"torchvision/models/vscode:/vscode.git/clone" did not exist on "d59398b5655cf7f9a4a6e3c4c89721fab5cc2bb5"
inputs.py 50.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Model input function for tf-learn object detection model."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import functools

23
import tensorflow.compat.v1 as tf
24
from object_detection.builders import dataset_builder
25
26
from object_detection.builders import image_resizer_builder
from object_detection.builders import model_builder
27
from object_detection.builders import preprocessor_builder
28
29
from object_detection.core import box_list
from object_detection.core import box_list_ops
30
from object_detection.core import densepose_ops
31
from object_detection.core import keypoint_ops
32
from object_detection.core import preprocessor
33
34
35
from object_detection.core import standard_fields as fields
from object_detection.data_decoders import tf_example_decoder
from object_detection.protos import eval_pb2
36
from object_detection.protos import image_resizer_pb2
37
from object_detection.protos import input_reader_pb2
38
from object_detection.protos import model_pb2
39
from object_detection.protos import train_pb2
40
from object_detection.utils import config_util
41
from object_detection.utils import ops as util_ops
42
from object_detection.utils import shape_utils
43

44
45
HASH_KEY = 'hash'
HASH_BINS = 1 << 31
46
SERVING_FED_EXAMPLE_KEY = 'serialized_example'
47
_LABEL_OFFSET = 1
48

49
50
51
# A map of names to methods that help build the input pipeline.
INPUT_BUILDER_UTIL_MAP = {
    'dataset_build': dataset_builder.build,
52
    'model_build': model_builder.build,
53
54
}

55

pkulzc's avatar
pkulzc committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
def _multiclass_scores_or_one_hot_labels(multiclass_scores,
                                         groundtruth_boxes,
                                         groundtruth_classes, num_classes):
  """Returns one-hot encoding of classes when multiclass_scores is empty."""
  # Replace groundtruth_classes tensor with multiclass_scores tensor when its
  # non-empty. If multiclass_scores is empty fall back on groundtruth_classes
  # tensor.
  def true_fn():
    return tf.reshape(multiclass_scores,
                      [tf.shape(groundtruth_boxes)[0], num_classes])
  def false_fn():
    return tf.one_hot(groundtruth_classes, num_classes)
  return tf.cond(tf.size(multiclass_scores) > 0, true_fn, false_fn)


71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
def _convert_labeled_classes_to_k_hot(groundtruth_labeled_classes, num_classes):
  """Returns k-hot encoding of the labeled classes."""

  # If the input labeled_classes is empty, it assumes all classes are
  # exhaustively labeled, thus returning an all-one encoding.
  def true_fn():
    return tf.sparse_to_dense(
        groundtruth_labeled_classes - _LABEL_OFFSET, [num_classes],
        tf.constant(1, dtype=tf.float32),
        validate_indices=False)

  def false_fn():
    return tf.ones(num_classes, dtype=tf.float32)

  return tf.cond(tf.size(groundtruth_labeled_classes) > 0, true_fn, false_fn)


def _remove_unrecognized_classes(class_ids, unrecognized_label):
  """Returns class ids with unrecognized classes filtered out."""

91
92
  recognized_indices = tf.squeeze(
      tf.where(tf.greater(class_ids, unrecognized_label)), -1)
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
  return tf.gather(class_ids, recognized_indices)


def assert_or_prune_invalid_boxes(boxes):
  """Makes sure boxes have valid sizes (ymax >= ymin, xmax >= xmin).

  When the hardware supports assertions, the function raises an error when
  boxes have an invalid size. If assertions are not supported (e.g. on TPU),
  boxes with invalid sizes are filtered out.

  Args:
    boxes: float tensor of shape [num_boxes, 4]

  Returns:
    boxes: float tensor of shape [num_valid_boxes, 4] with invalid boxes
      filtered out.

  Raises:
    tf.errors.InvalidArgumentError: When we detect boxes with invalid size.
      This is not supported on TPUs.
  """

  ymin, xmin, ymax, xmax = tf.split(
      boxes, num_or_size_splits=4, axis=1)

  height_check = tf.Assert(tf.reduce_all(ymax >= ymin), [ymin, ymax])
  width_check = tf.Assert(tf.reduce_all(xmax >= xmin), [xmin, xmax])

  with tf.control_dependencies([height_check, width_check]):
    boxes_tensor = tf.concat([ymin, xmin, ymax, xmax], axis=1)
    boxlist = box_list.BoxList(boxes_tensor)
    # TODO(b/149221748) Remove pruning when XLA supports assertions.
    boxlist = box_list_ops.prune_small_boxes(boxlist, 0)

  return boxlist.get()


130
131
132
133
134
135
def transform_input_data(tensor_dict,
                         model_preprocess_fn,
                         image_resizer_fn,
                         num_classes,
                         data_augmentation_fn=None,
                         merge_multiple_boxes=False,
136
                         retain_original_image=False,
137
                         use_multiclass_scores=False,
138
                         use_bfloat16=False,
139
140
                         retain_original_image_additional_channels=False,
                         keypoint_type_weight=None):
141
142
143
  """A single function that is responsible for all input data transformations.

  Data transformation functions are applied in the following order.
144
145
146
147
148
  1. If key fields.InputDataFields.image_additional_channels is present in
     tensor_dict, the additional channels will be merged into
     fields.InputDataFields.image.
  2. data_augmentation_fn (optional): applied on tensor_dict.
  3. model_preprocess_fn: applied only on image tensor in tensor_dict.
149
150
151
152
153
154
  4. keypoint_type_weight (optional): If groundtruth keypoints are in
     the tensor dictionary, per-keypoint weights are produced. These weights are
     initialized by `keypoint_type_weight` (or ones if left None).
     Then, for all keypoints that are not visible, the weights are set to 0 (to
     avoid penalizing the model in a loss function).
  5. image_resizer_fn: applied on original image and instance mask tensor in
155
     tensor_dict.
156
157
  6. one_hot_encoding: applied to classes tensor in tensor_dict.
  7. merge_multiple_boxes (optional): when groundtruth boxes are exactly the
158
159
160
161
162
163
164
165
166
     same they can be merged into a single box with an associated k-hot class
     label.

