"vscode:/vscode.git/clone" did not exist on "c9bcffd2a53423e6a183e312a58675fb48435d2a"
inputs.py 50.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Model input function for tf-learn object detection model."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import functools

23
import tensorflow.compat.v1 as tf
24
from object_detection.builders import dataset_builder
25
26
from object_detection.builders import image_resizer_builder
from object_detection.builders import model_builder
27
from object_detection.builders import preprocessor_builder
28
29
from object_detection.core import box_list
from object_detection.core import box_list_ops
30
from object_detection.core import densepose_ops
31
from object_detection.core import keypoint_ops
32
from object_detection.core import preprocessor
33
34
35
from object_detection.core import standard_fields as fields
from object_detection.data_decoders import tf_example_decoder
from object_detection.protos import eval_pb2
36
from object_detection.protos import image_resizer_pb2
37
from object_detection.protos import input_reader_pb2
38
from object_detection.protos import model_pb2
39
from object_detection.protos import train_pb2
40
from object_detection.utils import config_util
41
from object_detection.utils import ops as util_ops
42
from object_detection.utils import shape_utils
43

44
45
HASH_KEY = 'hash'
HASH_BINS = 1 << 31
46
SERVING_FED_EXAMPLE_KEY = 'serialized_example'
47
_LABEL_OFFSET = 1
48

49
50
51
# A map of names to methods that help build the input pipeline.
INPUT_BUILDER_UTIL_MAP = {
    'dataset_build': dataset_builder.build,
52
    'model_build': model_builder.build,
53
54
}

55

pkulzc's avatar
pkulzc committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
def _multiclass_scores_or_one_hot_labels(multiclass_scores,
                                         groundtruth_boxes,
                                         groundtruth_classes, num_classes):
  """Returns one-hot encoding of classes when multiclass_scores is empty."""
  # Replace groundtruth_classes tensor with multiclass_scores tensor when its
  # non-empty. If multiclass_scores is empty fall back on groundtruth_classes
  # tensor.
  def true_fn():
    return tf.reshape(multiclass_scores,
                      [tf.shape(groundtruth_boxes)[0], num_classes])
  def false_fn():
    return tf.one_hot(groundtruth_classes, num_classes)
  return tf.cond(tf.size(multiclass_scores) > 0, true_fn, false_fn)


71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
def _convert_labeled_classes_to_k_hot(groundtruth_labeled_classes, num_classes):
  """Returns k-hot encoding of the labeled classes."""

  # If the input labeled_classes is empty, it assumes all classes are
  # exhaustively labeled, thus returning an all-one encoding.
  def true_fn():
    return tf.sparse_to_dense(
        groundtruth_labeled_classes - _LABEL_OFFSET, [num_classes],
        tf.constant(1, dtype=tf.float32),
        validate_indices=False)

  def false_fn():
    return tf.ones(num_classes, dtype=tf.float32)

  return tf.cond(tf.size(groundtruth_labeled_classes) > 0, true_fn, false_fn)


def _remove_unrecognized_classes(class_ids, unrecognized_label):
  """Returns class ids with unrecognized classes filtered out."""

  recognized_indices = tf.where(tf.greater(class_ids, unrecognized_label))
  return tf.gather(class_ids, recognized_indices)


def assert_or_prune_invalid_boxes(boxes):
  """Makes sure boxes have valid sizes (ymax >= ymin, xmax >= xmin).

  When the hardware supports assertions, the function raises an error when
  boxes have an invalid size. If assertions are not supported (e.g. on TPU),
  boxes with invalid sizes are filtered out.

  Args:
    boxes: float tensor of shape [num_boxes, 4]

  Returns:
    boxes: float tensor of shape [num_valid_boxes, 4] with invalid boxes
      filtered out.

  Raises:
    tf.errors.InvalidArgumentError: When we detect boxes with invalid size.
      This is not supported on TPUs.
  """

  ymin, xmin, ymax, xmax = tf.split(
      boxes, num_or_size_splits=4, axis=1)

  height_check = tf.Assert(tf.reduce_all(ymax >= ymin), [ymin, ymax])
  width_check = tf.Assert(tf.reduce_all(xmax >= xmin), [xmin, xmax])

  with tf.control_dependencies([height_check, width_check]):
    boxes_tensor = tf.concat([ymin, xmin, ymax, xmax], axis=1)
    boxlist = box_list.BoxList(boxes_tensor)
    # TODO(b/149221748) Remove pruning when XLA supports assertions.
    boxlist = box_list_ops.prune_small_boxes(boxlist, 0)

  return boxlist.get()


129
130
131
132
133
134
def transform_input_data(tensor_dict,
                         model_preprocess_fn,
                         image_resizer_fn,
                         num_classes,
                         data_augmentation_fn=None,
                         merge_multiple_boxes=False,
135
                         retain_original_image=False,
136
                         use_multiclass_scores=False,
137
                         use_bfloat16=False,
138
139
                         retain_original_image_additional_channels=False,
                         keypoint_type_weight=None):
140
141
142
  """A single function that is responsible for all input data transformations.

  Data transformation functions are applied in the following order.
143
144
145
146
147
  1. If key fields.InputDataFields.image_additional_channels is present in
     tensor_dict, the additional channels will be merged into
     fields.InputDataFields.image.
  2. data_augmentation_fn (optional): applied on tensor_dict.
  3. model_preprocess_fn: applied only on image tensor in tensor_dict.
148
149
150
151
152
153
  4. keypoint_type_weight (optional): If groundtruth keypoints are in
     the tensor dictionary, per-keypoint weights are produced. These weights are
     initialized by `keypoint_type_weight` (or ones if left None).
     Then, for all keypoints that are not visible, the weights are set to 0 (to
     avoid penalizing the model in a loss function).
  5. image_resizer_fn: applied on original image and instance mask tensor in
154
     tensor_dict.
155
156
  6. one_hot_encoding: applied to classes tensor in tensor_dict.
  7. merge_multiple_boxes (optional): when groundtruth boxes are exactly the
157
158
159
160
161
162
163
164
165
     same they can be merged into a single box with an associated k-hot class
     label.

