inputs.py 33.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Model input function for tf-learn object detection model."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import functools

import tensorflow as tf
from object_detection.builders import dataset_builder
25
26
from object_detection.builders import image_resizer_builder
from object_detection.builders import model_builder
27
from object_detection.builders import preprocessor_builder
28
29
30
from object_detection.core import box_list
from object_detection.core import box_list_ops
from object_detection.core import keypoint_ops
31
from object_detection.core import preprocessor
32
33
34
from object_detection.core import standard_fields as fields
from object_detection.data_decoders import tf_example_decoder
from object_detection.protos import eval_pb2
35
from object_detection.protos import image_resizer_pb2
36
from object_detection.protos import input_reader_pb2
37
from object_detection.protos import model_pb2
38
from object_detection.protos import train_pb2
39
from object_detection.utils import config_util
40
from object_detection.utils import ops as util_ops
41
from object_detection.utils import shape_utils
42

43
44
HASH_KEY = 'hash'
HASH_BINS = 1 << 31
45
46
SERVING_FED_EXAMPLE_KEY = 'serialized_example'

47
48
49
# A map of names to methods that help build the input pipeline.
INPUT_BUILDER_UTIL_MAP = {
    'dataset_build': dataset_builder.build,
50
    'model_build': model_builder.build,
51
52
}

53

pkulzc's avatar
pkulzc committed
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
def _multiclass_scores_or_one_hot_labels(multiclass_scores,
                                         groundtruth_boxes,
                                         groundtruth_classes, num_classes):
  """Returns one-hot encoding of classes when multiclass_scores is empty."""
  # Replace groundtruth_classes tensor with multiclass_scores tensor when its
  # non-empty. If multiclass_scores is empty fall back on groundtruth_classes
  # tensor.
  def true_fn():
    return tf.reshape(multiclass_scores,
                      [tf.shape(groundtruth_boxes)[0], num_classes])
  def false_fn():
    return tf.one_hot(groundtruth_classes, num_classes)

  return tf.cond(tf.size(multiclass_scores) > 0, true_fn, false_fn)


70
71
72
73
74
75
def transform_input_data(tensor_dict,
                         model_preprocess_fn,
                         image_resizer_fn,
                         num_classes,
                         data_augmentation_fn=None,
                         merge_multiple_boxes=False,
76
                         retain_original_image=False,
77
                         use_multiclass_scores=False,
78
79
                         use_bfloat16=False,
                         retain_original_image_additional_channels=False):
80
81
82
  """A single function that is responsible for all input data transformations.

  Data transformation functions are applied in the following order.
83
84
85
86
87
88
  1. If key fields.InputDataFields.image_additional_channels is present in
     tensor_dict, the additional channels will be merged into
     fields.InputDataFields.image.
  2. data_augmentation_fn (optional): applied on tensor_dict.
  3. model_preprocess_fn: applied only on image tensor in tensor_dict.
  4. image_resizer_fn: applied on original image and instance mask tensor in
89
     tensor_dict.
90
91
  5. one_hot_encoding: applied to classes tensor in tensor_dict.
  6. merge_multiple_boxes (optional): when groundtruth boxes are exactly the
92
93
94
95
96
97
98
99
100
     same they can be merged into a single box with an associated k-hot class
     label.

  Args:
    tensor_dict: dictionary containing input tensors keyed by
      fields.InputDataFields.
    model_preprocess_fn: model's preprocess function to apply on image tensor.
      This function must take in a 4-D float tensor and return a 4-D preprocess
      float tensor and a tensor containing the true image shape.
101
102
103
104
    image_resizer_fn: image resizer function to apply on groundtruth instance
      `masks. This function must take a 3-D float tensor of an image and a 3-D
      tensor of instance masks and return a resized version of these along with
      the true shapes.
105
106
107
108
109
110
111
112
    num_classes: number of max classes to one-hot (or k-hot) encode the class
      labels.
    data_augmentation_fn: (optional) data augmentation function to apply on
      input `tensor_dict`.
    merge_multiple_boxes: (optional) whether to merge multiple groundtruth boxes
      and classes for a given image if the boxes are exactly the same.
    retain_original_image: (optional) whether to retain original image in the
      output dictionary.
pkulzc's avatar
pkulzc committed
113
114
115
116
    use_multiclass_scores: whether to use multiclass scores as class targets
      instead of one-hot encoding of `groundtruth_classes`. When
      this is True and multiclass_scores is empty, one-hot encoding of
      `groundtruth_classes` is used as a fallback.
117
    use_bfloat16: (optional) a bool, whether to use bfloat16 in training.
118
119
    retain_original_image_additional_channels: (optional) Whether to retain
      original image additional channels in the output dictionary.
120
121
122
123
124

