtruth_classes: [max_num_boxes, num_classes],
      fields.InputDataFields.groundtruth_instance_masks: [
          max_num_boxes, height, width
      ],
      fields.InputDataFields.groundtruth_is_crowd: [max_num_boxes],
      fields.InputDataFields.groundtruth_group_of: [max_num_boxes],
      fields.InputDataFields.groundtruth_area: [max_num_boxes],
      fields.InputDataFields.groundtruth_weights: [max_num_boxes],
285
286
287
      fields.InputDataFields.groundtruth_confidences: [
          max_num_boxes, num_classes
      ],
288
289
      fields.InputDataFields.num_groundtruth_boxes: [],
      fields.InputDataFields.groundtruth_label_types: [max_num_boxes],
290
      fields.InputDataFields.groundtruth_label_weights: [max_num_boxes],
291
292
      fields.InputDataFields.true_image_shape: [3],
      fields.InputDataFields.groundtruth_image_classes: [num_classes],
293
      fields.InputDataFields.groundtruth_image_confidences: [num_classes],
294
295
296
297
  }

  if fields.InputDataFields.original_image in tensor_dict:
    padding_shapes[fields.InputDataFields.original_image] = [
298
299
300
        height, width,
        shape_utils.get_dim_as_int(tensor_dict[fields.InputDataFields.
                                               original_image].shape[2])
301
302
303
304
    ]
  if fields.InputDataFields.groundtruth_keypoints in tensor_dict:
    tensor_shape = (
        tensor_dict[fields.InputDataFields.groundtruth_keypoints].shape)
305
306
307
    padding_shape = [max_num_boxes,
                     shape_utils.get_dim_as_int(tensor_shape[1]),
                     shape_utils.get_dim_as_int(tensor_shape[2])]
308
309
310
311
    padding_shapes[fields.InputDataFields.groundtruth_keypoints] = padding_shape
  if fields.InputDataFields.groundtruth_keypoint_visibilities in tensor_dict:
    tensor_shape = tensor_dict[fields.InputDataFields.
                               groundtruth_keypoint_visibilities].shape
312
    padding_shape = [max_num_boxes, shape_utils.get_dim_as_int(tensor_shape[1])]
313
314
315
316
317
    padding_shapes[fields.InputDataFields.
                   groundtruth_keypoint_visibilities] = padding_shape

  padded_tensor_dict = {}
  for tensor_name in tensor_dict:
318
319
    padded_tensor_dict[tensor_name] = shape_utils.pad_or_clip_nd(
        tensor_dict[tensor_name], padding_shapes[tensor_name])
320
321
322
323
324
325
326
327

  # Make sure that the number of groundtruth boxes now reflects the
  # padded/clipped tensors.
  if fields.InputDataFields.num_groundtruth_boxes in padded_tensor_dict:
    padded_tensor_dict[fields.InputDataFields.num_groundtruth_boxes] = (
        tf.minimum(
            padded_tensor_dict[fields.InputDataFields.num_groundtruth_boxes],
            max_num_boxes))
328
329
330
  return padded_tensor_dict


331
332
333
334
335
336
337
338
339
340
341
342
343
344
def augment_input_data(tensor_dict, data_augmentation_options):
  """Applies data augmentation ops to input tensors.

  Args:
    tensor_dict: A dictionary of input tensors keyed by fields.InputDataFields.
    data_augmentation_options: A list of tuples, where each tuple contains a
      function and a dictionary that contains arguments and their values.
      Usually, this is the output of core/preprocessor.build.