  Args:
    tensor_dict: dictionary containing input tensors keyed by
      fields.InputDataFields.
    model_preprocess_fn: model's preprocess function to apply on image tensor.
      This function must take in a 4-D float tensor and return a 4-D preprocess
      float tensor and a tensor containing the true image shape.
166
167
168
169
    image_resizer_fn: image resizer function to apply on groundtruth instance
      `masks. This function must take a 3-D float tensor of an image and a 3-D
      tensor of instance masks and return a resized version of these along with
      the true shapes.
170
171
172
173
174
175
176
177
    num_classes: number of max classes to one-hot (or k-hot) encode the class
      labels.
    data_augmentation_fn: (optional) data augmentation function to apply on
      input `tensor_dict`.
    merge_multiple_boxes: (optional) whether to merge multiple groundtruth boxes
      and classes for a given image if the boxes are exactly the same.
    retain_original_image: (optional) whether to retain original image in the
      output dictionary.
pkulzc's avatar
pkulzc committed
178
179
180
181
    use_multiclass_scores: whether to use multiclass scores as class targets
      instead of one-hot encoding of `groundtruth_classes`. When
      this is True and multiclass_scores is empty, one-hot encoding of
      `groundtruth_classes` is used as a fallback.
182
    use_bfloat16: (optional) a bool, whether to use bfloat16 in training.
183
184
    retain_original_image_additional_channels: (optional) Whether to retain
      original image additional channels in the output dictionary.
185
186
187
    keypoint_type_weight: A list (of length num_keypoints) containing
      groundtruth loss weights to use for each keypoint. If None, will use a
      weight of 1.
188
189
190
191

  Returns:
    A dictionary keyed by fields.InputDataFields containing the tensors obtained
    after applying all the transformations.
192
193
194
195
196

  Raises:
    KeyError: If both groundtruth_labeled_classes and groundtruth_image_classes
      are provided by the decoder in tensor_dict since both fields are
      considered to contain the same information.
197
  """
pkulzc's avatar
pkulzc committed
198
  out_tensor_dict = tensor_dict.copy()
199
200

  labeled_classes_field = fields.InputDataFields.groundtruth_labeled_classes
201
202
203
204
205
206
  image_classes_field = fields.InputDataFields.groundtruth_image_classes
  if (labeled_classes_field in out_tensor_dict and
      image_classes_field in out_tensor_dict):
    raise KeyError('groundtruth_labeled_classes and groundtruth_image_classes'
                   'are provided by the decoder, but only one should be set.')

207
208
209
210
211
212
213
214
  if labeled_classes_field in out_tensor_dict:
    # tf_example_decoder casts unrecognized labels to -1. Remove these
    # unrecognized labels before converting labeled_classes to k-hot vector.
    out_tensor_dict[labeled_classes_field] = _remove_unrecognized_classes(
        out_tensor_dict[labeled_classes_field], unrecognized_label=-1)
    out_tensor_dict[labeled_classes_field] = _convert_labeled_classes_to_k_hot(
        out_tensor_dict[labeled_classes_field], num_classes)

215
216
217
218
  if image_classes_field in out_tensor_dict:
    out_tensor_dict[labeled_classes_field] = _convert_labeled_classes_to_k_hot(
        out_tensor_dict[image_classes_field], num_classes)

pkulzc's avatar
pkulzc committed
219
220
221
222
223
224
225
226
227
228
229
230
231
  if fields.InputDataFields.multiclass_scores in out_tensor_dict:
    out_tensor_dict[
        fields.InputDataFields
        .multiclass_scores] = _multiclass_scores_or_one_hot_labels(
            out_tensor_dict[fields.InputDataFields.multiclass_scores],
            out_tensor_dict[fields.InputDataFields.groundtruth_boxes],
            out_tensor_dict[fields.InputDataFields.groundtruth_classes],
            num_classes)

  if fields.InputDataFields.groundtruth_boxes in out_tensor_dict:
    out_tensor_dict = util_ops.filter_groundtruth_with_nan_box_coordinates(
        out_tensor_dict)
    out_tensor_dict = util_ops.filter_unrecognized_classes(out_tensor_dict)
232

233
  if retain_original_image:
pkulzc's avatar
pkulzc committed
234
235
236
    out_tensor_dict[fields.InputDataFields.original_image] = tf.cast(
        image_resizer_fn(out_tensor_dict[fields.InputDataFields.image],
                         None)[0], tf.uint8)
237

pkulzc's avatar
pkulzc committed
238
239
240
241
  if fields.InputDataFields.image_additional_channels in out_tensor_dict:
    channels = out_tensor_dict[fields.InputDataFields.image_additional_channels]
    out_tensor_dict[fields.InputDataFields.image] = tf.concat(
        [out_tensor_dict[fields.InputDataFields.image], channels], axis=2)
242
243
244
245
    if retain_original_image_additional_channels:
      out_tensor_dict[
          fields.InputDataFields.image_additional_channels] = tf.cast(
              image_resizer_fn(channels, None)[0], tf.uint8)
246

247
248
  # Apply data augmentation ops.
  if data_augmentation_fn is not None:
pkulzc's avatar
pkulzc committed
249
    out_tensor_dict = data_augmentation_fn(out_tensor_dict)
250
251

  # Apply model preprocessing ops and resize instance masks.
pkulzc's avatar
pkulzc committed
252
  image = out_tensor_dict[fields.InputDataFields.image]
253
  preprocessed_resized_image, true_image_shape = model_preprocess_fn(
254
      tf.expand_dims(tf.cast(image, dtype=tf.float32), axis=0))
255
256
257
258
259
260
261
262
263
264
265
266
267
268

  preprocessed_shape = tf.shape(preprocessed_resized_image)
  new_height, new_width = preprocessed_shape[1], preprocessed_shape[2]

  im_box = tf.stack([
      0.0, 0.0,
      tf.to_float(new_height) / tf.to_float(true_image_shape[0, 0]),
      tf.to_float(new_width) / tf.to_float(true_image_shape[0, 1])
  ])

  if fields.InputDataFields.groundtruth_boxes in tensor_dict:
    bboxes = out_tensor_dict[fields.InputDataFields.groundtruth_boxes]
    boxlist = box_list.BoxList(bboxes)
    realigned_bboxes = box_list_ops.change_coordinate_frame(boxlist, im_box)
269
270
271

    realigned_boxes_tensor = realigned_bboxes.get()
    valid_boxes_tensor = assert_or_prune_invalid_boxes(realigned_boxes_tensor)
272
    out_tensor_dict[
273
        fields.InputDataFields.groundtruth_boxes] = valid_boxes_tensor
274
275
276
277
278
279
280

  if fields.InputDataFields.groundtruth_keypoints in tensor_dict:
    keypoints = out_tensor_dict[fields.InputDataFields.groundtruth_keypoints]
    realigned_keypoints = keypoint_ops.change_coordinate_frame(keypoints,
                                                               im_box)
    out_tensor_dict[
        fields.InputDataFields.groundtruth_keypoints] = realigned_keypoints
281
282
283
284
285
286
287
288
289
290
291
    flds_gt_kpt = fields.InputDataFields.groundtruth_keypoints
    flds_gt_kpt_vis = fields.InputDataFields.groundtruth_keypoint_visibilities
    flds_gt_kpt_weights = fields.InputDataFields.groundtruth_keypoint_weights
    if flds_gt_kpt_vis not in out_tensor_dict:
      out_tensor_dict[flds_gt_kpt_vis] = tf.ones_like(
          out_tensor_dict[flds_gt_kpt][:, :, 0],
          dtype=tf.bool)
    out_tensor_dict[flds_gt_kpt_weights] = (
        keypoint_ops.keypoint_weights_from_visibilities(
            out_tensor_dict[flds_gt_kpt_vis],
            keypoint_type_weight))
292