  Returns:
    A dictionary keyed by fields.InputDataFields containing the tensors obtained
    after applying all the transformations.
  """
pkulzc's avatar
pkulzc committed
125
126
127
128
129
130
131
132
133
134
135
136
137
138
  out_tensor_dict = tensor_dict.copy()
  if fields.InputDataFields.multiclass_scores in out_tensor_dict:
    out_tensor_dict[
        fields.InputDataFields
        .multiclass_scores] = _multiclass_scores_or_one_hot_labels(
            out_tensor_dict[fields.InputDataFields.multiclass_scores],
            out_tensor_dict[fields.InputDataFields.groundtruth_boxes],
            out_tensor_dict[fields.InputDataFields.groundtruth_classes],
            num_classes)

  if fields.InputDataFields.groundtruth_boxes in out_tensor_dict:
    out_tensor_dict = util_ops.filter_groundtruth_with_nan_box_coordinates(
        out_tensor_dict)
    out_tensor_dict = util_ops.filter_unrecognized_classes(out_tensor_dict)
139

140
  if retain_original_image:
pkulzc's avatar
pkulzc committed
141
142
143
    out_tensor_dict[fields.InputDataFields.original_image] = tf.cast(
        image_resizer_fn(out_tensor_dict[fields.InputDataFields.image],
                         None)[0], tf.uint8)
144

pkulzc's avatar
pkulzc committed
145
146
147
148
  if fields.InputDataFields.image_additional_channels in out_tensor_dict:
    channels = out_tensor_dict[fields.InputDataFields.image_additional_channels]
    out_tensor_dict[fields.InputDataFields.image] = tf.concat(
        [out_tensor_dict[fields.InputDataFields.image], channels], axis=2)
149
150
151
152
    if retain_original_image_additional_channels:
      out_tensor_dict[
          fields.InputDataFields.image_additional_channels] = tf.cast(
              image_resizer_fn(channels, None)[0], tf.uint8)
153

154
155
  # Apply data augmentation ops.
  if data_augmentation_fn is not None:
pkulzc's avatar
pkulzc committed
156
    out_tensor_dict = data_augmentation_fn(out_tensor_dict)
157
158

  # Apply model preprocessing ops and resize instance masks.
pkulzc's avatar
pkulzc committed
159
  image = out_tensor_dict[fields.InputDataFields.image]
160
  preprocessed_resized_image, true_image_shape = model_preprocess_fn(
161
      tf.expand_dims(tf.cast(image, dtype=tf.float32), axis=0))
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

  preprocessed_shape = tf.shape(preprocessed_resized_image)
  new_height, new_width = preprocessed_shape[1], preprocessed_shape[2]

  im_box = tf.stack([
      0.0, 0.0,
      tf.to_float(new_height) / tf.to_float(true_image_shape[0, 0]),
      tf.to_float(new_width) / tf.to_float(true_image_shape[0, 1])
  ])

  if fields.InputDataFields.groundtruth_boxes in tensor_dict:
    bboxes = out_tensor_dict[fields.InputDataFields.groundtruth_boxes]
    boxlist = box_list.BoxList(bboxes)
    realigned_bboxes = box_list_ops.change_coordinate_frame(boxlist, im_box)
    out_tensor_dict[
        fields.InputDataFields.groundtruth_boxes] = realigned_bboxes.get()

  if fields.InputDataFields.groundtruth_keypoints in tensor_dict:
    keypoints = out_tensor_dict[fields.InputDataFields.groundtruth_keypoints]
    realigned_keypoints = keypoint_ops.change_coordinate_frame(keypoints,
                                                               im_box)
    out_tensor_dict[
        fields.InputDataFields.groundtruth_keypoints] = realigned_keypoints

186
187
188
  if use_bfloat16:
    preprocessed_resized_image = tf.cast(
        preprocessed_resized_image, tf.bfloat16)
pkulzc's avatar
pkulzc committed
189
  out_tensor_dict[fields.InputDataFields.image] = tf.squeeze(
190
      preprocessed_resized_image, axis=0)
pkulzc's avatar
pkulzc committed
191
  out_tensor_dict[fields.InputDataFields.true_image_shape] = tf.squeeze(
192
      true_image_shape, axis=0)
pkulzc's avatar
pkulzc committed
193
194
  if fields.InputDataFields.groundtruth_instance_masks in out_tensor_dict:
    masks = out_tensor_dict[fields.InputDataFields.groundtruth_instance_masks]
195
    _, resized_masks, _ = image_resizer_fn(image, masks)
196
197
    if use_bfloat16:
      resized_masks = tf.cast(resized_masks, tf.bfloat16)
pkulzc's avatar
pkulzc committed
198
199
    out_tensor_dict[
        fields.InputDataFields.groundtruth_instance_masks] = resized_masks
200
201

