model_training_utils.py 24 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
"""A light weight utilities to train NLP models."""
16
17
18
19
20

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

21
import json
22
import os
23
import tempfile
24
25

from absl import logging
Hongkun Yu's avatar
Hongkun Yu committed
26
import tensorflow as tf
27
from tensorflow.python.util import deprecation
Zongwei Zhou's avatar
Zongwei Zhou committed
28
from official.staging.training import grad_utils
29
from official.utils.misc import distribution_utils
30

31
32
_SUMMARY_TXT = 'training_summary.txt'
_MIN_SUMMARY_STEPS = 10
33

34

35
36
37
38
39
40
41
42
43
def _should_export_checkpoint(strategy):
  return (not strategy) or strategy.extended.should_checkpoint


def _should_export_summary(strategy):
  return (not strategy) or strategy.extended.should_save_summary


def _save_checkpoint(strategy, checkpoint, model_dir, checkpoint_prefix):
44
45
  """Saves model to with provided checkpoint prefix."""

46
47
48
49
50
51
52
53
54
55
56
57
  if _should_export_checkpoint(strategy):
    checkpoint_path = os.path.join(model_dir, checkpoint_prefix)
    saved_path = checkpoint.save(checkpoint_path)
    logging.info('Saving model as TF checkpoint: %s', saved_path)
  else:
    # In multi worker training we need every worker to save checkpoint, because
    # variables can trigger synchronization on read and synchronization needs
    # all workers to participate. To avoid workers overriding each other we save
    # to a temporary directory on non-chief workers.
    tmp_dir = tempfile.mkdtemp()
    checkpoint.save(os.path.join(tmp_dir, 'ckpt'))
    tf.io.gfile.rmtree(tmp_dir)
58
59
60
  return


61
62
63
64
65
def _get_input_iterator(input_fn, strategy):
  """Returns distributed dataset iterator."""
  # When training with TPU pods, datasets needs to be cloned across
  # workers. Since Dataset instance cannot be cloned in eager mode, we instead
  # pass callable that returns a dataset.
Hongkun Yu's avatar
Hongkun Yu committed
66
67
68
69
  if not callable(input_fn):
    raise ValueError('`input_fn` should be a closure that returns a dataset.')
  iterator = iter(
      strategy.experimental_distribute_datasets_from_function(input_fn))
70
71
72
  return iterator


73
74
75
76
77
def _float_metric_value(metric):
  """Gets the value of a float-value keras metric."""
  return metric.result().numpy().astype(float)


78
def steps_to_run(current_step, steps_per_epoch, steps_per_loop):
79
  """Calculates steps to run on device."""
80
81
82
  if steps_per_loop <= 0:
    raise ValueError('steps_per_loop should be positive integer.')
  if steps_per_loop == 1:
83
84
85
86
87
88
89
90
    return steps_per_loop
  remainder_in_epoch = current_step % steps_per_epoch
  if remainder_in_epoch != 0:
    return min(steps_per_epoch - remainder_in_epoch, steps_per_loop)
  else:
    return steps_per_loop


91
def write_txt_summary(training_summary, summary_dir):
92
  """Writes a summary text file to record stats."""
Chen Chen's avatar
Chen Chen committed
93
94
  if not tf.io.gfile.exists(summary_dir):
    tf.io.gfile.mkdir(summary_dir)
95
  summary_path = os.path.join(summary_dir, _SUMMARY_TXT)
96
97
98
99
100
  with tf.io.gfile.GFile(summary_path, 'wb') as f:
    logging.info('Training Summary: \n%s', str(training_summary))
    f.write(json.dumps(training_summary, indent=4))