293
294
295
296
297
298
299
  dp_surface_coords_fld = fields.InputDataFields.groundtruth_dp_surface_coords
  if dp_surface_coords_fld in tensor_dict:
    dp_surface_coords = out_tensor_dict[dp_surface_coords_fld]
    realigned_dp_surface_coords = densepose_ops.change_coordinate_frame(
        dp_surface_coords, im_box)
    out_tensor_dict[dp_surface_coords_fld] = realigned_dp_surface_coords

300
301
302
  if use_bfloat16:
    preprocessed_resized_image = tf.cast(
        preprocessed_resized_image, tf.bfloat16)
303
304
305
    if fields.InputDataFields.context_features in out_tensor_dict:
      out_tensor_dict[fields.InputDataFields.context_features] = tf.cast(
          out_tensor_dict[fields.InputDataFields.context_features], tf.bfloat16)
pkulzc's avatar
pkulzc committed
306
  out_tensor_dict[fields.InputDataFields.image] = tf.squeeze(
307
      preprocessed_resized_image, axis=0)
pkulzc's avatar
pkulzc committed
308
  out_tensor_dict[fields.InputDataFields.true_image_shape] = tf.squeeze(
309
      true_image_shape, axis=0)
pkulzc's avatar
pkulzc committed
310
311
  if fields.InputDataFields.groundtruth_instance_masks in out_tensor_dict:
    masks = out_tensor_dict[fields.InputDataFields.groundtruth_instance_masks]
312
    _, resized_masks, _ = image_resizer_fn(image, masks)
313
314
    if use_bfloat16:
      resized_masks = tf.cast(resized_masks, tf.bfloat16)
pkulzc's avatar
pkulzc committed
315
316
    out_tensor_dict[
        fields.InputDataFields.groundtruth_instance_masks] = resized_masks
317

pkulzc's avatar
pkulzc committed
318
  zero_indexed_groundtruth_classes = out_tensor_dict[
319
      fields.InputDataFields.groundtruth_classes] - _LABEL_OFFSET
320
  if use_multiclass_scores:
pkulzc's avatar
pkulzc committed
321
322
323
324
325
326
327
    out_tensor_dict[
        fields.InputDataFields.groundtruth_classes] = out_tensor_dict[
            fields.InputDataFields.multiclass_scores]
  else:
    out_tensor_dict[fields.InputDataFields.groundtruth_classes] = tf.one_hot(
        zero_indexed_groundtruth_classes, num_classes)
  out_tensor_dict.pop(fields.InputDataFields.multiclass_scores, None)
328

pkulzc's avatar
pkulzc committed
329
330
  if fields.InputDataFields.groundtruth_confidences in out_tensor_dict:
    groundtruth_confidences = out_tensor_dict[
331
        fields.InputDataFields.groundtruth_confidences]
332
    # Map the confidences to the one-hot encoding of classes
pkulzc's avatar
pkulzc committed
333
    out_tensor_dict[fields.InputDataFields.groundtruth_confidences] = (
334
        tf.reshape(groundtruth_confidences, [-1, 1]) *
pkulzc's avatar
pkulzc committed
335
        out_tensor_dict[fields.InputDataFields.groundtruth_classes])
336
337
338
  else:
    groundtruth_confidences = tf.ones_like(
        zero_indexed_groundtruth_classes, dtype=tf.float32)
pkulzc's avatar
pkulzc committed
339
340
    out_tensor_dict[fields.InputDataFields.groundtruth_confidences] = (
        out_tensor_dict[fields.InputDataFields.groundtruth_classes])
341

342
  if merge_multiple_boxes:
343
344
    merged_boxes, merged_classes, merged_confidences, _ = (
        util_ops.merge_boxes_with_multiple_labels(
pkulzc's avatar
pkulzc committed
345
            out_tensor_dict[fields.InputDataFields.groundtruth_boxes],
346
347
348
            zero_indexed_groundtruth_classes,
            groundtruth_confidences,
            num_classes))
349
    merged_classes = tf.cast(merged_classes, tf.float32)
pkulzc's avatar
pkulzc committed
350
351
352
    out_tensor_dict[fields.InputDataFields.groundtruth_boxes] = merged_boxes
    out_tensor_dict[fields.InputDataFields.groundtruth_classes] = merged_classes
    out_tensor_dict[fields.InputDataFields.groundtruth_confidences] = (
353
        merged_confidences)
pkulzc's avatar
pkulzc committed
354
355
356
  if fields.InputDataFields.groundtruth_boxes in out_tensor_dict:
    out_tensor_dict[fields.InputDataFields.num_groundtruth_boxes] = tf.shape(
        out_tensor_dict[fields.InputDataFields.groundtruth_boxes])[0]
357

pkulzc's avatar
pkulzc committed
358
  return out_tensor_dict
359
360


361
362
363
364
365
def pad_input_data_to_static_shapes(tensor_dict,
                                    max_num_boxes,
                                    num_classes,
                                    spatial_image_shape=None,
                                    max_num_context_features=None,
366
367
                                    context_feature_length=None,
                                    max_dp_points=336):
368
369
  """Pads input tensors to static shapes.

370
371
372
  In case num_additional_channels > 0, we assume that the additional channels
  have already been concatenated to the base image.

373
374
375
376
377
378
379
380
  Args:
    tensor_dict: Tensor dictionary of input data
    max_num_boxes: Max number of groundtruth boxes needed to compute shapes for
      padding.
    num_classes: Number of classes in the dataset needed to compute shapes for
      padding.
    spatial_image_shape: A list of two integers of the form [height, width]
      containing expected spatial shape of the image.
381
382
383
    max_num_context_features (optional): The maximum number of context
      features needed to compute shapes padding.
    context_feature_length (optional): The length of the context feature.
384
385
386
387
388
    max_dp_points (optional): The maximum number of DensePose sampled points per
      instance. The default (336) is selected since the original DensePose paper
      (https://arxiv.org/pdf/1802.00434.pdf) indicates that the maximum number
      of samples per part is 14, and therefore 24 * 14 = 336 is the maximum
      sampler per instance.
389
390
391
392
393
394

  Returns:
    A dictionary keyed by fields.InputDataFields containing padding shapes for
    tensors in the dataset.