  label_offset = 1
pkulzc's avatar
pkulzc committed
202
  zero_indexed_groundtruth_classes = out_tensor_dict[
203
      fields.InputDataFields.groundtruth_classes] - label_offset
204
  if use_multiclass_scores:
pkulzc's avatar
pkulzc committed
205
206
207
208
209
210
211
    out_tensor_dict[
        fields.InputDataFields.groundtruth_classes] = out_tensor_dict[
            fields.InputDataFields.multiclass_scores]
  else:
    out_tensor_dict[fields.InputDataFields.groundtruth_classes] = tf.one_hot(
        zero_indexed_groundtruth_classes, num_classes)
  out_tensor_dict.pop(fields.InputDataFields.multiclass_scores, None)
212

pkulzc's avatar
pkulzc committed
213
214
  if fields.InputDataFields.groundtruth_confidences in out_tensor_dict:
    groundtruth_confidences = out_tensor_dict[
215
        fields.InputDataFields.groundtruth_confidences]
216
    # Map the confidences to the one-hot encoding of classes
pkulzc's avatar
pkulzc committed
217
    out_tensor_dict[fields.InputDataFields.groundtruth_confidences] = (
218
        tf.reshape(groundtruth_confidences, [-1, 1]) *
pkulzc's avatar
pkulzc committed
219
        out_tensor_dict[fields.InputDataFields.groundtruth_classes])
220
221
222
  else:
    groundtruth_confidences = tf.ones_like(
        zero_indexed_groundtruth_classes, dtype=tf.float32)
pkulzc's avatar
pkulzc committed
223
224
    out_tensor_dict[fields.InputDataFields.groundtruth_confidences] = (
        out_tensor_dict[fields.InputDataFields.groundtruth_classes])
225

226
  if merge_multiple_boxes:
227
228
    merged_boxes, merged_classes, merged_confidences, _ = (
        util_ops.merge_boxes_with_multiple_labels(
pkulzc's avatar
pkulzc committed
229
            out_tensor_dict[fields.InputDataFields.groundtruth_boxes],
230
231
232
            zero_indexed_groundtruth_classes,
            groundtruth_confidences,
            num_classes))
233
    merged_classes = tf.cast(merged_classes, tf.float32)
pkulzc's avatar
pkulzc committed
234
235
236
    out_tensor_dict[fields.InputDataFields.groundtruth_boxes] = merged_boxes
    out_tensor_dict[fields.InputDataFields.groundtruth_classes] = merged_classes
    out_tensor_dict[fields.InputDataFields.groundtruth_confidences] = (
237
        merged_confidences)
pkulzc's avatar
pkulzc committed
238
239
240
  if fields.InputDataFields.groundtruth_boxes in out_tensor_dict:
    out_tensor_dict[fields.InputDataFields.num_groundtruth_boxes] = tf.shape(
        out_tensor_dict[fields.InputDataFields.groundtruth_boxes])[0]
241

pkulzc's avatar
pkulzc committed
242
  return out_tensor_dict
243
244


245
246
247
248
def pad_input_data_to_static_shapes(tensor_dict, max_num_boxes, num_classes,
                                    spatial_image_shape=None):
  """Pads input tensors to static shapes.

249
250
251
  In case num_additional_channels > 0, we assume that the additional channels
  have already been concatenated to the base image.

252
253
254
255
256
257
258
259
260
261
262
263
264
265
  Args:
    tensor_dict: Tensor dictionary of input data
    max_num_boxes: Max number of groundtruth boxes needed to compute shapes for
      padding.
    num_classes: Number of classes in the dataset needed to compute shapes for
      padding.
    spatial_image_shape: A list of two integers of the form [height, width]
      containing expected spatial shape of the image.

  Returns:
    A dictionary keyed by fields.InputDataFields containing padding shapes for
    tensors in the dataset.