101
@deprecation.deprecated(
102
103
104
    None, 'This function is deprecated and we do not expect adding new '
    'functionalities. Please do not have your code depending '
    'on this library.')
105
106
107
108
109
110
111
def run_customized_training_loop(
    # pylint: disable=invalid-name
    _sentinel=None,
    # pylint: enable=invalid-name
    strategy=None,
    model_fn=None,
    loss_fn=None,
112
    scale_loss=True,
113
114
115
    model_dir=None,
    train_input_fn=None,
    steps_per_epoch=None,
Tianqi Liu's avatar
Tianqi Liu committed
116
    num_eval_per_epoch=1,
117
    steps_per_loop=None,
118
119
120
121
122
    epochs=1,
    eval_input_fn=None,
    eval_steps=None,
    metric_fn=None,
    init_checkpoint=None,
123
    custom_callbacks=None,
Chen Chen's avatar
Chen Chen committed
124
    run_eagerly=False,
Zongwei Zhou's avatar
Zongwei Zhou committed
125
126
127
    sub_model_export_name=None,
    explicit_allreduce=False,
    pre_allreduce_callbacks=None,
Chen Chen's avatar
Chen Chen committed
128
129
    post_allreduce_callbacks=None,
    train_summary_interval=0):
130
131
132
133
134
135
136
137
138
139
140
141
  """Run BERT pretrain model training using low-level API.

  Arguments:
      _sentinel: Used to prevent positional parameters. Internal, do not use.
      strategy: Distribution strategy on which to run low level training loop.
      model_fn: Function that returns a tuple (model, sub_model). Caller of this
        function should add optimizer to the `model` via calling
        `model.compile()` API or manually setting `model.optimizer` attribute.
        Second element of the returned tuple(sub_model) is an optional sub model
        to be used for initial checkpoint -- if provided.
      loss_fn: Function with signature func(labels, logits) and returns a loss
        tensor.
142
143
      scale_loss: Whether to divide the raw loss by number of replicas before
        gradients calculation.
144
145
146
      model_dir: Model directory used during training for restoring/saving model
        weights.
      train_input_fn: Function that returns a tf.data.Dataset used for training.
147
148
149
      steps_per_epoch: Number of steps to run per epoch. At the end of each
        epoch, model checkpoint will be saved and evaluation will be conducted
        if evaluation dataset is provided.
Tianqi Liu's avatar
Tianqi Liu committed
150
      num_eval_per_epoch: Number of evaluations per epoch.
151
152
153
      steps_per_loop: Number of steps per graph-mode loop. In order to reduce
        communication in eager context, training logs are printed every
        steps_per_loop.
154
155
156
157
158
159
160
161
162
163
      epochs: Number of epochs to train.
      eval_input_fn: Function that returns evaluation dataset. If none,
        evaluation is skipped.
      eval_steps: Number of steps to run evaluation. Required if `eval_input_fn`
        is not none.
      metric_fn: A metrics function that returns a Keras Metric object to record
        evaluation result using evaluation dataset or with training dataset
        after every epoch.
      init_checkpoint: Optional checkpoint to load to `sub_model` returned by
        `model_fn`.
164
      custom_callbacks: A list of Keras Callbacks objects to run during
165
166
167
168
        training. More specifically, `on_train_begin(), on_train_end(),
        on_batch_begin()`, `on_batch_end()`, `on_epoch_begin()`,
        `on_epoch_end()` methods are invoked during training.
        Note that some metrics may be missing from `logs`.
169
170
      run_eagerly: Whether to run model training in pure eager execution. This
        should be disable for TPUStrategy.
Chen Chen's avatar
Chen Chen committed
171
172
173
      sub_model_export_name: If not None, will export `sub_model` returned by
        `model_fn` into checkpoint files. The name of intermediate checkpoint
        file is {sub_model_export_name}_step_{step}.ckpt and the last
Tianqi Liu's avatar
Tianqi Liu committed
174
175
        checkpint's name is {sub_model_export_name}.ckpt; if None, `sub_model`
        will not be exported as checkpoint.
Zongwei Zhou's avatar
Zongwei Zhou committed
176
177
178
179
180
181
182
183
184
      explicit_allreduce: Whether to explicitly perform gradient allreduce,
        instead of relying on implicit allreduce in optimizer.apply_gradients().
        default is False. For now, if training using FP16 mixed precision,
        explicit allreduce will aggregate gradients in FP16 format. For TPU and
        GPU training using FP32, explicit allreduce will aggregate gradients in
        FP32 format.
      pre_allreduce_callbacks: A list of callback functions that takes gradients
        and model variables pairs as input, manipulate them, and returns a new
        gradients and model variables paris. The callback functions will be
Tianqi Liu's avatar
Tianqi Liu committed
185
186
187
188
        invoked in the list order and before gradients are allreduced. With
        mixed precision training, the pre_allreduce_allbacks will be applied on
        scaled_gradients. Default is no callbacks. Only used when
        explicit_allreduce=True.
Zongwei Zhou's avatar
Zongwei Zhou committed
189
190
191
192
193
194
      post_allreduce_callbacks: A list of callback functions that takes
        gradients and model variables pairs as input, manipulate them, and
        returns a new gradients and model variables paris. The callback
        functions will be invoked in the list order and right before gradients
        are applied to variables for updates. Default is no callbacks. Only used
        when explicit_allreduce=True.
Chen Chen's avatar
Chen Chen committed
195
196
      train_summary_interval: Step interval for training summaries. If the value
        is a negative number, then training summaries are not enabled.
197
198
199
200
201
202
203
204