  Raises:
395
    ValueError: If groundtruth classes is neither rank 1 nor rank 2, or if we
396
397
398
      detect that additional channels have not been concatenated yet, or if
      max_num_context_features is not specified and context_features is in the
      tensor dict.
399
400
401
402
403
404
405
406
407
  """

  if not spatial_image_shape or spatial_image_shape == [-1, -1]:
    height, width = None, None
  else:
    height, width = spatial_image_shape  # pylint: disable=unpacking-non-sequence

  num_additional_channels = 0
  if fields.InputDataFields.image_additional_channels in tensor_dict:
408
409
    num_additional_channels = shape_utils.get_dim_as_int(tensor_dict[
        fields.InputDataFields.image_additional_channels].shape[2])
410
411
412
413

  # We assume that if num_additional_channels > 0, then it has already been
  # concatenated to the base image (but not the ground truth).
  num_channels = 3
414
  if fields.InputDataFields.image in tensor_dict:
415
416
    num_channels = shape_utils.get_dim_as_int(
        tensor_dict[fields.InputDataFields.image].shape[2])
417
418
419
420
421
422
423

  if num_additional_channels:
    if num_additional_channels >= num_channels:
      raise ValueError(
          'Image must be already concatenated with additional channels.')

    if (fields.InputDataFields.original_image in tensor_dict and
424
425
        shape_utils.get_dim_as_int(
            tensor_dict[fields.InputDataFields.original_image].shape[2]) ==
426
427
428
429
        num_channels):
      raise ValueError(
          'Image must be already concatenated with additional channels.')

430
431
432
433
434
435
  if fields.InputDataFields.context_features in tensor_dict and (
      max_num_context_features is None):
    raise ValueError('max_num_context_features must be specified in the model '
                     'config if include_context is specified in the input '
                     'config')

436
  padding_shapes = {
437
      fields.InputDataFields.image: [height, width, num_channels],
pkulzc's avatar
pkulzc committed
438
      fields.InputDataFields.original_image_spatial_shape: [2],
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
      fields.InputDataFields.image_additional_channels: [
          height, width, num_additional_channels
      ],
      fields.InputDataFields.source_id: [],
      fields.InputDataFields.filename: [],
      fields.InputDataFields.key: [],
      fields.InputDataFields.groundtruth_difficult: [max_num_boxes],
      fields.InputDataFields.groundtruth_boxes: [max_num_boxes, 4],
      fields.InputDataFields.groundtruth_classes: [max_num_boxes, num_classes],
      fields.InputDataFields.groundtruth_instance_masks: [
          max_num_boxes, height, width
      ],
      fields.InputDataFields.groundtruth_is_crowd: [max_num_boxes],
      fields.InputDataFields.groundtruth_group_of: [max_num_boxes],
      fields.InputDataFields.groundtruth_area: [max_num_boxes],
      fields.InputDataFields.groundtruth_weights: [max_num_boxes],
455
456
457
      fields.InputDataFields.groundtruth_confidences: [
          max_num_boxes, num_classes
      ],
458
459
      fields.InputDataFields.num_groundtruth_boxes: [],
      fields.InputDataFields.groundtruth_label_types: [max_num_boxes],
460
      fields.InputDataFields.groundtruth_label_weights: [max_num_boxes],
461
462
      fields.InputDataFields.true_image_shape: [3],
      fields.InputDataFields.groundtruth_image_classes: [num_classes],
463
      fields.InputDataFields.groundtruth_image_confidences: [num_classes],
464
      fields.InputDataFields.groundtruth_labeled_classes: [num_classes],
465
466
467
468
  }

  if fields.InputDataFields.original_image in tensor_dict:
    padding_shapes[fields.InputDataFields.original_image] = [
469
470
471
        height, width,
        shape_utils.get_dim_as_int(tensor_dict[fields.InputDataFields.
                                               original_image].shape[2])
472
473
474
475
    ]
  if fields.InputDataFields.groundtruth_keypoints in tensor_dict:
    tensor_shape = (
        tensor_dict[fields.InputDataFields.groundtruth_keypoints].shape)
476
477
478
    padding_shape = [max_num_boxes,
                     shape_utils.get_dim_as_int(tensor_shape[1]),
                     shape_utils.get_dim_as_int(tensor_shape[2])]
479
480
481
482
    padding_shapes[fields.InputDataFields.groundtruth_keypoints] = padding_shape
  if fields.InputDataFields.groundtruth_keypoint_visibilities in tensor_dict:
    tensor_shape = tensor_dict[fields.InputDataFields.
                               groundtruth_keypoint_visibilities].shape
483
    padding_shape = [max_num_boxes, shape_utils.get_dim_as_int(tensor_shape[1])]
484
485
486
    padding_shapes[fields.InputDataFields.
                   groundtruth_keypoint_visibilities] = padding_shape

487
488
489
490
491
492
  if fields.InputDataFields.groundtruth_keypoint_weights in tensor_dict:
    tensor_shape = (
        tensor_dict[fields.InputDataFields.groundtruth_keypoint_weights].shape)
    padding_shape = [max_num_boxes, shape_utils.get_dim_as_int(tensor_shape[1])]
    padding_shapes[fields.InputDataFields.
                   groundtruth_keypoint_weights] = padding_shape
493
494
495
496
497
498
499
500
501
  if fields.InputDataFields.groundtruth_dp_num_points in tensor_dict:
    padding_shapes[
        fields.InputDataFields.groundtruth_dp_num_points] = [max_num_boxes]
    padding_shapes[
        fields.InputDataFields.groundtruth_dp_part_ids] = [
            max_num_boxes, max_dp_points]
    padding_shapes[
        fields.InputDataFields.groundtruth_dp_surface_coords] = [
            max_num_boxes, max_dp_points, 4]
502
503
504
  if fields.InputDataFields.groundtruth_track_ids in tensor_dict:
    padding_shapes[
        fields.InputDataFields.groundtruth_track_ids] = [max_num_boxes]
505
506
507
508
509
510
511
512
513
514
515
516
517

  # Prepare for ContextRCNN related fields.
  if fields.InputDataFields.context_features in tensor_dict:
    padding_shape = [max_num_context_features, context_feature_length]
    padding_shapes[fields.InputDataFields.context_features] = padding_shape

    tensor_shape = tf.shape(
        tensor_dict[fields.InputDataFields.context_features])
    tensor_dict[fields.InputDataFields.valid_context_size] = tensor_shape[0]
    padding_shapes[fields.InputDataFields.valid_context_size] = []
  if fields.InputDataFields.context_feature_length in tensor_dict:
    padding_shapes[fields.InputDataFields.context_feature_length] = []

518
519
520
  if fields.InputDataFields.is_annotated in tensor_dict:
    padding_shapes[fields.InputDataFields.is_annotated] = []

521
522
  padded_tensor_dict = {}
  for tensor_name in tensor_dict:
523
524
    padded_tensor_dict[tensor_name] = shape_utils.pad_or_clip_nd(
        tensor_dict[tensor_name], padding_shapes[tensor_name])
525
526
527
528
529
530
531
532

  # Make sure that the number of groundtruth boxes now reflects the
  # padded/clipped tensors.
  if fields.InputDataFields.num_groundtruth_boxes in padded_tensor_dict:
    padded_tensor_dict[fields.InputDataFields.num_groundtruth_boxes] = (
        tf.minimum(
            padded_tensor_dict[fields.InputDataFields.num_groundtruth_boxes],
            max_num_boxes))
533
534
535
  return padded_tensor_dict


536
537
538
539
540
541
542
543
544
545
546
547
548
549
def augment_input_data(tensor_dict, data_augmentation_options):
  """Applies data augmentation ops to input tensors.