  Args:
    tensor_dict: dictionary containing input tensors keyed by
      fields.InputDataFields.
    model_preprocess_fn: model's preprocess function to apply on image tensor.
      This function must take in a 4-D float tensor and return a 4-D preprocess
      float tensor and a tensor containing the true image shape.
167
168
169
170
    image_resizer_fn: image resizer function to apply on groundtruth instance
      `masks. This function must take a 3-D float tensor of an image and a 3-D
      tensor of instance masks and return a resized version of these along with
      the true shapes.
171
172
173
174
175
176
177
178
    num_classes: number of max classes to one-hot (or k-hot) encode the class
      labels.
    data_augmentation_fn: (optional) data augmentation function to apply on
      input `tensor_dict`.
    merge_multiple_boxes: (optional) whether to merge multiple groundtruth boxes
      and classes for a given image if the boxes are exactly the same.
    retain_original_image: (optional) whether to retain original image in the
      output dictionary.
pkulzc's avatar
pkulzc committed
179
180
181
182
    use_multiclass_scores: whether to use multiclass scores as class targets
      instead of one-hot encoding of `groundtruth_classes`. When
      this is True and multiclass_scores is empty, one-hot encoding of
      `groundtruth_classes` is used as a fallback.
183
    use_bfloat16: (optional) a bool, whether to use bfloat16 in training.
184
185
    retain_original_image_additional_channels: (optional) Whether to retain
      original image additional channels in the output dictionary.
186
187
188
    keypoint_type_weight: A list (of length num_keypoints) containing
      groundtruth loss weights to use for each keypoint. If None, will use a
      weight of 1.
189
190
191
192

  Returns:
    A dictionary keyed by fields.InputDataFields containing the tensors obtained
    after applying all the transformations.
193
194
195
196
197

  Raises:
    KeyError: If both groundtruth_labeled_classes and groundtruth_image_classes
      are provided by the decoder in tensor_dict since both fields are
      considered to contain the same information.
198
  """
pkulzc's avatar
pkulzc committed
199
  out_tensor_dict = tensor_dict.copy()
200
201

  labeled_classes_field = fields.InputDataFields.groundtruth_labeled_classes
202
203
204
205
206
207
  image_classes_field = fields.InputDataFields.groundtruth_image_classes
  if (labeled_classes_field in out_tensor_dict and
      image_classes_field in out_tensor_dict):
    raise KeyError('groundtruth_labeled_classes and groundtruth_image_classes'
                   'are provided by the decoder, but only one should be set.')

208
209
210
211
212
213
214
215
  if labeled_classes_field in out_tensor_dict:
    # tf_example_decoder casts unrecognized labels to -1. Remove these
    # unrecognized labels before converting labeled_classes to k-hot vector.
    out_tensor_dict[labeled_classes_field] = _remove_unrecognized_classes(
        out_tensor_dict[labeled_classes_field], unrecognized_label=-1)
    out_tensor_dict[labeled_classes_field] = _convert_labeled_classes_to_k_hot(
        out_tensor_dict[labeled_classes_field], num_classes)

216
  if image_classes_field in out_tensor_dict:
217
218
    out_tensor_dict[image_classes_field] = _remove_unrecognized_classes(
        out_tensor_dict[image_classes_field], unrecognized_label=-1)
219
220
221
    out_tensor_dict[labeled_classes_field] = _convert_labeled_classes_to_k_hot(
        out_tensor_dict[image_classes_field], num_classes)

pkulzc's avatar
pkulzc committed
222
223
224
225
226
227
228
229
230
231
232
233
234
  if fields.InputDataFields.multiclass_scores in out_tensor_dict:
    out_tensor_dict[
        fields.InputDataFields
        .multiclass_scores] = _multiclass_scores_or_one_hot_labels(
            out_tensor_dict[fields.InputDataFields.multiclass_scores],
            out_tensor_dict[fields.InputDataFields.groundtruth_boxes],
            out_tensor_dict[fields.InputDataFields.groundtruth_classes],
            num_classes)

  if fields.InputDataFields.groundtruth_boxes in out_tensor_dict:
    out_tensor_dict = util_ops.filter_groundtruth_with_nan_box_coordinates(
        out_tensor_dict)
    out_tensor_dict = util_ops.filter_unrecognized_classes(out_tensor_dict)
235

236
  if retain_original_image:
pkulzc's avatar
pkulzc committed
237
238
239
    out_tensor_dict[fields.InputDataFields.original_image] = tf.cast(
        image_resizer_fn(out_tensor_dict[fields.InputDataFields.image],
                         None)[0], tf.uint8)
240

pkulzc's avatar
pkulzc committed
241
242
243
244
  if fields.InputDataFields.image_additional_channels in out_tensor_dict:
    channels = out_tensor_dict[fields.InputDataFields.image_additional_channels]
    out_tensor_dict[fields.InputDataFields.image] = tf.concat(
        [out_tensor_dict[fields.InputDataFields.image], channels], axis=2)
245
246
247
248
    if retain_original_image_additional_channels:
      out_tensor_dict[
          fields.InputDataFields.image_additional_channels] = tf.cast(
              image_resizer_fn(channels, None)[0], tf.uint8)
249

250
251
  # Apply data augmentation ops.
  if data_augmentation_fn is not None:
pkulzc's avatar
pkulzc committed
252
    out_tensor_dict = data_augmentation_fn(out_tensor_dict)
253
254

  # Apply model preprocessing ops and resize instance masks.
pkulzc's avatar
pkulzc committed
255
  image = out_tensor_dict[fields.InputDataFields.image]
256
  preprocessed_resized_image, true_image_shape = model_preprocess_fn(
257
      tf.expand_dims(tf.cast(image, dtype=tf.float32), axis=0))
258
259
260
261
262
263
264
265
266
267
268
269
270
271

  preprocessed_shape = tf.shape(preprocessed_resized_image)
  new_height, new_width = preprocessed_shape[1], preprocessed_shape[2]

  im_box = tf.stack([
      0.0, 0.0,
      tf.to_float(new_height) / tf.to_float(true_image_shape[0, 0]),
      tf.to_float(new_width) / tf.to_float(true_image_shape[0, 1])
  ])

  if fields.InputDataFields.groundtruth_boxes in tensor_dict:
    bboxes = out_tensor_dict[fields.InputDataFields.groundtruth_boxes]
    boxlist = box_list.BoxList(bboxes)
    realigned_bboxes = box_list_ops.change_coordinate_frame(boxlist, im_box)
272
273
274

    realigned_boxes_tensor = realigned_bboxes.get()
    valid_boxes_tensor = assert_or_prune_invalid_boxes(realigned_boxes_tensor)
275
    out_tensor_dict[
276
        fields.InputDataFields.groundtruth_boxes] = valid_boxes_tensor
277
278
279
280
281
282
283

  if fields.InputDataFields.groundtruth_keypoints in tensor_dict:
    keypoints = out_tensor_dict[fields.InputDataFields.groundtruth_keypoints]
    realigned_keypoints = keypoint_ops.change_coordinate_frame(keypoints,
                                                               im_box)
    out_tensor_dict[
        fields.InputDataFields.groundtruth_keypoints] = realigned_keypoints
284
285
286
287
288
289
290
291
292
293
294
    flds_gt_kpt = fields.InputDataFields.groundtruth_keypoints
    flds_gt_kpt_vis = fields.InputDataFields.groundtruth_keypoint_visibilities
    flds_gt_kpt_weights = fields.InputDataFields.groundtruth_keypoint_weights
    if flds_gt_kpt_vis not in out_tensor_dict:
      out_tensor_dict[flds_gt_kpt_vis] = tf.ones_like(
          out_tensor_dict[flds_gt_kpt][:, :, 0],
          dtype=tf.bool)
    out_tensor_dict[flds_gt_kpt_weights] = (
        keypoint_ops.keypoint_weights_from_visibilities(
            out_tensor_dict[flds_gt_kpt_vis],
            keypoint_type_weight))
295