  Returns:
      Trained model.

  Raises:
      ValueError: (1) When model returned by `model_fn` does not have optimizer
        attribute or when required parameters are set to none. (2) eval args are
        not specified correctly. (3) metric_fn must be a callable if specified.
Chen Chen's avatar
Chen Chen committed
205
206
        (4) sub_model_checkpoint_name is specified, but `sub_model` returned
        by `model_fn` is None.
207
208
209
210
211
212
213
214
215
  """

  if _sentinel is not None:
    raise ValueError('only call `run_customized_training_loop()` '
                     'with named arguments.')

  required_arguments = [
      strategy, model_fn, loss_fn, model_dir, steps_per_epoch, train_input_fn
  ]
Tianqi Liu's avatar
Tianqi Liu committed
216
217

  steps_between_evals = int(steps_per_epoch / num_eval_per_epoch)
218
219
  if [arg for arg in required_arguments if arg is None]:
    raise ValueError('`strategy`, `model_fn`, `loss_fn`, `model_dir`, '
220
                     '`steps_per_epoch` and `train_input_fn` are required '
221
                     'parameters.')
222
223
224
225
  if not steps_per_loop:
    if tf.config.list_logical_devices('TPU'):
      # One can't fully utilize a TPU with steps_per_loop=1, so in this case
      # default users to a more useful value.
Tianqi Liu's avatar
Tianqi Liu committed
226
      steps_per_loop = min(1000, steps_between_evals)
227
228
229
230
    else:
      steps_per_loop = 1
    logging.info('steps_per_loop not specified. Using steps_per_loop=%d',
                 steps_per_loop)
Tianqi Liu's avatar
Tianqi Liu committed
231
  if steps_per_loop > steps_between_evals:
232
    logging.warning(
233
        'steps_per_loop: %d is specified to be greater than '
Tianqi Liu's avatar
Tianqi Liu committed
234
235
236
        ' steps_between_evals: %d, we will use steps_between_evals as'
        ' steps_per_loop.', steps_per_loop, steps_between_evals)
    steps_per_loop = steps_between_evals
237
238
  assert tf.executing_eagerly()

239
240
241
  if run_eagerly:
    if isinstance(strategy, tf.distribute.experimental.TPUStrategy):
      raise ValueError(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
242
          'TPUStrategy should not run eagerly as it heavily relies on graph'
243
244
          ' optimization for the distributed system.')

245
  if eval_input_fn and eval_steps is None:
246
    raise ValueError(
247
        '`eval_step` is required when `eval_input_fn ` is not none.')
248
249
250
251
  if metric_fn and not callable(metric_fn):
    raise ValueError(
        'if `metric_fn` is specified, metric_fn must be a callable.')