  Args:
    tensor_dict: A dictionary of input tensors keyed by fields.InputDataFields.
    data_augmentation_options: A list of tuples, where each tuple contains a
      function and a dictionary that contains arguments and their values.
      Usually, this is the output of core/preprocessor.build.

  Returns:
    A dictionary of tensors obtained by applying data augmentation ops to the
    input tensor dictionary.
  """
  tensor_dict[fields.InputDataFields.image] = tf.expand_dims(
550
      tf.cast(tensor_dict[fields.InputDataFields.image], dtype=tf.float32), 0)
551
552
553
554
555

  include_instance_masks = (fields.InputDataFields.groundtruth_instance_masks
                            in tensor_dict)
  include_keypoints = (fields.InputDataFields.groundtruth_keypoints
                       in tensor_dict)
556
557
  include_keypoint_visibilities = (
      fields.InputDataFields.groundtruth_keypoint_visibilities in tensor_dict)
558
559
560
561
  include_label_weights = (fields.InputDataFields.groundtruth_weights
                           in tensor_dict)
  include_label_confidences = (fields.InputDataFields.groundtruth_confidences
                               in tensor_dict)
562
563
  include_multiclass_scores = (fields.InputDataFields.multiclass_scores in
                               tensor_dict)
564
565
566
567
  dense_pose_fields = [fields.InputDataFields.groundtruth_dp_num_points,
                       fields.InputDataFields.groundtruth_dp_part_ids,
                       fields.InputDataFields.groundtruth_dp_surface_coords]
  include_dense_pose = all(field in tensor_dict for field in dense_pose_fields)
568
569
570
  tensor_dict = preprocessor.preprocess(
      tensor_dict, data_augmentation_options,
      func_arg_map=preprocessor.get_default_func_arg_map(
571
572
          include_label_weights=include_label_weights,
          include_label_confidences=include_label_confidences,
573
          include_multiclass_scores=include_multiclass_scores,
574
          include_instance_masks=include_instance_masks,
575
          include_keypoints=include_keypoints,
576
577
          include_keypoint_visibilities=include_keypoint_visibilities,
          include_dense_pose=include_dense_pose))
578
579
580
581
582
  tensor_dict[fields.InputDataFields.image] = tf.squeeze(
      tensor_dict[fields.InputDataFields.image], axis=0)
  return tensor_dict


583
584
585
586
587
588
def _get_labels_dict(input_dict):
  """Extracts labels dict from input dict."""
  required_label_keys = [
      fields.InputDataFields.num_groundtruth_boxes,
      fields.InputDataFields.groundtruth_boxes,
      fields.InputDataFields.groundtruth_classes,
589
      fields.InputDataFields.groundtruth_weights,
590
591
592
593
594
595
  ]
  labels_dict = {}
  for key in required_label_keys:
    labels_dict[key] = input_dict[key]

  optional_label_keys = [
596
      fields.InputDataFields.groundtruth_confidences,
597
      fields.InputDataFields.groundtruth_labeled_classes,
598
599
600
601
      fields.InputDataFields.groundtruth_keypoints,
      fields.InputDataFields.groundtruth_instance_masks,
      fields.InputDataFields.groundtruth_area,
      fields.InputDataFields.groundtruth_is_crowd,
602
      fields.InputDataFields.groundtruth_group_of,
603
604
605
      fields.InputDataFields.groundtruth_difficult,
      fields.InputDataFields.groundtruth_keypoint_visibilities,
      fields.InputDataFields.groundtruth_keypoint_weights,
606
607
      fields.InputDataFields.groundtruth_dp_num_points,
      fields.InputDataFields.groundtruth_dp_part_ids,
608
609
      fields.InputDataFields.groundtruth_dp_surface_coords,
      fields.InputDataFields.groundtruth_track_ids
610
611
612
613
614
615
616
617
618
619
620
  ]

  for key in optional_label_keys:
    if key in input_dict:
      labels_dict[key] = input_dict[key]
  if fields.InputDataFields.groundtruth_difficult in labels_dict:
    labels_dict[fields.InputDataFields.groundtruth_difficult] = tf.cast(
        labels_dict[fields.InputDataFields.groundtruth_difficult], tf.int32)
  return labels_dict


621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
def _replace_empty_string_with_random_number(string_tensor):
  """Returns string unchanged if non-empty, and random string tensor otherwise.

  The random string is an integer 0 and 2**63 - 1, casted as string.


  Args:
    string_tensor: A tf.tensor of dtype string.

  Returns:
    out_string: A tf.tensor of dtype string. If string_tensor contains the empty
      string, out_string will contain a random integer casted to a string.
      Otherwise string_tensor is returned unchanged.

  """

  empty_string = tf.constant('', dtype=tf.string, name='EmptyString')

  random_source_id = tf.as_string(
      tf.random_uniform(shape=[], maxval=2**63 - 1, dtype=tf.int64))

  out_string = tf.cond(
      tf.equal(string_tensor, empty_string),
      true_fn=lambda: random_source_id,
      false_fn=lambda: string_tensor)

  return out_string


650
def _get_features_dict(input_dict, include_source_id=False):
651
  """Extracts features dict from input dict."""
652
653
654
655
656

  source_id = _replace_empty_string_with_random_number(
      input_dict[fields.InputDataFields.source_id])

  hash_from_source_id = tf.string_to_hash_bucket_fast(source_id, HASH_BINS)
657
658
659
660
661
  features = {
      fields.InputDataFields.image:
          input_dict[fields.InputDataFields.image],
      HASH_KEY: tf.cast(hash_from_source_id, tf.int32),
      fields.InputDataFields.true_image_shape:
pkulzc's avatar
pkulzc committed
662
663
664
          input_dict[fields.InputDataFields.true_image_shape],
      fields.InputDataFields.original_image_spatial_shape:
          input_dict[fields.InputDataFields.original_image_spatial_shape]
665
  }
666
667
  if include_source_id:
    features[fields.InputDataFields.source_id] = source_id
668
669
670
  if fields.InputDataFields.original_image in input_dict:
    features[fields.InputDataFields.original_image] = input_dict[
        fields.InputDataFields.original_image]
671
672
673
  if fields.InputDataFields.image_additional_channels in input_dict:
    features[fields.InputDataFields.image_additional_channels] = input_dict[
        fields.InputDataFields.image_additional_channels]
674
675
676
677
678
679
  if fields.InputDataFields.context_features in input_dict:
    features[fields.InputDataFields.context_features] = input_dict[
        fields.InputDataFields.context_features]
  if fields.InputDataFields.valid_context_size in input_dict:
    features[fields.InputDataFields.valid_context_size] = input_dict[
        fields.InputDataFields.valid_context_size]
680
681
682
  return features


683
684
def create_train_input_fn(train_config, train_input_config,
                          model_config):
685
686
687
688
689
  """Creates a train `input` function for `Estimator`.