296
297
298
299
300
301
302
  dp_surface_coords_fld = fields.InputDataFields.groundtruth_dp_surface_coords
  if dp_surface_coords_fld in tensor_dict:
    dp_surface_coords = out_tensor_dict[dp_surface_coords_fld]
    realigned_dp_surface_coords = densepose_ops.change_coordinate_frame(
        dp_surface_coords, im_box)
    out_tensor_dict[dp_surface_coords_fld] = realigned_dp_surface_coords

303
304
305
  if use_bfloat16:
    preprocessed_resized_image = tf.cast(
        preprocessed_resized_image, tf.bfloat16)
306
307
308
    if fields.InputDataFields.context_features in out_tensor_dict:
      out_tensor_dict[fields.InputDataFields.context_features] = tf.cast(
          out_tensor_dict[fields.InputDataFields.context_features], tf.bfloat16)
pkulzc's avatar
pkulzc committed
309
  out_tensor_dict[fields.InputDataFields.image] = tf.squeeze(
310
      preprocessed_resized_image, axis=0)
pkulzc's avatar
pkulzc committed
311
  out_tensor_dict[fields.InputDataFields.true_image_shape] = tf.squeeze(
312
      true_image_shape, axis=0)
pkulzc's avatar
pkulzc committed
313
314
  if fields.InputDataFields.groundtruth_instance_masks in out_tensor_dict:
    masks = out_tensor_dict[fields.InputDataFields.groundtruth_instance_masks]
315
    _, resized_masks, _ = image_resizer_fn(image, masks)
316
317
    if use_bfloat16:
      resized_masks = tf.cast(resized_masks, tf.bfloat16)
pkulzc's avatar
pkulzc committed
318
319
    out_tensor_dict[
        fields.InputDataFields.groundtruth_instance_masks] = resized_masks
320

pkulzc's avatar
pkulzc committed
321
  zero_indexed_groundtruth_classes = out_tensor_dict[
322
      fields.InputDataFields.groundtruth_classes] - _LABEL_OFFSET
323
  if use_multiclass_scores:
pkulzc's avatar
pkulzc committed
324
325
326
327
328
329
330
    out_tensor_dict[
        fields.InputDataFields.groundtruth_classes] = out_tensor_dict[
            fields.InputDataFields.multiclass_scores]
  else:
    out_tensor_dict[fields.InputDataFields.groundtruth_classes] = tf.one_hot(
        zero_indexed_groundtruth_classes, num_classes)
  out_tensor_dict.pop(fields.InputDataFields.multiclass_scores, None)
331

pkulzc's avatar
pkulzc committed
332
333
  if fields.InputDataFields.groundtruth_confidences in out_tensor_dict:
    groundtruth_confidences = out_tensor_dict[
334
        fields.InputDataFields.groundtruth_confidences]
335
    # Map the confidences to the one-hot encoding of classes
pkulzc's avatar
pkulzc committed
336
    out_tensor_dict[fields.InputDataFields.groundtruth_confidences] = (
337
        tf.reshape(groundtruth_confidences, [-1, 1]) *
pkulzc's avatar
pkulzc committed
338
        out_tensor_dict[fields.InputDataFields.groundtruth_classes])
339
340
341
  else:
    groundtruth_confidences = tf.ones_like(
        zero_indexed_groundtruth_classes, dtype=tf.float32)
pkulzc's avatar
pkulzc committed
342
343
    out_tensor_dict[fields.InputDataFields.groundtruth_confidences] = (
        out_tensor_dict[fields.InputDataFields.groundtruth_classes])
344

345
  if merge_multiple_boxes:
346
347
    merged_boxes, merged_classes, merged_confidences, _ = (
        util_ops.merge_boxes_with_multiple_labels(
pkulzc's avatar
pkulzc committed
348
            out_tensor_dict[fields.InputDataFields.groundtruth_boxes],
349
350
351
            zero_indexed_groundtruth_classes,
            groundtruth_confidences,
            num_classes))
352
    merged_classes = tf.cast(merged_classes, tf.float32)
pkulzc's avatar
pkulzc committed
353
354
355
    out_tensor_dict[fields.InputDataFields.groundtruth_boxes] = merged_boxes
    out_tensor_dict[fields.InputDataFields.groundtruth_classes] = merged_classes
    out_tensor_dict[fields.InputDataFields.groundtruth_confidences] = (
356
        merged_confidences)
pkulzc's avatar
pkulzc committed
357
358
359
  if fields.InputDataFields.groundtruth_boxes in out_tensor_dict:
    out_tensor_dict[fields.InputDataFields.num_groundtruth_boxes] = tf.shape(
        out_tensor_dict[fields.InputDataFields.groundtruth_boxes])[0]
360

pkulzc's avatar
pkulzc committed
361
  return out_tensor_dict
362
363


364
365
366
367
368
def pad_input_data_to_static_shapes(tensor_dict,
                                    max_num_boxes,
                                    num_classes,
                                    spatial_image_shape=None,
                                    max_num_context_features=None,
369
370
                                    context_feature_length=None,
                                    max_dp_points=336):
371
372
  """Pads input tensors to static shapes.

373
374
375
  In case num_additional_channels > 0, we assume that the additional channels
  have already been concatenated to the base image.

376
377
378
379
380
381
382
383
  Args:
    tensor_dict: Tensor dictionary of input data
    max_num_boxes: Max number of groundtruth boxes needed to compute shapes for
      padding.
    num_classes: Number of classes in the dataset needed to compute shapes for
      padding.
    spatial_image_shape: A list of two integers of the form [height, width]
      containing expected spatial shape of the image.
384
385
386
    max_num_context_features (optional): The maximum number of context
      features needed to compute shapes padding.
    context_feature_length (optional): The length of the context feature.
387
388
389
390
391
    max_dp_points (optional): The maximum number of DensePose sampled points per
      instance. The default (336) is selected since the original DensePose paper
      (https://arxiv.org/pdf/1802.00434.pdf) indicates that the maximum number
      of samples per part is 14, and therefore 24 * 14 = 336 is the maximum
      sampler per instance.
392
393
394
395
396
397

  Returns:
    A dictionary keyed by fields.InputDataFields containing padding shapes for
    tensors in the dataset.