  Raises:
266
267
    ValueError: If groundtruth classes is neither rank 1 nor rank 2, or if we
      detect that additional channels have not been concatenated yet.
268
269
270
271
272
273
274
275
276
  """

  if not spatial_image_shape or spatial_image_shape == [-1, -1]:
    height, width = None, None
  else:
    height, width = spatial_image_shape  # pylint: disable=unpacking-non-sequence

  num_additional_channels = 0
  if fields.InputDataFields.image_additional_channels in tensor_dict:
277
278
    num_additional_channels = shape_utils.get_dim_as_int(tensor_dict[
        fields.InputDataFields.image_additional_channels].shape[2])
279
280
281
282

  # We assume that if num_additional_channels > 0, then it has already been
  # concatenated to the base image (but not the ground truth).
  num_channels = 3
283
  if fields.InputDataFields.image in tensor_dict:
284
285
    num_channels = shape_utils.get_dim_as_int(
        tensor_dict[fields.InputDataFields.image].shape[2])
286
287
288
289
290
291
292

  if num_additional_channels:
    if num_additional_channels >= num_channels:
      raise ValueError(
          'Image must be already concatenated with additional channels.')

    if (fields.InputDataFields.original_image in tensor_dict and
293
294
        shape_utils.get_dim_as_int(
            tensor_dict[fields.InputDataFields.original_image].shape[2]) ==
295
296
297
298
        num_channels):
      raise ValueError(
          'Image must be already concatenated with additional channels.')

299
300
  padding_shapes = {
      fields.InputDataFields.image: [
301
          height, width, num_channels
302
      ],
pkulzc's avatar
pkulzc committed
303
      fields.InputDataFields.original_image_spatial_shape: [2],
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
      fields.InputDataFields.image_additional_channels: [
          height, width, num_additional_channels
      ],
      fields.InputDataFields.source_id: [],
      fields.InputDataFields.filename: [],
      fields.InputDataFields.key: [],
      fields.InputDataFields.groundtruth_difficult: [max_num_boxes],
      fields.InputDataFields.groundtruth_boxes: [max_num_boxes, 4],
      fields.InputDataFields.groundtruth_classes: [max_num_boxes, num_classes],
      fields.InputDataFields.groundtruth_instance_masks: [
          max_num_boxes, height, width
      ],
      fields.InputDataFields.groundtruth_is_crowd: [max_num_boxes],
      fields.InputDataFields.groundtruth_group_of: [max_num_boxes],
      fields.InputDataFields.groundtruth_area: [max_num_boxes],
      fields.InputDataFields.groundtruth_weights: [max_num_boxes],
320
321
322
      fields.InputDataFields.groundtruth_confidences: [
          max_num_boxes, num_classes
      ],
323
324
      fields.InputDataFields.num_groundtruth_boxes: [],
      fields.InputDataFields.groundtruth_label_types: [max_num_boxes],
325
      fields.InputDataFields.groundtruth_label_weights: [max_num_boxes],
326
327
      fields.InputDataFields.true_image_shape: [3],
      fields.InputDataFields.groundtruth_image_classes: [num_classes],
328
      fields.InputDataFields.groundtruth_image_confidences: [num_classes],
329
330
331
332
  }

  if fields.InputDataFields.original_image in tensor_dict:
    padding_shapes[fields.InputDataFields.original_image] = [
333
334
335
        height, width,
        shape_utils.get_dim_as_int(tensor_dict[fields.InputDataFields.
                                               original_image].shape[2])
336
337
338
339
    ]
  if fields.InputDataFields.groundtruth_keypoints in tensor_dict:
    tensor_shape = (
        tensor_dict[fields.InputDataFields.groundtruth_keypoints].shape)
340
341
342
    padding_shape = [max_num_boxes,
                     shape_utils.get_dim_as_int(tensor_shape[1]),
                     shape_utils.get_dim_as_int(tensor_shape[2])]
343
344
345
346
    padding_shapes[fields.InputDataFields.groundtruth_keypoints] = padding_shape
  if fields.InputDataFields.groundtruth_keypoint_visibilities in tensor_dict:
    tensor_shape = tensor_dict[fields.InputDataFields.
                               groundtruth_keypoint_visibilities].shape
347
    padding_shape = [max_num_boxes, shape_utils.get_dim_as_int(tensor_shape[1])]
348
349
350
351
352
    padding_shapes[fields.InputDataFields.
                   groundtruth_keypoint_visibilities] = padding_shape

  padded_tensor_dict = {}
  for tensor_name in tensor_dict:
353
354
    padded_tensor_dict[tensor_name] = shape_utils.pad_or_clip_nd(
        tensor_dict[tensor_name], padding_shapes[tensor_name])
355
356
357
358
359
360
361
362

  # Make sure that the number of groundtruth boxes now reflects the
  # padded/clipped tensors.
  if fields.InputDataFields.num_groundtruth_boxes in padded_tensor_dict:
    padded_tensor_dict[fields.InputDataFields.num_groundtruth_boxes] = (
        tf.minimum(
            padded_tensor_dict[fields.InputDataFields.num_groundtruth_boxes],
            max_num_boxes))
363
364
365
  return padded_tensor_dict


366
367
368
369
370
371
372
373
374
375
376
377
378
379
def augment_input_data(tensor_dict, data_augmentation_options):
  """Applies data augmentation ops to input tensors.