  Args:
    train_config: A train_pb2.TrainConfig.
    train_input_config: An input_reader_pb2.InputReader.
690
    model_config: A model_pb2.DetectionModel.
691
692
693
694
695

  Returns:
    `input_fn` for `Estimator` in TRAIN mode.
  """

696
  def _train_input_fn(params=None):
697
698
    return train_input(train_config, train_input_config, model_config,
                       params=params)
699

700
  return _train_input_fn
701

702

703
def train_input(train_config, train_input_config,
704
                model_config, model=None, params=None, input_context=None):
705
706
707
708
709
710
711
712
713
  """Returns `features` and `labels` tensor dictionaries for training.

  Args:
    train_config: A train_pb2.TrainConfig.
    train_input_config: An input_reader_pb2.InputReader.
    model_config: A model_pb2.DetectionModel.
    model: A pre-constructed Detection Model.
      If None, one will be created from the config.
    params: Parameter dictionary passed from the estimator.
714
715
716
    input_context: optional, A tf.distribute.InputContext object used to
      shard filenames and compute per-replica batch_size when this function
      is being called per-replica.
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749

  Returns:
    A tf.data.Dataset that holds (features, labels) tuple.

    features: Dictionary of feature tensors.
      features[fields.InputDataFields.image] is a [batch_size, H, W, C]
        float32 tensor with preprocessed images.
      features[HASH_KEY] is a [batch_size] int32 tensor representing unique
        identifiers for the images.
      features[fields.InputDataFields.true_image_shape] is a [batch_size, 3]
        int32 tensor representing the true image shapes, as preprocessed
        images could be padded.
      features[fields.InputDataFields.original_image] (optional) is a
        [batch_size, H, W, C] float32 tensor with original images.
    labels: Dictionary of groundtruth tensors.
      labels[fields.InputDataFields.num_groundtruth_boxes] is a [batch_size]
        int32 tensor indicating the number of groundtruth boxes.
      labels[fields.InputDataFields.groundtruth_boxes] is a
        [batch_size, num_boxes, 4] float32 tensor containing the corners of
        the groundtruth boxes.
      labels[fields.InputDataFields.groundtruth_classes] is a
        [batch_size, num_boxes, num_classes] float32 one-hot tensor of
        classes.
      labels[fields.InputDataFields.groundtruth_weights] is a
        [batch_size, num_boxes] float32 tensor containing groundtruth weights
        for the boxes.
      -- Optional --
      labels[fields.InputDataFields.groundtruth_instance_masks] is a
        [batch_size, num_boxes, H, W] float32 tensor containing only binary
        values, which represent instance masks for objects.
      labels[fields.InputDataFields.groundtruth_keypoints] is a
        [batch_size, num_boxes, num_keypoints, 2] float32 tensor containing
        keypoints for each box.
750
751
752
753
754
755
      labels[fields.InputDataFields.groundtruth_weights] is a
        [batch_size, num_boxes, num_keypoints] float32 tensor containing
        groundtruth weights for the keypoints.
      labels[fields.InputDataFields.groundtruth_visibilities] is a
        [batch_size, num_boxes, num_keypoints] bool tensor containing
        groundtruth visibilities for each keypoint.
756
757
      labels[fields.InputDataFields.groundtruth_labeled_classes] is a
        [batch_size, num_classes] float32 k-hot tensor of classes.
758
759
760
761
762
763
764
765
766
767
768
      labels[fields.InputDataFields.groundtruth_dp_num_points] is a
        [batch_size, num_boxes] int32 tensor with the number of sampled
        DensePose points per object.
      labels[fields.InputDataFields.groundtruth_dp_part_ids] is a
        [batch_size, num_boxes, max_sampled_points] int32 tensor with the
        DensePose part ids (0-indexed) per object.
      labels[fields.InputDataFields.groundtruth_dp_surface_coords] is a
        [batch_size, num_boxes, max_sampled_points, 4] float32 tensor with the
        DensePose surface coordinates. The format is (y, x, v, u), where (y, x)
        are normalized image coordinates and (v, u) are normalized surface part
        coordinates.
769
770
      labels[fields.InputDataFields.groundtruth_track_ids] is a
        [batch_size, num_boxes] int32 tensor with the track ID for each object.
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791

  Raises:
    TypeError: if the `train_config`, `train_input_config` or `model_config`
      are not of the correct type.
  """
  if not isinstance(train_config, train_pb2.TrainConfig):
    raise TypeError('For training mode, the `train_config` must be a '
                    'train_pb2.TrainConfig.')
  if not isinstance(train_input_config, input_reader_pb2.InputReader):
    raise TypeError('The `train_input_config` must be a '
                    'input_reader_pb2.InputReader.')
  if not isinstance(model_config, model_pb2.DetectionModel):
    raise TypeError('The `model_config` must be a '
                    'model_pb2.DetectionModel.')

  if model is None:
    model_preprocess_fn = INPUT_BUILDER_UTIL_MAP['model_build'](
        model_config, is_training=True).preprocess
  else:
    model_preprocess_fn = model.preprocess

792
793
  num_classes = config_util.get_number_of_classes(model_config)

794
795
796
797
798
799
800
801
802
803
804
805
  def transform_and_pad_input_data_fn(tensor_dict):
    """Combines transform and pad operation."""
    data_augmentation_options = [
        preprocessor_builder.build(step)
        for step in train_config.data_augmentation_options
    ]
    data_augmentation_fn = functools.partial(
        augment_input_data,
        data_augmentation_options=data_augmentation_options)

    image_resizer_config = config_util.get_image_resizer_config(model_config)
    image_resizer_fn = image_resizer_builder.build(image_resizer_config)
806
    keypoint_type_weight = train_input_config.keypoint_type_weight or None
807
808
809
    transform_data_fn = functools.partial(
        transform_input_data, model_preprocess_fn=model_preprocess_fn,
        image_resizer_fn=image_resizer_fn,
810
        num_classes=num_classes,
811
812
813
814
        data_augmentation_fn=data_augmentation_fn,
        merge_multiple_boxes=train_config.merge_multiple_label_boxes,
        retain_original_image=train_config.retain_original_images,
        use_multiclass_scores=train_config.use_multiclass_scores,
815
816
        use_bfloat16=train_config.use_bfloat16,
        keypoint_type_weight=keypoint_type_weight)
817
818
819
820

    tensor_dict = pad_input_data_to_static_shapes(
        tensor_dict=transform_data_fn(tensor_dict),
        max_num_boxes=train_input_config.max_number_of_boxes,
821
        num_classes=num_classes,
822
        spatial_image_shape=config_util.get_spatial_image_size(
823
824
825
826
827
828
829
830
            image_resizer_config),
        max_num_context_features=config_util.get_max_num_context_features(
            model_config),
        context_feature_length=config_util.get_context_feature_length(
            model_config))
    include_source_id = train_input_config.include_source_id
    return (_get_features_dict(tensor_dict, include_source_id),
            _get_labels_dict(tensor_dict))
831
  reduce_to_frame_fn = get_reduce_to_frame_fn(train_input_config, True)
832
833
834
835

  dataset = INPUT_BUILDER_UTIL_MAP['dataset_build'](
      train_input_config,
      transform_input_data_fn=transform_and_pad_input_data_fn,
836
      batch_size=params['batch_size'] if params else train_config.batch_size,
837
838
      input_context=input_context,
      reduce_to_frame_fn=reduce_to_frame_fn)
839
  return dataset
840
841


842
def create_eval_input_fn(eval_config, eval_input_config, model_config):
843
844
845
846
847
  """Creates an eval `input` function for `Estimator`.