  Returns:
    A dictionary of tensors obtained by applying data augmentation ops to the
    input tensor dictionary.
  """
  tensor_dict[fields.InputDataFields.image] = tf.expand_dims(
345
      tf.cast(tensor_dict[fields.InputDataFields.image], dtype=tf.float32), 0)
346
347
348
349
350

  include_instance_masks = (fields.InputDataFields.groundtruth_instance_masks
                            in tensor_dict)
  include_keypoints = (fields.InputDataFields.groundtruth_keypoints
                       in tensor_dict)
351
352
353
354
  include_label_weights = (fields.InputDataFields.groundtruth_weights
                           in tensor_dict)
  include_label_confidences = (fields.InputDataFields.groundtruth_confidences
                               in tensor_dict)
355
356
  include_multiclass_scores = (fields.InputDataFields.multiclass_scores in
                               tensor_dict)
357
358
359
  tensor_dict = preprocessor.preprocess(
      tensor_dict, data_augmentation_options,
      func_arg_map=preprocessor.get_default_func_arg_map(
360
361
          include_label_weights=include_label_weights,
          include_label_confidences=include_label_confidences,
362
          include_multiclass_scores=include_multiclass_scores,
363
364
365
366
367
368
369
          include_instance_masks=include_instance_masks,
          include_keypoints=include_keypoints))
  tensor_dict[fields.InputDataFields.image] = tf.squeeze(
      tensor_dict[fields.InputDataFields.image], axis=0)
  return tensor_dict


370
371
372
373
374
375
def _get_labels_dict(input_dict):
  """Extracts labels dict from input dict."""
  required_label_keys = [
      fields.InputDataFields.num_groundtruth_boxes,
      fields.InputDataFields.groundtruth_boxes,
      fields.InputDataFields.groundtruth_classes,
376
      fields.InputDataFields.groundtruth_weights,
377
378
379
380
381
382
  ]
  labels_dict = {}
  for key in required_label_keys:
    labels_dict[key] = input_dict[key]

  optional_label_keys = [
383
      fields.InputDataFields.groundtruth_confidences,
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
      fields.InputDataFields.groundtruth_keypoints,
      fields.InputDataFields.groundtruth_instance_masks,
      fields.InputDataFields.groundtruth_area,
      fields.InputDataFields.groundtruth_is_crowd,
      fields.InputDataFields.groundtruth_difficult
  ]

  for key in optional_label_keys:
    if key in input_dict:
      labels_dict[key] = input_dict[key]
  if fields.InputDataFields.groundtruth_difficult in labels_dict:
    labels_dict[fields.InputDataFields.groundtruth_difficult] = tf.cast(
        labels_dict[fields.InputDataFields.groundtruth_difficult], tf.int32)
  return labels_dict


400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
def _replace_empty_string_with_random_number(string_tensor):
  """Returns string unchanged if non-empty, and random string tensor otherwise.

  The random string is an integer 0 and 2**63 - 1, casted as string.


  Args:
    string_tensor: A tf.tensor of dtype string.

  Returns:
    out_string: A tf.tensor of dtype string. If string_tensor contains the empty
      string, out_string will contain a random integer casted to a string.
      Otherwise string_tensor is returned unchanged.

  """

  empty_string = tf.constant('', dtype=tf.string, name='EmptyString')

  random_source_id = tf.as_string(
      tf.random_uniform(shape=[], maxval=2**63 - 1, dtype=tf.int64))

  out_string = tf.cond(
      tf.equal(string_tensor, empty_string),
      true_fn=lambda: random_source_id,
      false_fn=lambda: string_tensor)

  return out_string


429
430
def _get_features_dict(input_dict):
  """Extracts features dict from input dict."""
431
432
433
434
435

  source_id = _replace_empty_string_with_random_number(
      input_dict[fields.InputDataFields.source_id])

  hash_from_source_id = tf.string_to_hash_bucket_fast(source_id, HASH_BINS)
436
437
438
439
440
  features = {
      fields.InputDataFields.image:
          input_dict[fields.InputDataFields.image],
      HASH_KEY: tf.cast(hash_from_source_id, tf.int32),
      fields.InputDataFields.true_image_shape:
pkulzc's avatar
pkulzc committed
441
442
443
          input_dict[fields.InputDataFields.true_image_shape],
      fields.InputDataFields.original_image_spatial_shape:
          input_dict[fields.InputDataFields.original_image_spatial_shape]
444
445
446
447
448
449
450
  }
  if fields.InputDataFields.original_image in input_dict:
    features[fields.InputDataFields.original_image] = input_dict[
        fields.InputDataFields.original_image]
  return features


451
452
def create_train_input_fn(train_config, train_input_config,
                          model_config):
453
454
455
456
457
  """Creates a train `input` function for `Estimator`.