  Raises:
398
    ValueError: If groundtruth classes is neither rank 1 nor rank 2, or if we
399
400
401
      detect that additional channels have not been concatenated yet, or if
      max_num_context_features is not specified and context_features is in the
      tensor dict.
402
403
404
405
406
407
408
409
410
  """

  if not spatial_image_shape or spatial_image_shape == [-1, -1]:
    height, width = None, None
  else:
    height, width = spatial_image_shape  # pylint: disable=unpacking-non-sequence

  num_additional_channels = 0
  if fields.InputDataFields.image_additional_channels in tensor_dict:
411
412
    num_additional_channels = shape_utils.get_dim_as_int(tensor_dict[
        fields.InputDataFields.image_additional_channels].shape[2])
413
414
415
416

  # We assume that if num_additional_channels > 0, then it has already been
  # concatenated to the base image (but not the ground truth).
  num_channels = 3
417
  if fields.InputDataFields.image in tensor_dict:
418
419
    num_channels = shape_utils.get_dim_as_int(
        tensor_dict[fields.InputDataFields.image].shape[2])
420
421
422
423
424
425
426

  if num_additional_channels:
    if num_additional_channels >= num_channels:
      raise ValueError(
          'Image must be already concatenated with additional channels.')

    if (fields.InputDataFields.original_image in tensor_dict and
427
428
        shape_utils.get_dim_as_int(
            tensor_dict[fields.InputDataFields.original_image].shape[2]) ==
429
430
431
432
        num_channels):
      raise ValueError(
          'Image must be already concatenated with additional channels.')

433
434
435
436
437
438
  if fields.InputDataFields.context_features in tensor_dict and (
      max_num_context_features is None):
    raise ValueError('max_num_context_features must be specified in the model '
                     'config if include_context is specified in the input '
                     'config')

439
  padding_shapes = {
440
      fields.InputDataFields.image: [height, width, num_channels],
pkulzc's avatar
pkulzc committed
441
      fields.InputDataFields.original_image_spatial_shape: [2],
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
      fields.InputDataFields.image_additional_channels: [
          height, width, num_additional_channels
      ],
      fields.InputDataFields.source_id: [],
      fields.InputDataFields.filename: [],
      fields.InputDataFields.key: [],
      fields.InputDataFields.groundtruth_difficult: [max_num_boxes],
      fields.InputDataFields.groundtruth_boxes: [max_num_boxes, 4],
      fields.InputDataFields.groundtruth_classes: [max_num_boxes, num_classes],
      fields.InputDataFields.groundtruth_instance_masks: [
          max_num_boxes, height, width
      ],
      fields.InputDataFields.groundtruth_is_crowd: [max_num_boxes],
      fields.InputDataFields.groundtruth_group_of: [max_num_boxes],
      fields.InputDataFields.groundtruth_area: [max_num_boxes],
      fields.InputDataFields.groundtruth_weights: [max_num_boxes],
458
459
460
      fields.InputDataFields.groundtruth_confidences: [
          max_num_boxes, num_classes
      ],
461
462
      fields.InputDataFields.num_groundtruth_boxes: [],
      fields.InputDataFields.groundtruth_label_types: [max_num_boxes],
463
      fields.InputDataFields.groundtruth_label_weights: [max_num_boxes],
464
465
      fields.InputDataFields.true_image_shape: [3],
      fields.InputDataFields.groundtruth_image_classes: [num_classes],
466
      fields.InputDataFields.groundtruth_image_confidences: [num_classes],
467
      fields.InputDataFields.groundtruth_labeled_classes: [num_classes],
468
469
470
471
  }

  if fields.InputDataFields.original_image in tensor_dict:
    padding_shapes[fields.InputDataFields.original_image] = [
472
473
474
        height, width,
        shape_utils.get_dim_as_int(tensor_dict[fields.InputDataFields.
                                               original_image].shape[2])
475
476
477
478
    ]
  if fields.InputDataFields.groundtruth_keypoints in tensor_dict:
    tensor_shape = (
        tensor_dict[fields.InputDataFields.groundtruth_keypoints].shape)
479
480
481
    padding_shape = [max_num_boxes,
                     shape_utils.get_dim_as_int(tensor_shape[1]),
                     shape_utils.get_dim_as_int(tensor_shape[2])]
482
483
484
485
    padding_shapes[fields.InputDataFields.groundtruth_keypoints] = padding_shape
  if fields.InputDataFields.groundtruth_keypoint_visibilities in tensor_dict:
    tensor_shape = tensor_dict[fields.InputDataFields.
                               groundtruth_keypoint_visibilities].shape
486
    padding_shape = [max_num_boxes, shape_utils.get_dim_as_int(tensor_shape[1])]
487
488
489
    padding_shapes[fields.InputDataFields.
                   groundtruth_keypoint_visibilities] = padding_shape

490
491
492
493
494
495
  if fields.InputDataFields.groundtruth_keypoint_weights in tensor_dict:
    tensor_shape = (
        tensor_dict[fields.InputDataFields.groundtruth_keypoint_weights].shape)
    padding_shape = [max_num_boxes, shape_utils.get_dim_as_int(tensor_shape[1])]
    padding_shapes[fields.InputDataFields.
                   groundtruth_keypoint_weights] = padding_shape
496
497
498
499
500
501
502
503
504
  if fields.InputDataFields.groundtruth_dp_num_points in tensor_dict:
    padding_shapes[
        fields.InputDataFields.groundtruth_dp_num_points] = [max_num_boxes]
    padding_shapes[
        fields.InputDataFields.groundtruth_dp_part_ids] = [
            max_num_boxes, max_dp_points]
    padding_shapes[
        fields.InputDataFields.groundtruth_dp_surface_coords] = [
            max_num_boxes, max_dp_points, 4]
505
506
507
  if fields.InputDataFields.groundtruth_track_ids in tensor_dict:
    padding_shapes[
        fields.InputDataFields.groundtruth_track_ids] = [max_num_boxes]
508
509
510
511
512
513
514
515
516
517
518
519
520

  # Prepare for ContextRCNN related fields.
  if fields.InputDataFields.context_features in tensor_dict:
    padding_shape = [max_num_context_features, context_feature_length]
    padding_shapes[fields.InputDataFields.context_features] = padding_shape

    tensor_shape = tf.shape(
        tensor_dict[fields.InputDataFields.context_features])
    tensor_dict[fields.InputDataFields.valid_context_size] = tensor_shape[0]
    padding_shapes[fields.InputDataFields.valid_context_size] = []
  if fields.InputDataFields.context_feature_length in tensor_dict:
    padding_shapes[fields.InputDataFields.context_feature_length] = []

521
522
523
  if fields.InputDataFields.is_annotated in tensor_dict:
    padding_shapes[fields.InputDataFields.is_annotated] = []

524
525
  padded_tensor_dict = {}
  for tensor_name in tensor_dict:
526
527
    padded_tensor_dict[tensor_name] = shape_utils.pad_or_clip_nd(
        tensor_dict[tensor_name], padding_shapes[tensor_name])
528
529
530
531
532
533
534
535

  # Make sure that the number of groundtruth boxes now reflects the
  # padded/clipped tensors.
  if fields.InputDataFields.num_groundtruth_boxes in padded_tensor_dict:
    padded_tensor_dict[fields.InputDataFields.num_groundtruth_boxes] = (
        tf.minimum(
            padded_tensor_dict[fields.InputDataFields.num_groundtruth_boxes],
            max_num_boxes))
536
537
538
  return padded_tensor_dict


539
540
541
542
543
544
545
546
547
548
549
550
551
552
def augment_input_data(tensor_dict, data_augmentation_options):
  """Applies data augmentation ops to input tensors.