  Args:
    eval_config: An eval_pb2.EvalConfig.
    eval_input_config: An input_reader_pb2.InputReader.
848
    model_config: A model_pb2.DetectionModel.
849
850
851
852
853

  Returns:
    `input_fn` for `Estimator` in EVAL mode.
  """

854
  def _eval_input_fn(params=None):
855
856
    return eval_input(eval_config, eval_input_config, model_config,
                      params=params)
857

858
  return _eval_input_fn
859

860

861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
def eval_input(eval_config, eval_input_config, model_config,
               model=None, params=None):
  """Returns `features` and `labels` tensor dictionaries for evaluation.

  Args:
    eval_config: An eval_pb2.EvalConfig.
    eval_input_config: An input_reader_pb2.InputReader.
    model_config: A model_pb2.DetectionModel.
    model: A pre-constructed Detection Model.
      If None, one will be created from the config.
    params: Parameter dictionary passed from the estimator.

  Returns:
    A tf.data.Dataset that holds (features, labels) tuple.

    features: Dictionary of feature tensors.
      features[fields.InputDataFields.image] is a [1, H, W, C] float32 tensor
        with preprocessed images.
      features[HASH_KEY] is a [1] int32 tensor representing unique
        identifiers for the images.
      features[fields.InputDataFields.true_image_shape] is a [1, 3]
        int32 tensor representing the true image shapes, as preprocessed
        images could be padded.
      features[fields.InputDataFields.original_image] is a [1, H', W', C]
        float32 tensor with the original image.
    labels: Dictionary of groundtruth tensors.
      labels[fields.InputDataFields.groundtruth_boxes] is a [1, num_boxes, 4]
        float32 tensor containing the corners of the groundtruth boxes.
      labels[fields.InputDataFields.groundtruth_classes] is a
        [num_boxes, num_classes] float32 one-hot tensor of classes.
      labels[fields.InputDataFields.groundtruth_area] is a [1, num_boxes]
        float32 tensor containing object areas.
      labels[fields.InputDataFields.groundtruth_is_crowd] is a [1, num_boxes]
        bool tensor indicating if the boxes enclose a crowd.
      labels[fields.InputDataFields.groundtruth_difficult] is a [1, num_boxes]
        int32 tensor indicating if the boxes represent difficult instances.
      -- Optional --
      labels[fields.InputDataFields.groundtruth_instance_masks] is a
        [1, num_boxes, H, W] float32 tensor containing only binary values,
        which represent instance masks for objects.
901
902
903
904
905
906
      labels[fields.InputDataFields.groundtruth_weights] is a
        [batch_size, num_boxes, num_keypoints] float32 tensor containing
        groundtruth weights for the keypoints.
      labels[fields.InputDataFields.groundtruth_visibilities] is a
        [batch_size, num_boxes, num_keypoints] bool tensor containing
        groundtruth visibilities for each keypoint.
907
908
909
910
911
      labels[fields.InputDataFields.groundtruth_group_of] is a [1, num_boxes]
        bool tensor indicating if the box covers more than 5 instances of the
        same class which heavily occlude each other.
      labels[fields.InputDataFields.groundtruth_labeled_classes] is a
        [num_boxes, num_classes] float32 k-hot tensor of classes.
912
913
914
915
916
917
918
919
920
921
922
      labels[fields.InputDataFields.groundtruth_dp_num_points] is a
        [batch_size, num_boxes] int32 tensor with the number of sampled
        DensePose points per object.
      labels[fields.InputDataFields.groundtruth_dp_part_ids] is a
        [batch_size, num_boxes, max_sampled_points] int32 tensor with the
        DensePose part ids (0-indexed) per object.
      labels[fields.InputDataFields.groundtruth_dp_surface_coords] is a
        [batch_size, num_boxes, max_sampled_points, 4] float32 tensor with the
        DensePose surface coordinates. The format is (y, x, v, u), where (y, x)
        are normalized image coordinates and (v, u) are normalized surface part
        coordinates.
923
924
      labels[fields.InputDataFields.groundtruth_track_ids] is a
        [batch_size, num_boxes] int32 tensor with the track ID for each object.
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940

  Raises:
    TypeError: if the `eval_config`, `eval_input_config` or `model_config`
      are not of the correct type.
  """
  params = params or {}
  if not isinstance(eval_config, eval_pb2.EvalConfig):
    raise TypeError('For eval mode, the `eval_config` must be a '
                    'train_pb2.EvalConfig.')
  if not isinstance(eval_input_config, input_reader_pb2.InputReader):
    raise TypeError('The `eval_input_config` must be a '
                    'input_reader_pb2.InputReader.')
  if not isinstance(model_config, model_pb2.DetectionModel):
    raise TypeError('The `model_config` must be a '
                    'model_pb2.DetectionModel.')

941
942
943
944
945
946
947
948
  if eval_config.force_no_resize:
    arch = model_config.WhichOneof('model')
    arch_config = getattr(model_config, arch)
    image_resizer_proto = image_resizer_pb2.ImageResizer()
    image_resizer_proto.identity_resizer.CopyFrom(
        image_resizer_pb2.IdentityResizer())
    arch_config.image_resizer.CopyFrom(image_resizer_proto)

949
950
951
952
953
954
955
956
957
958
959
960
  if model is None:
    model_preprocess_fn = INPUT_BUILDER_UTIL_MAP['model_build'](
        model_config, is_training=False).preprocess
  else:
    model_preprocess_fn = model.preprocess

  def transform_and_pad_input_data_fn(tensor_dict):
    """Combines transform and pad operation."""
    num_classes = config_util.get_number_of_classes(model_config)

    image_resizer_config = config_util.get_image_resizer_config(model_config)
    image_resizer_fn = image_resizer_builder.build(image_resizer_config)
961
    keypoint_type_weight = eval_input_config.keypoint_type_weight or None
962
963
964
965
966
967

    transform_data_fn = functools.partial(
        transform_input_data, model_preprocess_fn=model_preprocess_fn,
        image_resizer_fn=image_resizer_fn,
        num_classes=num_classes,
        data_augmentation_fn=None,
968
969
        retain_original_image=eval_config.retain_original_images,
        retain_original_image_additional_channels=
970
971
        eval_config.retain_original_image_additional_channels,
        keypoint_type_weight=keypoint_type_weight)
972
973
974
975
976
    tensor_dict = pad_input_data_to_static_shapes(
        tensor_dict=transform_data_fn(tensor_dict),
        max_num_boxes=eval_input_config.max_number_of_boxes,
        num_classes=config_util.get_number_of_classes(model_config),
        spatial_image_shape=config_util.get_spatial_image_size(
977
978
979
980
981
982
983
984
            image_resizer_config),
        max_num_context_features=config_util.get_max_num_context_features(
            model_config),
        context_feature_length=config_util.get_context_feature_length(
            model_config))
    include_source_id = eval_input_config.include_source_id
    return (_get_features_dict(tensor_dict, include_source_id),
            _get_labels_dict(tensor_dict))
985
986
987

  reduce_to_frame_fn = get_reduce_to_frame_fn(eval_input_config, False)