  Args:
    tensor_dict: A dictionary of input tensors keyed by fields.InputDataFields.
    data_augmentation_options: A list of tuples, where each tuple contains a
      function and a dictionary that contains arguments and their values.
      Usually, this is the output of core/preprocessor.build.

  Returns:
    A dictionary of tensors obtained by applying data augmentation ops to the
    input tensor dictionary.
  """
  tensor_dict[fields.InputDataFields.image] = tf.expand_dims(
380
      tf.cast(tensor_dict[fields.InputDataFields.image], dtype=tf.float32), 0)
381
382
383
384
385

  include_instance_masks = (fields.InputDataFields.groundtruth_instance_masks
                            in tensor_dict)
  include_keypoints = (fields.InputDataFields.groundtruth_keypoints
                       in tensor_dict)
386
387
388
389
  include_label_weights = (fields.InputDataFields.groundtruth_weights
                           in tensor_dict)
  include_label_confidences = (fields.InputDataFields.groundtruth_confidences
                               in tensor_dict)
390
391
  include_multiclass_scores = (fields.InputDataFields.multiclass_scores in
                               tensor_dict)
392
393
394
  tensor_dict = preprocessor.preprocess(
      tensor_dict, data_augmentation_options,
      func_arg_map=preprocessor.get_default_func_arg_map(
395
396
          include_label_weights=include_label_weights,
          include_label_confidences=include_label_confidences,
397
          include_multiclass_scores=include_multiclass_scores,
398
399
400
401
402
403
404
          include_instance_masks=include_instance_masks,
          include_keypoints=include_keypoints))
  tensor_dict[fields.InputDataFields.image] = tf.squeeze(
      tensor_dict[fields.InputDataFields.image], axis=0)
  return tensor_dict


405
406
407
408
409
410
def _get_labels_dict(input_dict):
  """Extracts labels dict from input dict."""
  required_label_keys = [
      fields.InputDataFields.num_groundtruth_boxes,
      fields.InputDataFields.groundtruth_boxes,
      fields.InputDataFields.groundtruth_classes,
411
      fields.InputDataFields.groundtruth_weights,
412
413
414
415
416
417
  ]
  labels_dict = {}
  for key in required_label_keys:
    labels_dict[key] = input_dict[key]

  optional_label_keys = [
418
      fields.InputDataFields.groundtruth_confidences,
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
      fields.InputDataFields.groundtruth_keypoints,
      fields.InputDataFields.groundtruth_instance_masks,
      fields.InputDataFields.groundtruth_area,
      fields.InputDataFields.groundtruth_is_crowd,
      fields.InputDataFields.groundtruth_difficult
  ]

  for key in optional_label_keys:
    if key in input_dict:
      labels_dict[key] = input_dict[key]
  if fields.InputDataFields.groundtruth_difficult in labels_dict:
    labels_dict[fields.InputDataFields.groundtruth_difficult] = tf.cast(
        labels_dict[fields.InputDataFields.groundtruth_difficult], tf.int32)
  return labels_dict


435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
def _replace_empty_string_with_random_number(string_tensor):
  """Returns string unchanged if non-empty, and random string tensor otherwise.

  The random string is an integer 0 and 2**63 - 1, casted as string.


  Args:
    string_tensor: A tf.tensor of dtype string.

  Returns:
    out_string: A tf.tensor of dtype string. If string_tensor contains the empty
      string, out_string will contain a random integer casted to a string.
      Otherwise string_tensor is returned unchanged.

  """

  empty_string = tf.constant('', dtype=tf.string, name='EmptyString')

  random_source_id = tf.as_string(
      tf.random_uniform(shape=[], maxval=2**63 - 1, dtype=tf.int64))

  out_string = tf.cond(
      tf.equal(string_tensor, empty_string),
      true_fn=lambda: random_source_id,
      false_fn=lambda: string_tensor)

  return out_string


464
465
def _get_features_dict(input_dict):
  """Extracts features dict from input dict."""
466
467
468
469
470

  source_id = _replace_empty_string_with_random_number(
      input_dict[fields.InputDataFields.source_id])