  Args:
    train_config: A train_pb2.TrainConfig.
    train_input_config: An input_reader_pb2.InputReader.
458
    model_config: A model_pb2.DetectionModel.
459
460
461
462
463

  Returns:
    `input_fn` for `Estimator` in TRAIN mode.
  """

464
  def _train_input_fn(params=None):
465
466
    return train_input(train_config, train_input_config, model_config,
                       params=params)
467

468
  return _train_input_fn
469

470

471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
def train_input(train_config, train_input_config,
                model_config, model=None, params=None):
  """Returns `features` and `labels` tensor dictionaries for training.

  Args:
    train_config: A train_pb2.TrainConfig.
    train_input_config: An input_reader_pb2.InputReader.
    model_config: A model_pb2.DetectionModel.
    model: A pre-constructed Detection Model.
      If None, one will be created from the config.
    params: Parameter dictionary passed from the estimator.

  Returns:
    A tf.data.Dataset that holds (features, labels) tuple.

    features: Dictionary of feature tensors.
      features[fields.InputDataFields.image] is a [batch_size, H, W, C]
        float32 tensor with preprocessed images.
      features[HASH_KEY] is a [batch_size] int32 tensor representing unique
        identifiers for the images.
      features[fields.InputDataFields.true_image_shape] is a [batch_size, 3]
        int32 tensor representing the true image shapes, as preprocessed
        images could be padded.
      features[fields.InputDataFields.original_image] (optional) is a
        [batch_size, H, W, C] float32 tensor with original images.
    labels: Dictionary of groundtruth tensors.
      labels[fields.InputDataFields.num_groundtruth_boxes] is a [batch_size]
        int32 tensor indicating the number of groundtruth boxes.
      labels[fields.InputDataFields.groundtruth_boxes] is a
        [batch_size, num_boxes, 4] float32 tensor containing the corners of
        the groundtruth boxes.
      labels[fields.InputDataFields.groundtruth_classes] is a
        [batch_size, num_boxes, num_classes] float32 one-hot tensor of
        classes.
      labels[fields.InputDataFields.groundtruth_weights] is a
        [batch_size, num_boxes] float32 tensor containing groundtruth weights
        for the boxes.
      -- Optional --
      labels[fields.InputDataFields.groundtruth_instance_masks] is a
        [batch_size, num_boxes, H, W] float32 tensor containing only binary
        values, which represent instance masks for objects.
      labels[fields.InputDataFields.groundtruth_keypoints] is a
        [batch_size, num_boxes, num_keypoints, 2] float32 tensor containing
        keypoints for each box.

  Raises:
    TypeError: if the `train_config`, `train_input_config` or `model_config`
      are not of the correct type.
  """
  if not isinstance(train_config, train_pb2.TrainConfig):
    raise TypeError('For training mode, the `train_config` must be a '
                    'train_pb2.TrainConfig.')
  if not isinstance(train_input_config, input_reader_pb2.InputReader):
    raise TypeError('The `train_input_config` must be a '
                    'input_reader_pb2.InputReader.')
  if not isinstance(model_config, model_pb2.DetectionModel):
    raise TypeError('The `model_config` must be a '
                    'model_pb2.DetectionModel.')

  if model is None:
    model_preprocess_fn = INPUT_BUILDER_UTIL_MAP['model_build'](
        model_config, is_training=True).preprocess
  else:
    model_preprocess_fn = model.preprocess

  def transform_and_pad_input_data_fn(tensor_dict):
    """Combines transform and pad operation."""
    data_augmentation_options = [
        preprocessor_builder.build(step)
        for step in train_config.data_augmentation_options
    ]
    data_augmentation_fn = functools.partial(
        augment_input_data,
        data_augmentation_options=data_augmentation_options)