  Args:
    tensor_dict: A dictionary of input tensors keyed by fields.InputDataFields.
    data_augmentation_options: A list of tuples, where each tuple contains a
      function and a dictionary that contains arguments and their values.
      Usually, this is the output of core/preprocessor.build.

  Returns:
    A dictionary of tensors obtained by applying data augmentation ops to the
    input tensor dictionary.
  """
  tensor_dict[fields.InputDataFields.image] = tf.expand_dims(
553
      tf.cast(tensor_dict[fields.InputDataFields.image], dtype=tf.float32), 0)
554
555
556
557
558

  include_instance_masks = (fields.InputDataFields.groundtruth_instance_masks
                            in tensor_dict)
  include_keypoints = (fields.InputDataFields.groundtruth_keypoints
                       in tensor_dict)
559
560
  include_keypoint_visibilities = (
      fields.InputDataFields.groundtruth_keypoint_visibilities in tensor_dict)
561
562
563
564
  include_label_weights = (fields.InputDataFields.groundtruth_weights
                           in tensor_dict)
  include_label_confidences = (fields.InputDataFields.groundtruth_confidences
                               in tensor_dict)
565
566
  include_multiclass_scores = (fields.InputDataFields.multiclass_scores in
                               tensor_dict)
567
568
569
570
  dense_pose_fields = [fields.InputDataFields.groundtruth_dp_num_points,
                       fields.InputDataFields.groundtruth_dp_part_ids,
                       fields.InputDataFields.groundtruth_dp_surface_coords]
  include_dense_pose = all(field in tensor_dict for field in dense_pose_fields)
571
572
573
  tensor_dict = preprocessor.preprocess(
      tensor_dict, data_augmentation_options,
      func_arg_map=preprocessor.get_default_func_arg_map(
574
575
          include_label_weights=include_label_weights,
          include_label_confidences=include_label_confidences,
576
          include_multiclass_scores=include_multiclass_scores,
577
          include_instance_masks=include_instance_masks,
578
          include_keypoints=include_keypoints,
579
580
          include_keypoint_visibilities=include_keypoint_visibilities,
          include_dense_pose=include_dense_pose))
581
582
583
584
585
  tensor_dict[fields.InputDataFields.image] = tf.squeeze(
      tensor_dict[fields.InputDataFields.image], axis=0)
  return tensor_dict


586
587
588
589
590
591
def _get_labels_dict(input_dict):
  """Extracts labels dict from input dict."""
  required_label_keys = [
      fields.InputDataFields.num_groundtruth_boxes,
      fields.InputDataFields.groundtruth_boxes,
      fields.InputDataFields.groundtruth_classes,
592
      fields.InputDataFields.groundtruth_weights,
593
594
595
596
597
598
  ]
  labels_dict = {}
  for key in required_label_keys:
    labels_dict[key] = input_dict[key]

  optional_label_keys = [
599
      fields.InputDataFields.groundtruth_confidences,
600
      fields.InputDataFields.groundtruth_labeled_classes,
601
602
603
604
      fields.InputDataFields.groundtruth_keypoints,
      fields.InputDataFields.groundtruth_instance_masks,
      fields.InputDataFields.groundtruth_area,
      fields.InputDataFields.groundtruth_is_crowd,
605
      fields.InputDataFields.groundtruth_group_of,
606
607
608
      fields.InputDataFields.groundtruth_difficult,
      fields.InputDataFields.groundtruth_keypoint_visibilities,
      fields.InputDataFields.groundtruth_keypoint_weights,
609
610
      fields.InputDataFields.groundtruth_dp_num_points,
      fields.InputDataFields.groundtruth_dp_part_ids,
611
612
      fields.InputDataFields.groundtruth_dp_surface_coords,
      fields.InputDataFields.groundtruth_track_ids
613
614
615
616
617
618
619
620
621
622
623
  ]

  for key in optional_label_keys:
    if key in input_dict:
      labels_dict[key] = input_dict[key]
  if fields.InputDataFields.groundtruth_difficult in labels_dict:
    labels_dict[fields.InputDataFields.groundtruth_difficult] = tf.cast(
        labels_dict[fields.InputDataFields.groundtruth_difficult], tf.int32)
  return labels_dict


624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
def _replace_empty_string_with_random_number(string_tensor):
  """Returns string unchanged if non-empty, and random string tensor otherwise.

  The random string is an integer 0 and 2**63 - 1, casted as string.


  Args:
    string_tensor: A tf.tensor of dtype string.

  Returns:
    out_string: A tf.tensor of dtype string. If string_tensor contains the empty
      string, out_string will contain a random integer casted to a string.
      Otherwise string_tensor is returned unchanged.

  """

  empty_string = tf.constant('', dtype=tf.string, name='EmptyString')

  random_source_id = tf.as_string(
      tf.random_uniform(shape=[], maxval=2**63 - 1, dtype=tf.int64))

  out_string = tf.cond(
      tf.equal(string_tensor, empty_string),
      true_fn=lambda: random_source_id,
      false_fn=lambda: string_tensor)

  return out_string


653
def _get_features_dict(input_dict, include_source_id=False):
654
  """Extracts features dict from input dict."""
655
656
657
658
659

  source_id = _replace_empty_string_with_random_number(
      input_dict[fields.InputDataFields.source_id])

  hash_from_source_id = tf.string_to_hash_bucket_fast(source_id, HASH_BINS)
660
661
662
663
664
  features = {
      fields.InputDataFields.image:
          input_dict[fields.InputDataFields.image],
      HASH_KEY: tf.cast(hash_from_source_id, tf.int32),
      fields.InputDataFields.true_image_shape:
pkulzc's avatar
pkulzc committed
665
666
667
          input_dict[fields.InputDataFields.true_image_shape],
      fields.InputDataFields.original_image_spatial_shape:
          input_dict[fields.InputDataFields.original_image_spatial_shape]
668
  }
669
670
  if include_source_id:
    features[fields.InputDataFields.source_id] = source_id
671
672
673
  if fields.InputDataFields.original_image in input_dict:
    features[fields.InputDataFields.original_image] = input_dict[
        fields.InputDataFields.original_image]
674
675
676
  if fields.InputDataFields.image_additional_channels in input_dict:
    features[fields.InputDataFields.image_additional_channels] = input_dict[
        fields.InputDataFields.image_additional_channels]
677
678
679
680
681
682
  if fields.InputDataFields.context_features in input_dict:
    features[fields.InputDataFields.context_features] = input_dict[
        fields.InputDataFields.context_features]
  if fields.InputDataFields.valid_context_size in input_dict:
    features[fields.InputDataFields.valid_context_size] = input_dict[
        fields.InputDataFields.valid_context_size]
683
684
685
  return features


686
687
def create_train_input_fn(train_config, train_input_config,
                          model_config):
688
689
690
691
692
  """Creates a train `input` function for `Estimator`.