  hash_from_source_id = tf.string_to_hash_bucket_fast(source_id, HASH_BINS)
471
472
473
474
475
  features = {
      fields.InputDataFields.image:
          input_dict[fields.InputDataFields.image],
      HASH_KEY: tf.cast(hash_from_source_id, tf.int32),
      fields.InputDataFields.true_image_shape:
pkulzc's avatar
pkulzc committed
476
477
478
          input_dict[fields.InputDataFields.true_image_shape],
      fields.InputDataFields.original_image_spatial_shape:
          input_dict[fields.InputDataFields.original_image_spatial_shape]
479
480
481
482
  }
  if fields.InputDataFields.original_image in input_dict:
    features[fields.InputDataFields.original_image] = input_dict[
        fields.InputDataFields.original_image]
483
484
485
  if fields.InputDataFields.image_additional_channels in input_dict:
    features[fields.InputDataFields.image_additional_channels] = input_dict[
        fields.InputDataFields.image_additional_channels]
486
487
488
  return features


489
490
def create_train_input_fn(train_config, train_input_config,
                          model_config):
491
492
493
494
495
  """Creates a train `input` function for `Estimator`.

  Args:
    train_config: A train_pb2.TrainConfig.
    train_input_config: An input_reader_pb2.InputReader.
496
    model_config: A model_pb2.DetectionModel.
497
498
499
500
501

  Returns:
    `input_fn` for `Estimator` in TRAIN mode.
  """

502
  def _train_input_fn(params=None):
503
504
    return train_input(train_config, train_input_config, model_config,
                       params=params)
505

506
  return _train_input_fn
507

508

509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
def train_input(train_config, train_input_config,
                model_config, model=None, params=None):
  """Returns `features` and `labels` tensor dictionaries for training.

  Args:
    train_config: A train_pb2.TrainConfig.
    train_input_config: An input_reader_pb2.InputReader.
    model_config: A model_pb2.DetectionModel.
    model: A pre-constructed Detection Model.
      If None, one will be created from the config.
    params: Parameter dictionary passed from the estimator.

  Returns:
    A tf.data.Dataset that holds (features, labels) tuple.

    features: Dictionary of feature tensors.
      features[fields.InputDataFields.image] is a [batch_size, H, W, C]
        float32 tensor with preprocessed images.
      features[HASH_KEY] is a [batch_size] int32 tensor representing unique
        identifiers for the images.
      features[fields.InputDataFields.true_image_shape] is a [batch_size, 3]
        int32 tensor representing the true image shapes, as preprocessed
        images could be padded.
      features[fields.InputDataFields.original_image] (optional) is a
        [batch_size, H, W, C] float32 tensor with original images.
    labels: Dictionary of groundtruth tensors.
      labels[fields.InputDataFields.num_groundtruth_boxes] is a [batch_size]
        int32 tensor indicating the number of groundtruth boxes.
      labels[fields.InputDataFields.groundtruth_boxes] is a
        [batch_size, num_boxes, 4] float32 tensor containing the corners of
        the groundtruth boxes.
      labels[fields.InputDataFields.groundtruth_classes] is a
        [batch_size, num_boxes, num_classes] float32 one-hot tensor of
        classes.
      labels[fields.InputDataFields.groundtruth_weights] is a
        [batch_size, num_boxes] float32 tensor containing groundtruth weights
        for the boxes.
      -- Optional --
      labels[fields.InputDataFields.groundtruth_instance_masks] is a
        [batch_size, num_boxes, H, W] float32 tensor containing only binary
        values, which represent instance masks for objects.
      labels[fields.InputDataFields.groundtruth_keypoints] is a
        [batch_size, num_boxes, num_keypoints, 2] float32 tensor containing
        keypoints for each box.

  Raises:
    TypeError: if the `train_config`, `train_input_config` or `model_config`
      are not of the correct type.
  """
  if not isinstance(train_config, train_pb2.TrainConfig):
    raise TypeError('For training mode, the `train_config` must be a '
                    'train_pb2.TrainConfig.')
  if not isinstance(train_input_config, input_reader_pb2.InputReader):
    raise TypeError('The `train_input_config` must be a '
                    'input_reader_pb2.InputReader.')
  if not isinstance(model_config, model_pb2.DetectionModel):
    raise TypeError('The `model_config` must be a '
                    'model_pb2.DetectionModel.')