252
  total_training_steps = steps_per_epoch * epochs
253
  train_iterator = _get_input_iterator(train_input_fn, strategy)
Tianqi Liu's avatar
Tianqi Liu committed
254
  eval_loss_metric = tf.keras.metrics.Mean('training_loss', dtype=tf.float32)
255
256
257
258
259
260
261
262

  with distribution_utils.get_strategy_scope(strategy):
    # To correctly place the model weights on accelerators,
    # model and optimizer should be created in scope.
    model, sub_model = model_fn()
    if not hasattr(model, 'optimizer'):
      raise ValueError('User should set optimizer attribute to model '
                       'inside `model_fn`.')
Chen Chen's avatar
Chen Chen committed
263
264
265
266
    if sub_model_export_name and sub_model is None:
      raise ValueError('sub_model_export_name is specified as %s, but '
                       'sub_model is None.' % sub_model_export_name)

267
268
269
    callback_list = tf.keras.callbacks.CallbackList(
        callbacks=custom_callbacks, model=model)

270
271
272
273
274
275
276
    optimizer = model.optimizer

    if init_checkpoint:
      logging.info(
          'Checkpoint file %s found and restoring from '
          'initial checkpoint for core model.', init_checkpoint)
      checkpoint = tf.train.Checkpoint(model=sub_model)
Jing Li's avatar
Jing Li committed
277
      checkpoint.restore(init_checkpoint).assert_existing_objects_matched()
278
279
      logging.info('Loading from checkpoint file completed')

Tianqi Liu's avatar
Tianqi Liu committed
280
    train_loss_metric = tf.keras.metrics.Mean('training_loss', dtype=tf.float32)
281
282
283
284
285
286
287
288
289
    eval_metrics = [metric_fn()] if metric_fn else []
    # If evaluation is required, make a copy of metric as it will be used by
    # both train and evaluation.
    train_metrics = [
        metric.__class__.from_config(metric.get_config())
        for metric in eval_metrics
    ]

    # Create summary writers
290
291
292
293
294
295
296
    if _should_export_summary(strategy):
      summary_dir = os.path.join(model_dir, 'summaries')
    else:
      # In multi worker training we need every worker to write summary, because
      # variables can trigger synchronization on read and synchronization needs
      # all workers to participate.
      summary_dir = tempfile.mkdtemp()
297
    eval_summary_writer = tf.summary.create_file_writer(
298
        os.path.join(summary_dir, 'eval'))
Chen Chen's avatar
Chen Chen committed
299
300
    last_summary_step = 0
    if steps_per_loop >= _MIN_SUMMARY_STEPS and train_summary_interval >= 0:
301
302
303
      # Only writes summary when the stats are collected sufficiently over
      # enough steps.
      train_summary_writer = tf.summary.create_file_writer(
304
          os.path.join(summary_dir, 'train'))
305
    else:
Chen Chen's avatar
Chen Chen committed
306
      train_summary_writer = tf.summary.create_noop_writer()
307
308
309
310
311
312
313
314
315
316
317

    # Collects training variables.
    training_vars = model.trainable_variables

    def _replicated_step(inputs):
      """Replicated training step."""

      inputs, labels = inputs
      with tf.GradientTape() as tape:
        model_outputs = model(inputs, training=True)
        loss = loss_fn(labels, model_outputs)
318
319
320
321
322
323
        # Raw loss is used for reporting in metrics/logs.
        raw_loss = loss
        if scale_loss:
          # Scales down the loss for gradients to be invariant from replicas.
          loss = loss / strategy.num_replicas_in_sync

Zongwei Zhou's avatar
Zongwei Zhou committed
324
325
326
327
328
      if explicit_allreduce:
        grad_utils.minimize_using_explicit_allreduce(tape, optimizer, loss,
                                                     training_vars,
                                                     pre_allreduce_callbacks,
                                                     post_allreduce_callbacks)
329
      else:
Zongwei Zhou's avatar
Zongwei Zhou committed
330
331
332
333
334
335
336
337
338
        if isinstance(optimizer,
                      tf.keras.mixed_precision.experimental.LossScaleOptimizer):
          with tape:
            scaled_loss = optimizer.get_scaled_loss(loss)
          scaled_grads = tape.gradient(scaled_loss, training_vars)
          grads = optimizer.get_unscaled_gradients(scaled_grads)
        else:
          grads = tape.gradient(loss, training_vars)
        optimizer.apply_gradients(zip(grads, training_vars))
339
      # For reporting, the metric takes the mean of losses.
340
      train_loss_metric.update_state(raw_loss)
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
      for metric in train_metrics:
        metric.update_state(labels, model_outputs)

    @tf.function
    def train_steps(iterator, steps):
      """Performs distributed training steps in a loop.