  Args:
    train_config: A train_pb2.TrainConfig.
    train_input_config: An input_reader_pb2.InputReader.
693
    model_config: A model_pb2.DetectionModel.
694
695
696
697
698

  Returns:
    `input_fn` for `Estimator` in TRAIN mode.
  """

699
  def _train_input_fn(params=None):
700
701
    return train_input(train_config, train_input_config, model_config,
                       params=params)
702

703
  return _train_input_fn
704

705

706
def train_input(train_config, train_input_config,
707
                model_config, model=None, params=None, input_context=None):
708
709
710
711
712
713
714
715
716
  """Returns `features` and `labels` tensor dictionaries for training.

  Args:
    train_config: A train_pb2.TrainConfig.
    train_input_config: An input_reader_pb2.InputReader.
    model_config: A model_pb2.DetectionModel.
    model: A pre-constructed Detection Model.
      If None, one will be created from the config.
    params: Parameter dictionary passed from the estimator.
717
718
719
    input_context: optional, A tf.distribute.InputContext object used to
      shard filenames and compute per-replica batch_size when this function
      is being called per-replica.
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752

  Returns:
    A tf.data.Dataset that holds (features, labels) tuple.

    features: Dictionary of feature tensors.
      features[fields.InputDataFields.image] is a [batch_size, H, W, C]
        float32 tensor with preprocessed images.
      features[HASH_KEY] is a [batch_size] int32 tensor representing unique
        identifiers for the images.
      features[fields.InputDataFields.true_image_shape] is a [batch_size, 3]
        int32 tensor representing the true image shapes, as preprocessed
        images could be padded.
      features[fields.InputDataFields.original_image] (optional) is a
        [batch_size, H, W, C] float32 tensor with original images.
    labels: Dictionary of groundtruth tensors.
      labels[fields.InputDataFields.num_groundtruth_boxes] is a [batch_size]
        int32 tensor indicating the number of groundtruth boxes.
      labels[fields.InputDataFields.groundtruth_boxes] is a
        [batch_size, num_boxes, 4] float32 tensor containing the corners of
        the groundtruth boxes.
      labels[fields.InputDataFields.groundtruth_classes] is a
        [batch_size, num_boxes, num_classes] float32 one-hot tensor of
        classes.
      labels[fields.InputDataFields.groundtruth_weights] is a
        [batch_size, num_boxes] float32 tensor containing groundtruth weights
        for the boxes.
      -- Optional --
      labels[fields.InputDataFields.groundtruth_instance_masks] is a
        [batch_size, num_boxes, H, W] float32 tensor containing only binary
        values, which represent instance masks for objects.
      labels[fields.InputDataFields.groundtruth_keypoints] is a
        [batch_size, num_boxes, num_keypoints, 2] float32 tensor containing
        keypoints for each box.
753
754
755
756
757
758
      labels[fields.InputDataFields.groundtruth_weights] is a
        [batch_size, num_boxes, num_keypoints] float32 tensor containing
        groundtruth weights for the keypoints.
      labels[fields.InputDataFields.groundtruth_visibilities] is a
        [batch_size, num_boxes, num_keypoints] bool tensor containing
        groundtruth visibilities for each keypoint.
759
760
      labels[fields.InputDataFields.groundtruth_labeled_classes] is a
        [batch_size, num_classes] float32 k-hot tensor of classes.
761
762
763
764
765
766
767
768
769
770
771
      labels[fields.InputDataFields.groundtruth_dp_num_points] is a
        [batch_size, num_boxes] int32 tensor with the number of sampled
        DensePose points per object.
      labels[fields.InputDataFields.groundtruth_dp_part_ids] is a
        [batch_size, num_boxes, max_sampled_points] int32 tensor with the
        DensePose part ids (0-indexed) per object.
      labels[fields.InputDataFields.groundtruth_dp_surface_coords] is a
        [batch_size, num_boxes, max_sampled_points, 4] float32 tensor with the
        DensePose surface coordinates. The format is (y, x, v, u), where (y, x)
        are normalized image coordinates and (v, u) are normalized surface part
        coordinates.
772
773
      labels[fields.InputDataFields.groundtruth_track_ids] is a
        [batch_size, num_boxes] int32 tensor with the track ID for each object.
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794

  Raises:
    TypeError: if the `train_config`, `train_input_config` or `model_config`
      are not of the correct type.
  """
  if not isinstance(train_config, train_pb2.TrainConfig):
    raise TypeError('For training mode, the `train_config` must be a '
                    'train_pb2.TrainConfig.')
  if not isinstance(train_input_config, input_reader_pb2.InputReader):
    raise TypeError('The `train_input_config` must be a '
                    'input_reader_pb2.InputReader.')
  if not isinstance(model_config, model_pb2.DetectionModel):
    raise TypeError('The `model_config` must be a '
                    'model_pb2.DetectionModel.')

  if model is None:
    model_preprocess_fn = INPUT_BUILDER_UTIL_MAP['model_build'](
        model_config, is_training=True).preprocess
  else:
    model_preprocess_fn = model.preprocess

795
796
  num_classes = config_util.get_number_of_classes(model_config)

797
798
799
800
801
802
803
804
805
806
807
808
  def transform_and_pad_input_data_fn(tensor_dict):
    """Combines transform and pad operation."""
    data_augmentation_options = [
        preprocessor_builder.build(step)
        for step in train_config.data_augmentation_options
    ]
    data_augmentation_fn = functools.partial(
        augment_input_data,
        data_augmentation_options=data_augmentation_options)

    image_resizer_config = config_util.get_image_resizer_config(model_config)
    image_resizer_fn = image_resizer_builder.build(image_resizer_config)
809
    keypoint_type_weight = train_input_config.keypoint_type_weight or None
810
811
812
    transform_data_fn = functools.partial(
        transform_input_data, model_preprocess_fn=model_preprocess_fn,
        image_resizer_fn=image_resizer_fn,
813
        num_classes=num_classes,
814
815
816
817
        data_augmentation_fn=data_augmentation_fn,
        merge_multiple_boxes=train_config.merge_multiple_label_boxes,
        retain_original_image=train_config.retain_original_images,
        use_multiclass_scores=train_config.use_multiclass_scores,
818
819
        use_bfloat16=train_config.use_bfloat16,
        keypoint_type_weight=keypoint_type_weight)
820
821
822
823

    tensor_dict = pad_input_data_to_static_shapes(
        tensor_dict=transform_data_fn(tensor_dict),
        max_num_boxes=train_input_config.max_number_of_boxes,
824
        num_classes=num_classes,
825
        spatial_image_shape=config_util.get_spatial_image_size(
826
827
828
829
830
831
832
833
            image_resizer_config),
        max_num_context_features=config_util.get_max_num_context_features(
            model_config),
        context_feature_length=config_util.get_context_feature_length(
            model_config))
    include_source_id = train_input_config.include_source_id
    return (_get_features_dict(tensor_dict, include_source_id),
            _get_labels_dict(tensor_dict))
834
  reduce_to_frame_fn = get_reduce_to_frame_fn(train_input_config, True)
835
836
837
838

  dataset = INPUT_BUILDER_UTIL_MAP['dataset_build'](
      train_input_config,
      transform_input_data_fn=transform_and_pad_input_data_fn,
839
      batch_size=params['batch_size'] if params else train_config.batch_size,
840
841
      input_context=input_context,
      reduce_to_frame_fn=reduce_to_frame_fn)
842
  return dataset
843
844


845
def create_eval_input_fn(eval_config, eval_input_config, model_config):
846
847
848
849
850
  """Creates an eval `input` function for `Estimator`.