  if model is None:
    model_preprocess_fn = INPUT_BUILDER_UTIL_MAP['model_build'](
        model_config, is_training=True).preprocess
  else:
    model_preprocess_fn = model.preprocess

  def transform_and_pad_input_data_fn(tensor_dict):
    """Combines transform and pad operation."""
    data_augmentation_options = [
        preprocessor_builder.build(step)
        for step in train_config.data_augmentation_options
    ]
    data_augmentation_fn = functools.partial(
        augment_input_data,
        data_augmentation_options=data_augmentation_options)

    image_resizer_config = config_util.get_image_resizer_config(model_config)
    image_resizer_fn = image_resizer_builder.build(image_resizer_config)
    transform_data_fn = functools.partial(
        transform_input_data, model_preprocess_fn=model_preprocess_fn,
        image_resizer_fn=image_resizer_fn,
        num_classes=config_util.get_number_of_classes(model_config),
        data_augmentation_fn=data_augmentation_fn,
        merge_multiple_boxes=train_config.merge_multiple_label_boxes,
        retain_original_image=train_config.retain_original_images,
        use_multiclass_scores=train_config.use_multiclass_scores,
        use_bfloat16=train_config.use_bfloat16)

    tensor_dict = pad_input_data_to_static_shapes(
        tensor_dict=transform_data_fn(tensor_dict),
        max_num_boxes=train_input_config.max_number_of_boxes,
        num_classes=config_util.get_number_of_classes(model_config),
        spatial_image_shape=config_util.get_spatial_image_size(
            image_resizer_config))
    return (_get_features_dict(tensor_dict), _get_labels_dict(tensor_dict))

  dataset = INPUT_BUILDER_UTIL_MAP['dataset_build'](
      train_input_config,
      transform_input_data_fn=transform_and_pad_input_data_fn,
      batch_size=params['batch_size'] if params else train_config.batch_size)
  return dataset
609
610


611
def create_eval_input_fn(eval_config, eval_input_config, model_config):
612
613
614
615
616
  """Creates an eval `input` function for `Estimator`.

  Args:
    eval_config: An eval_pb2.EvalConfig.
    eval_input_config: An input_reader_pb2.InputReader.
617
    model_config: A model_pb2.DetectionModel.
618
619
620
621
622

  Returns:
    `input_fn` for `Estimator` in EVAL mode.
  """

623
  def _eval_input_fn(params=None):
624
625
    return eval_input(eval_config, eval_input_config, model_config,
                      params=params)
626

627
  return _eval_input_fn
628

629

630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
def eval_input(eval_config, eval_input_config, model_config,
               model=None, params=None):
  """Returns `features` and `labels` tensor dictionaries for evaluation.

  Args:
    eval_config: An eval_pb2.EvalConfig.
    eval_input_config: An input_reader_pb2.InputReader.
    model_config: A model_pb2.DetectionModel.
    model: A pre-constructed Detection Model.
      If None, one will be created from the config.
    params: Parameter dictionary passed from the estimator.

  Returns:
    A tf.data.Dataset that holds (features, labels) tuple.

    features: Dictionary of feature tensors.
      features[fields.InputDataFields.image] is a [1, H, W, C] float32 tensor
        with preprocessed images.
      features[HASH_KEY] is a [1] int32 tensor representing unique
        identifiers for the images.
      features[fields.InputDataFields.true_image_shape] is a [1, 3]
        int32 tensor representing the true image shapes, as preprocessed
        images could be padded.
      features[fields.InputDataFields.original_image] is a [1, H', W', C]
        float32 tensor with the original image.
    labels: Dictionary of groundtruth tensors.
      labels[fields.InputDataFields.groundtruth_boxes] is a [1, num_boxes, 4]
        float32 tensor containing the corners of the groundtruth boxes.
      labels[fields.InputDataFields.groundtruth_classes] is a
        [num_boxes, num_classes] float32 one-hot tensor of classes.
      labels[fields.InputDataFields.groundtruth_area] is a [1, num_boxes]
        float32 tensor containing object areas.
      labels[fields.InputDataFields.groundtruth_is_crowd] is a [1, num_boxes]
        bool tensor indicating if the boxes enclose a crowd.
      labels[fields.InputDataFields.groundtruth_difficult] is a [1, num_boxes]
        int32 tensor indicating if the boxes represent difficult instances.
      -- Optional --
      labels[fields.InputDataFields.groundtruth_instance_masks] is a
        [1, num_boxes, H, W] float32 tensor containing only binary values,
        which represent instance masks for objects.

  Raises:
    TypeError: if the `eval_config`, `eval_input_config` or `model_config`
      are not of the correct type.
  """
  params = params or {}
  if not isinstance(eval_config, eval_pb2.EvalConfig):
    raise TypeError('For eval mode, the `eval_config` must be a '
                    'train_pb2.EvalConfig.')
  if not isinstance(eval_input_config, input_reader_pb2.InputReader):
    raise TypeError('The `eval_input_config` must be a '
                    'input_reader_pb2.InputReader.')
  if not isinstance(model_config, model_pb2.DetectionModel):
    raise TypeError('The `model_config` must be a '
                    'model_pb2.DetectionModel.')