988
989
990
  dataset = INPUT_BUILDER_UTIL_MAP['dataset_build'](
      eval_input_config,
      batch_size=params['batch_size'] if params else eval_config.batch_size,
991
992
      transform_input_data_fn=transform_and_pad_input_data_fn,
      reduce_to_frame_fn=reduce_to_frame_fn)
993
  return dataset
994
995


996
def create_predict_input_fn(model_config, predict_input_config):
997
998
  """Creates a predict `input` function for `Estimator`.

999
1000
  Args:
    model_config: A model_pb2.DetectionModel.
1001
    predict_input_config: An input_reader_pb2.InputReader.
1002

1003
1004
1005
1006
  Returns:
    `input_fn` for `Estimator` in PREDICT mode.
  """

1007
  def _predict_input_fn(params=None):
1008
1009
    """Decodes serialized tf.Examples and returns `ServingInputReceiver`.

1010
1011
1012
    Args:
      params: Parameter dictionary passed from the estimator.

1013
1014
1015
    Returns:
      `ServingInputReceiver`.
    """
1016
    del params
1017
    example = tf.placeholder(dtype=tf.string, shape=[], name='tf_example')
1018

1019
    num_classes = config_util.get_number_of_classes(model_config)
1020
1021
1022
    model_preprocess_fn = INPUT_BUILDER_UTIL_MAP['model_build'](
        model_config, is_training=False).preprocess

1023
1024
    image_resizer_config = config_util.get_image_resizer_config(model_config)
    image_resizer_fn = image_resizer_builder.build(image_resizer_config)
1025

1026
    transform_fn = functools.partial(
1027
        transform_input_data, model_preprocess_fn=model_preprocess_fn,
1028
1029
1030
1031
        image_resizer_fn=image_resizer_fn,
        num_classes=num_classes,
        data_augmentation_fn=None)

1032
1033
1034
    decoder = tf_example_decoder.TfExampleDecoder(
        load_instance_masks=False,
        num_additional_channels=predict_input_config.num_additional_channels)
1035
    input_dict = transform_fn(decoder.decode(example))
1036
    images = tf.cast(input_dict[fields.InputDataFields.image], dtype=tf.float32)
1037
    images = tf.expand_dims(images, axis=0)
1038
1039
    true_image_shape = tf.expand_dims(
        input_dict[fields.InputDataFields.true_image_shape], axis=0)
1040
1041

    return tf.estimator.export.ServingInputReceiver(
1042
1043
1044
        features={
            fields.InputDataFields.image: images,
            fields.InputDataFields.true_image_shape: true_image_shape},
1045
1046
1047
        receiver_tensors={SERVING_FED_EXAMPLE_KEY: example})

  return _predict_input_fn
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068


def get_reduce_to_frame_fn(input_reader_config, is_training):
  """Returns a function reducing sequence tensors to single frame tensors.

  If the input type is not TF_SEQUENCE_EXAMPLE, the tensors are passed through
  this function unchanged. Otherwise, when in training mode, a single frame is
  selected at random from the sequence example, and the tensors for that frame
  are converted to single frame tensors, with all associated context features.
  In evaluation mode all frames are converted to single frame tensors with
  copied context tensors. After the sequence example tensors are converted into
  one or many single frame tensors, the images from each frame are decoded.

  Args:
    input_reader_config: An input_reader_pb2.InputReader.
    is_training: Whether we are in training mode.

  Returns:
    `reduce_to_frame_fn` for the dataset builder
  """
  if input_reader_config.input_type != (
1069
1070
      input_reader_pb2.InputType.Value('TF_SEQUENCE_EXAMPLE')):
    return lambda dataset, dataset_map_fn, batch_size, config: dataset
1071
  else:
1072
1073
    def reduce_to_frame(dataset, dataset_map_fn, batch_size,
                        input_reader_config):
1074
1075
1076
1077
      """Returns a function reducing sequence tensors to single frame tensors.

      Args:
        dataset: A tf dataset containing sequence tensors.
1078
1079
1080
1081
1082
1083
        dataset_map_fn: A function that handles whether to
          map_with_legacy_function for this dataset
        batch_size: used if map_with_legacy_function is true to determine
          num_parallel_calls
        input_reader_config: used if map_with_legacy_function is true to
          determine num_parallel_calls
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104

      Returns:
        A tf dataset containing single frame tensors.
      """
      if is_training:
        def get_single_frame(tensor_dict):
          """Returns a random frame from a sequence.

          Picks a random frame and returns slices of sequence tensors
          corresponding to the random frame. Returns non-sequence tensors
          unchanged.

          Args:
            tensor_dict: A dictionary containing sequence tensors.

          Returns:
            Tensors for a single random frame within the sequence.
          """
          num_frames = tf.cast(
              tf.shape(tensor_dict[fields.InputDataFields.source_id])[0],
              dtype=tf.int32)
1105
1106
1107
1108
1109
1110
          if input_reader_config.frame_index == -1:
            frame_index = tf.random.uniform((), minval=0, maxval=num_frames,
                                            dtype=tf.int32)
          else:
            frame_index = tf.constant(input_reader_config.frame_index,
                                      dtype=tf.int32)
1111
1112
1113
1114
1115
1116
1117
1118
1119
          out_tensor_dict = {}
          for key in tensor_dict:
            if key in fields.SEQUENCE_FIELDS:
              # Slice random frame from sequence tensors
              out_tensor_dict[key] = tensor_dict[key][frame_index]
            else:
              # Copy all context tensors.
              out_tensor_dict[key] = tensor_dict[key]
          return out_tensor_dict
1120
1121
        dataset = dataset_map_fn(dataset, get_single_frame, batch_size,
                                 input_reader_config)
1122
      else:
1123
1124
        dataset = dataset_map_fn(dataset, util_ops.tile_context_tensors,
                                 batch_size, input_reader_config)
1125
1126
        dataset = dataset.unbatch()
      # Decode frame here as SequenceExample tensors contain encoded images.
1127
1128
      dataset = dataset_map_fn(dataset, util_ops.decode_image, batch_size,
                               input_reader_config)
1129
1130
      return dataset
    return reduce_to_frame