  Args:
    eval_config: An eval_pb2.EvalConfig.
    eval_input_config: An input_reader_pb2.InputReader.
851
    model_config: A model_pb2.DetectionModel.
852
853
854
855
856

  Returns:
    `input_fn` for `Estimator` in EVAL mode.
  """

857
  def _eval_input_fn(params=None):
858
859
    return eval_input(eval_config, eval_input_config, model_config,
                      params=params)
860

861
  return _eval_input_fn
862

863

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
def eval_input(eval_config, eval_input_config, model_config,
               model=None, params=None):
  """Returns `features` and `labels` tensor dictionaries for evaluation.

  Args:
    eval_config: An eval_pb2.EvalConfig.
    eval_input_config: An input_reader_pb2.InputReader.
    model_config: A model_pb2.DetectionModel.
    model: A pre-constructed Detection Model.
      If None, one will be created from the config.
    params: Parameter dictionary passed from the estimator.

  Returns:
    A tf.data.Dataset that holds (features, labels) tuple.

    features: Dictionary of feature tensors.
      features[fields.InputDataFields.image] is a [1, H, W, C] float32 tensor
        with preprocessed images.
      features[HASH_KEY] is a [1] int32 tensor representing unique
        identifiers for the images.
      features[fields.InputDataFields.true_image_shape] is a [1, 3]
        int32 tensor representing the true image shapes, as preprocessed
        images could be padded.
      features[fields.InputDataFields.original_image] is a [1, H', W', C]
        float32 tensor with the original image.
    labels: Dictionary of groundtruth tensors.
      labels[fields.InputDataFields.groundtruth_boxes] is a [1, num_boxes, 4]
        float32 tensor containing the corners of the groundtruth boxes.
      labels[fields.InputDataFields.groundtruth_classes] is a
        [num_boxes, num_classes] float32 one-hot tensor of classes.
      labels[fields.InputDataFields.groundtruth_area] is a [1, num_boxes]
        float32 tensor containing object areas.
      labels[fields.InputDataFields.groundtruth_is_crowd] is a [1, num_boxes]
        bool tensor indicating if the boxes enclose a crowd.
      labels[fields.InputDataFields.groundtruth_difficult] is a [1, num_boxes]
        int32 tensor indicating if the boxes represent difficult instances.
      -- Optional --
      labels[fields.InputDataFields.groundtruth_instance_masks] is a
        [1, num_boxes, H, W] float32 tensor containing only binary values,
        which represent instance masks for objects.
904
905
906
907
908
909
      labels[fields.InputDataFields.groundtruth_weights] is a
        [batch_size, num_boxes, num_keypoints] float32 tensor containing
        groundtruth weights for the keypoints.
      labels[fields.InputDataFields.groundtruth_visibilities] is a
        [batch_size, num_boxes, num_keypoints] bool tensor containing
        groundtruth visibilities for each keypoint.
910
911
912
913
914
      labels[fields.InputDataFields.groundtruth_group_of] is a [1, num_boxes]
        bool tensor indicating if the box covers more than 5 instances of the
        same class which heavily occlude each other.
      labels[fields.InputDataFields.groundtruth_labeled_classes] is a
        [num_boxes, num_classes] float32 k-hot tensor of classes.
915
916
917
918
919
920
921
922
923
924
925
      labels[fields.InputDataFields.groundtruth_dp_num_points] is a
        [batch_size, num_boxes] int32 tensor with the number of sampled
        DensePose points per object.
      labels[fields.InputDataFields.groundtruth_dp_part_ids] is a
        [batch_size, num_boxes, max_sampled_points] int32 tensor with the
        DensePose part ids (0-indexed) per object.
      labels[fields.InputDataFields.groundtruth_dp_surface_coords] is a
        [batch_size, num_boxes, max_sampled_points, 4] float32 tensor with the
        DensePose surface coordinates. The format is (y, x, v, u), where (y, x)
        are normalized image coordinates and (v, u) are normalized surface part
        coordinates.
926
927
      labels[fields.InputDataFields.groundtruth_track_ids] is a
        [batch_size, num_boxes] int32 tensor with the track ID for each object.
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943

  Raises:
    TypeError: if the `eval_config`, `eval_input_config` or `model_config`
      are not of the correct type.
  """
  params = params or {}
  if not isinstance(eval_config, eval_pb2.EvalConfig):
    raise TypeError('For eval mode, the `eval_config` must be a '
                    'train_pb2.EvalConfig.')
  if not isinstance(eval_input_config, input_reader_pb2.InputReader):
    raise TypeError('The `eval_input_config` must be a '
                    'input_reader_pb2.InputReader.')
  if not isinstance(model_config, model_pb2.DetectionModel):
    raise TypeError('The `model_config` must be a '
                    'model_pb2.DetectionModel.')

944
945
946
947
948
949
950
951
  if eval_config.force_no_resize:
    arch = model_config.WhichOneof('model')
    arch_config = getattr(model_config, arch)
    image_resizer_proto = image_resizer_pb2.ImageResizer()
    image_resizer_proto.identity_resizer.CopyFrom(
        image_resizer_pb2.IdentityResizer())
    arch_config.image_resizer.CopyFrom(image_resizer_proto)

952
953
954
955
956
957
958
959
960
961
962
963
  if model is None:
    model_preprocess_fn = INPUT_BUILDER_UTIL_MAP['model_build'](
        model_config, is_training=False).preprocess
  else:
    model_preprocess_fn = model.preprocess

  def transform_and_pad_input_data_fn(tensor_dict):
    """Combines transform and pad operation."""
    num_classes = config_util.get_number_of_classes(model_config)

    image_resizer_config = config_util.get_image_resizer_config(model_config)
    image_resizer_fn = image_resizer_builder.build(image_resizer_config)
964
    keypoint_type_weight = eval_input_config.keypoint_type_weight or None
965
966
967
968
969
970

    transform_data_fn = functools.partial(
        transform_input_data, model_preprocess_fn=model_preprocess_fn,
        image_resizer_fn=image_resizer_fn,
        num_classes=num_classes,
        data_augmentation_fn=None,
971
972
        retain_original_image=eval_config.retain_original_images,
        retain_original_image_additional_channels=
973
974
        eval_config.retain_original_image_additional_channels,
        keypoint_type_weight=keypoint_type_weight)
975
976
977
978
979
    tensor_dict = pad_input_data_to_static_shapes(
        tensor_dict=transform_data_fn(tensor_dict),
        max_num_boxes=eval_input_config.max_number_of_boxes,
        num_classes=config_util.get_number_of_classes(model_config),
        spatial_image_shape=config_util.get_spatial_image_size(
980
981
982
983
984
985
986
987
            image_resizer_config),
        max_num_context_features=config_util.get_max_num_context_features(
            model_config),
        context_feature_length=config_util.get_context_feature_length(
            model_config))
    include_source_id = eval_input_config.include_source_id
    return (_get_features_dict(tensor_dict, include_source_id),
            _get_labels_dict(tensor_dict))
988
989
990

  reduce_to_frame_fn = get_reduce_to_frame_fn(eval_input_config, False)