    image_resizer_config = config_util.get_image_resizer_config(model_config)
    image_resizer_fn = image_resizer_builder.build(image_resizer_config)
    transform_data_fn = functools.partial(
        transform_input_data, model_preprocess_fn=model_preprocess_fn,
        image_resizer_fn=image_resizer_fn,
        num_classes=config_util.get_number_of_classes(model_config),
        data_augmentation_fn=data_augmentation_fn,
        merge_multiple_boxes=train_config.merge_multiple_label_boxes,
        retain_original_image=train_config.retain_original_images,
        use_multiclass_scores=train_config.use_multiclass_scores,
        use_bfloat16=train_config.use_bfloat16)

    tensor_dict = pad_input_data_to_static_shapes(
        tensor_dict=transform_data_fn(tensor_dict),
        max_num_boxes=train_input_config.max_number_of_boxes,
        num_classes=config_util.get_number_of_classes(model_config),
        spatial_image_shape=config_util.get_spatial_image_size(
            image_resizer_config))
    return (_get_features_dict(tensor_dict), _get_labels_dict(tensor_dict))

  dataset = INPUT_BUILDER_UTIL_MAP['dataset_build'](
      train_input_config,
      transform_input_data_fn=transform_and_pad_input_data_fn,
      batch_size=params['batch_size'] if params else train_config.batch_size)
  return dataset
571
572


573
def create_eval_input_fn(eval_config, eval_input_config, model_config):
574
575
576
577
578
  """Creates an eval `input` function for `Estimator`.

  Args:
    eval_config: An eval_pb2.EvalConfig.
    eval_input_config: An input_reader_pb2.InputReader.
579
    model_config: A model_pb2.DetectionModel.
580
581
582
583
584

  Returns:
    `input_fn` for `Estimator` in EVAL mode.
  """

585
  def _eval_input_fn(params=None):
586
587
    return eval_input(eval_config, eval_input_config, model_config,
                      params=params)
588

589
  return _eval_input_fn
590

591

592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
def eval_input(eval_config, eval_input_config, model_config,
               model=None, params=None):
  """Returns `features` and `labels` tensor dictionaries for evaluation.

  Args:
    eval_config: An eval_pb2.EvalConfig.
    eval_input_config: An input_reader_pb2.InputReader.
    model_config: A model_pb2.DetectionModel.
    model: A pre-constructed Detection Model.
      If None, one will be created from the config.
    params: Parameter dictionary passed from the estimator.

  Returns:
    A tf.data.Dataset that holds (features, labels) tuple.

    features: Dictionary of feature tensors.
      features[fields.InputDataFields.image] is a [1, H, W, C] float32 tensor
        with preprocessed images.
      features[HASH_KEY] is a [1] int32 tensor representing unique
        identifiers for the images.
      features[fields.InputDataFields.true_image_shape] is a [1, 3]
        int32 tensor representing the true image shapes, as preprocessed
        images could be padded.
      features[fields.InputDataFields.original_image] is a [1, H', W', C]
        float32 tensor with the original image.
    labels: Dictionary of groundtruth tensors.
      labels[fields.InputDataFields.groundtruth_boxes] is a [1, num_boxes, 4]
        float32 tensor containing the corners of the groundtruth boxes.
      labels[fields.InputDataFields.groundtruth_classes] is a
        [num_boxes, num_classes] float32 one-hot tensor of classes.
      labels[fields.InputDataFields.groundtruth_area] is a [1, num_boxes]
        float32 tensor containing object areas.
      labels[fields.InputDataFields.groundtruth_is_crowd] is a [1, num_boxes]
        bool tensor indicating if the boxes enclose a crowd.
      labels[fields.InputDataFields.groundtruth_difficult] is a [1, num_boxes]
        int32 tensor indicating if the boxes represent difficult instances.
      -- Optional --
      labels[fields.InputDataFields.groundtruth_instance_masks] is a
        [1, num_boxes, H, W] float32 tensor containing only binary values,
        which represent instance masks for objects.