686
687
688
689
690
691
692
693
  if eval_config.force_no_resize:
    arch = model_config.WhichOneof('model')
    arch_config = getattr(model_config, arch)
    image_resizer_proto = image_resizer_pb2.ImageResizer()
    image_resizer_proto.identity_resizer.CopyFrom(
        image_resizer_pb2.IdentityResizer())
    arch_config.image_resizer.CopyFrom(image_resizer_proto)

694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
  if model is None:
    model_preprocess_fn = INPUT_BUILDER_UTIL_MAP['model_build'](
        model_config, is_training=False).preprocess
  else:
    model_preprocess_fn = model.preprocess

  def transform_and_pad_input_data_fn(tensor_dict):
    """Combines transform and pad operation."""
    num_classes = config_util.get_number_of_classes(model_config)

    image_resizer_config = config_util.get_image_resizer_config(model_config)
    image_resizer_fn = image_resizer_builder.build(image_resizer_config)

    transform_data_fn = functools.partial(
        transform_input_data, model_preprocess_fn=model_preprocess_fn,
        image_resizer_fn=image_resizer_fn,
        num_classes=num_classes,
        data_augmentation_fn=None,
712
713
714
        retain_original_image=eval_config.retain_original_images,
        retain_original_image_additional_channels=
        eval_config.retain_original_image_additional_channels)
715
716
717
718
719
720
721
722
723
724
725
726
    tensor_dict = pad_input_data_to_static_shapes(
        tensor_dict=transform_data_fn(tensor_dict),
        max_num_boxes=eval_input_config.max_number_of_boxes,
        num_classes=config_util.get_number_of_classes(model_config),
        spatial_image_shape=config_util.get_spatial_image_size(
            image_resizer_config))
    return (_get_features_dict(tensor_dict), _get_labels_dict(tensor_dict))
  dataset = INPUT_BUILDER_UTIL_MAP['dataset_build'](
      eval_input_config,
      batch_size=params['batch_size'] if params else eval_config.batch_size,
      transform_input_data_fn=transform_and_pad_input_data_fn)
  return dataset
727
728


729
def create_predict_input_fn(model_config, predict_input_config):
730
731
  """Creates a predict `input` function for `Estimator`.

732
733
  Args:
    model_config: A model_pb2.DetectionModel.
734
    predict_input_config: An input_reader_pb2.InputReader.
735

736
737
738
739
  Returns:
    `input_fn` for `Estimator` in PREDICT mode.
  """

740
  def _predict_input_fn(params=None):
741
742
    """Decodes serialized tf.Examples and returns `ServingInputReceiver`.

743
744
745
    Args:
      params: Parameter dictionary passed from the estimator.

746
747
748
    Returns:
      `ServingInputReceiver`.
    """
749
    del params
750
    example = tf.placeholder(dtype=tf.string, shape=[], name='tf_example')
751

752
    num_classes = config_util.get_number_of_classes(model_config)
753
754
755
    model_preprocess_fn = INPUT_BUILDER_UTIL_MAP['model_build'](
        model_config, is_training=False).preprocess

756
757
    image_resizer_config = config_util.get_image_resizer_config(model_config)
    image_resizer_fn = image_resizer_builder.build(image_resizer_config)
758

759
    transform_fn = functools.partial(
760
        transform_input_data, model_preprocess_fn=model_preprocess_fn,
761
762
763
764
        image_resizer_fn=image_resizer_fn,
        num_classes=num_classes,
        data_augmentation_fn=None)

765
766
767
    decoder = tf_example_decoder.TfExampleDecoder(
        load_instance_masks=False,
        num_additional_channels=predict_input_config.num_additional_channels)
768
    input_dict = transform_fn(decoder.decode(example))
769
    images = tf.cast(input_dict[fields.InputDataFields.image], dtype=tf.float32)
770
    images = tf.expand_dims(images, axis=0)
771
772
    true_image_shape = tf.expand_dims(
        input_dict[fields.InputDataFields.true_image_shape], axis=0)
773
774

    return tf.estimator.export.ServingInputReceiver(
775
776
777
        features={
            fields.InputDataFields.image: images,
            fields.InputDataFields.true_image_shape: true_image_shape},
778
779
780
        receiver_tensors={SERVING_FED_EXAMPLE_KEY: example})

  return _predict_input_fn