991
992
993
  dataset = INPUT_BUILDER_UTIL_MAP['dataset_build'](
      eval_input_config,
      batch_size=params['batch_size'] if params else eval_config.batch_size,
994
995
      transform_input_data_fn=transform_and_pad_input_data_fn,
      reduce_to_frame_fn=reduce_to_frame_fn)
996
  return dataset
997
998


999
def create_predict_input_fn(model_config, predict_input_config):
1000
1001
  """Creates a predict `input` function for `Estimator`.

1002
1003
  Args:
    model_config: A model_pb2.DetectionModel.
1004
    predict_input_config: An input_reader_pb2.InputReader.
1005

1006
1007
1008
1009
  Returns:
    `input_fn` for `Estimator` in PREDICT mode.
  """

1010
  def _predict_input_fn(params=None):
1011
1012
    """Decodes serialized tf.Examples and returns `ServingInputReceiver`.

1013
1014
1015
    Args:
      params: Parameter dictionary passed from the estimator.

1016
1017
1018
    Returns:
      `ServingInputReceiver`.
    """
1019
    del params
1020
    example = tf.placeholder(dtype=tf.string, shape=[], name='tf_example')
1021

1022
    num_classes = config_util.get_number_of_classes(model_config)
1023
1024
1025
    model_preprocess_fn = INPUT_BUILDER_UTIL_MAP['model_build'](
        model_config, is_training=False).preprocess

1026
1027
    image_resizer_config = config_util.get_image_resizer_config(model_config)
    image_resizer_fn = image_resizer_builder.build(image_resizer_config)
1028

1029
    transform_fn = functools.partial(
1030
        transform_input_data, model_preprocess_fn=model_preprocess_fn,
1031
1032
1033
1034
        image_resizer_fn=image_resizer_fn,
        num_classes=num_classes,
        data_augmentation_fn=None)

1035
1036
1037
    decoder = tf_example_decoder.TfExampleDecoder(
        load_instance_masks=False,
        num_additional_channels=predict_input_config.num_additional_channels)
1038
    input_dict = transform_fn(decoder.decode(example))
1039
    images = tf.cast(input_dict[fields.InputDataFields.image], dtype=tf.float32)
1040
    images = tf.expand_dims(images, axis=0)
1041
1042
    true_image_shape = tf.expand_dims(
        input_dict[fields.InputDataFields.true_image_shape], axis=0)
1043
1044

    return tf.estimator.export.ServingInputReceiver(
1045
1046
1047
        features={
            fields.InputDataFields.image: images,
            fields.InputDataFields.true_image_shape: true_image_shape},
1048
1049
1050
        receiver_tensors={SERVING_FED_EXAMPLE_KEY: example})

  return _predict_input_fn
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071


def get_reduce_to_frame_fn(input_reader_config, is_training):
  """Returns a function reducing sequence tensors to single frame tensors.

  If the input type is not TF_SEQUENCE_EXAMPLE, the tensors are passed through
  this function unchanged. Otherwise, when in training mode, a single frame is
  selected at random from the sequence example, and the tensors for that frame
  are converted to single frame tensors, with all associated context features.
  In evaluation mode all frames are converted to single frame tensors with
  copied context tensors. After the sequence example tensors are converted into
  one or many single frame tensors, the images from each frame are decoded.

  Args:
    input_reader_config: An input_reader_pb2.InputReader.
    is_training: Whether we are in training mode.

  Returns:
    `reduce_to_frame_fn` for the dataset builder
  """
  if input_reader_config.input_type != (
1072
1073
      input_reader_pb2.InputType.Value('TF_SEQUENCE_EXAMPLE')):
    return lambda dataset, dataset_map_fn, batch_size, config: dataset
1074
  else:
1075
1076
    def reduce_to_frame(dataset, dataset_map_fn, batch_size,
                        input_reader_config):
1077
1078
1079
1080
      """Returns a function reducing sequence tensors to single frame tensors.

      Args:
        dataset: A tf dataset containing sequence tensors.
1081
1082
1083
1084
1085
1086
        dataset_map_fn: A function that handles whether to
          map_with_legacy_function for this dataset
        batch_size: used if map_with_legacy_function is true to determine
          num_parallel_calls
        input_reader_config: used if map_with_legacy_function is true to
          determine num_parallel_calls
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107

      Returns:
        A tf dataset containing single frame tensors.
      """
      if is_training:
        def get_single_frame(tensor_dict):
          """Returns a random frame from a sequence.

          Picks a random frame and returns slices of sequence tensors
          corresponding to the random frame. Returns non-sequence tensors
          unchanged.

          Args:
            tensor_dict: A dictionary containing sequence tensors.

          Returns:
            Tensors for a single random frame within the sequence.
          """
          num_frames = tf.cast(
              tf.shape(tensor_dict[fields.InputDataFields.source_id])[0],
              dtype=tf.int32)
1108
1109
1110
1111
1112
1113
          if input_reader_config.frame_index == -1:
            frame_index = tf.random.uniform((), minval=0, maxval=num_frames,
                                            dtype=tf.int32)
          else:
            frame_index = tf.constant(input_reader_config.frame_index,
                                      dtype=tf.int32)
1114
1115
1116
1117
1118
1119
1120
1121
1122
          out_tensor_dict = {}
          for key in tensor_dict:
            if key in fields.SEQUENCE_FIELDS:
              # Slice random frame from sequence tensors
              out_tensor_dict[key] = tensor_dict[key][frame_index]
            else:
              # Copy all context tensors.
              out_tensor_dict[key] = tensor_dict[key]
          return out_tensor_dict
1123
1124
        dataset = dataset_map_fn(dataset, get_single_frame, batch_size,
                                 input_reader_config)
1125
      else:
1126
1127
        dataset = dataset_map_fn(dataset, util_ops.tile_context_tensors,
                                 batch_size, input_reader_config)
1128
1129
        dataset = dataset.unbatch()
      # Decode frame here as SequenceExample tensors contain encoded images.
1130
1131
      dataset = dataset_map_fn(dataset, util_ops.decode_image, batch_size,
                               input_reader_config)
1132
1133
      return dataset
    return reduce_to_frame