  Raises:
    TypeError: if the `eval_config`, `eval_input_config` or `model_config`
      are not of the correct type.
  """
  params = params or {}
  if not isinstance(eval_config, eval_pb2.EvalConfig):
    raise TypeError('For eval mode, the `eval_config` must be a '
                    'train_pb2.EvalConfig.')
  if not isinstance(eval_input_config, input_reader_pb2.InputReader):
    raise TypeError('The `eval_input_config` must be a '
                    'input_reader_pb2.InputReader.')
  if not isinstance(model_config, model_pb2.DetectionModel):
    raise TypeError('The `model_config` must be a '
                    'model_pb2.DetectionModel.')

  if model is None:
    model_preprocess_fn = INPUT_BUILDER_UTIL_MAP['model_build'](
        model_config, is_training=False).preprocess
  else:
    model_preprocess_fn = model.preprocess

  def transform_and_pad_input_data_fn(tensor_dict):
    """Combines transform and pad operation."""
    num_classes = config_util.get_number_of_classes(model_config)

    image_resizer_config = config_util.get_image_resizer_config(model_config)
    image_resizer_fn = image_resizer_builder.build(image_resizer_config)

    transform_data_fn = functools.partial(
        transform_input_data, model_preprocess_fn=model_preprocess_fn,
        image_resizer_fn=image_resizer_fn,
        num_classes=num_classes,
        data_augmentation_fn=None,
        retain_original_image=eval_config.retain_original_images)
    tensor_dict = pad_input_data_to_static_shapes(
        tensor_dict=transform_data_fn(tensor_dict),
        max_num_boxes=eval_input_config.max_number_of_boxes,
        num_classes=config_util.get_number_of_classes(model_config),
        spatial_image_shape=config_util.get_spatial_image_size(
            image_resizer_config))
    return (_get_features_dict(tensor_dict), _get_labels_dict(tensor_dict))
  dataset = INPUT_BUILDER_UTIL_MAP['dataset_build'](
      eval_input_config,
      batch_size=params['batch_size'] if params else eval_config.batch_size,
      transform_input_data_fn=transform_and_pad_input_data_fn)
  return dataset
679
680


681
def create_predict_input_fn(model_config, predict_input_config):
682
683
  """Creates a predict `input` function for `Estimator`.

684
685
  Args:
    model_config: A model_pb2.DetectionModel.
686
    predict_input_config: An input_reader_pb2.InputReader.
687

688
689
690
691
  Returns:
    `input_fn` for `Estimator` in PREDICT mode.
  """

692
  def _predict_input_fn(params=None):
693
694
    """Decodes serialized tf.Examples and returns `ServingInputReceiver`.

695
696
697
    Args:
      params: Parameter dictionary passed from the estimator.

698
699
700
    Returns:
      `ServingInputReceiver`.
    """
701
    del params
702
    example = tf.placeholder(dtype=tf.string, shape=[], name='tf_example')
703

704
    num_classes = config_util.get_number_of_classes(model_config)
705
706
707
    model_preprocess_fn = INPUT_BUILDER_UTIL_MAP['model_build'](
        model_config, is_training=False).preprocess

708
709
    image_resizer_config = config_util.get_image_resizer_config(model_config)
    image_resizer_fn = image_resizer_builder.build(image_resizer_config)
710

711
    transform_fn = functools.partial(
712
        transform_input_data, model_preprocess_fn=model_preprocess_fn,
713
714
715
716
        image_resizer_fn=image_resizer_fn,
        num_classes=num_classes,
        data_augmentation_fn=None)

717
718
719
    decoder = tf_example_decoder.TfExampleDecoder(
        load_instance_masks=False,
        num_additional_channels=predict_input_config.num_additional_channels)
720
    input_dict = transform_fn(decoder.decode(example))
721
    images = tf.cast(input_dict[fields.InputDataFields.image], dtype=tf.float32)
722
    images = tf.expand_dims(images, axis=0)
723
724
    true_image_shape = tf.expand_dims(
        input_dict[fields.InputDataFields.true_image_shape], axis=0)
725
726

    return tf.estimator.export.ServingInputReceiver(
727
728
729
        features={
            fields.InputDataFields.image: images,
            fields.InputDataFields.true_image_shape: true_image_shape},
730
731
732
        receiver_tensors={SERVING_FED_EXAMPLE_KEY: example})

  return _predict_input_fn