      Args:
        iterator: the distributed iterator of training datasets.
        steps: an tf.int32 integer tensor to specify number of steps to run
          inside host training loop.

      Raises:
        ValueError: Any of the arguments or tensor shapes are invalid.
      """
      if not isinstance(steps, tf.Tensor):
        raise ValueError('steps should be an Tensor. Python object may cause '
                         'retracing.')

      for _ in tf.range(steps):
Ken Franko's avatar
Ken Franko committed
361
        strategy.run(_replicated_step, args=(next(iterator),))
362

363
364
    def train_single_step(iterator):
      """Performs a distributed training step.
365

366
367
      Args:
        iterator: the distributed iterator of training datasets.
368

369
370
371
      Raises:
        ValueError: Any of the arguments or tensor shapes are invalid.
      """
Ken Franko's avatar
Ken Franko committed
372
      strategy.run(_replicated_step, args=(next(iterator),))
373

374
375
    def test_step(iterator):
      """Calculates evaluation metrics on distributed devices."""
376

377
378
      def _test_step_fn(inputs):
        """Replicated accuracy calculation."""
379

380
381
382
383
        inputs, labels = inputs
        model_outputs = model(inputs, training=False)
        for metric in eval_metrics:
          metric.update_state(labels, model_outputs)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
384
        return model_outputs, labels
385

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
386
387
388
389
390
391
      outputs, labels = strategy.run(_test_step_fn, args=(next(iterator),))
      outputs = tf.nest.map_structure(strategy.experimental_local_results,
                                      outputs)
      labels = tf.nest.map_structure(strategy.experimental_local_results,
                                     labels)
      return outputs, labels
392
393
394
395
396
397

    if not run_eagerly:
      train_single_step = tf.function(train_single_step)
      test_step = tf.function(test_step)

    def _run_evaluation(current_training_step, test_iterator):
398
399
400
401
402
403
404
405
406
      """Runs validation steps and aggregate metrics.

      Args:
        current_training_step: tf.int32 tensor containing the current step.
        test_iterator: distributed iterator of test datasets.

      Returns:
        A dict of metic names and values.
      """
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
407
408
409
410
411
412
      # The last batch of the evaluation is often smaller than previous ones.
      # Moreover, in some distributed pieces it might even be empty. Therefore,
      # different from the way training_loss is calculated, it is needed to
      # gather all the logits and labels here to calculate the evaluation loss
      # outside.
      loss_list, loss_weights = list(), list()
413
      for _ in range(eval_steps):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
414
415
416
417
418
419
420
421
422
423
424
425
        outputs, labels = test_step(test_iterator)
        for cur_logits, cur_labels in zip(outputs, labels):
          # This is to handle cases when cur_labels is not a single tensor,
          # but a dict of tensors.
          cur_weight = tf.shape(tf.nest.flatten(cur_labels)[0])[0]
          if cur_weight != 0:
            loss_list.append(loss_fn(cur_labels, cur_logits).numpy())
            loss_weights.append(cur_weight)
      # The sample_weights are the actual number of examples in each batch,
      # a summation of numbers of examples in each replica if using
      # distributed training.
      eval_loss_metric.update_state(loss_list, sample_weight=loss_weights)
426

427
      logs = {}
428
      with eval_summary_writer.as_default():
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
429
        for metric in [eval_loss_metric] + eval_metrics + model.metrics:
430
          metric_value = _float_metric_value(metric)
431
          logs[metric.name] = metric_value
432
433
434
435
436
437
          logging.info('Step: [%d] Validation %s = %f', current_training_step,
                       metric.name, metric_value)
          tf.summary.scalar(
              metric.name, metric_value, step=current_training_step)
        eval_summary_writer.flush()

438
      return logs
439
440

    # Training loop starts here.
Le Hou's avatar
Le Hou committed
441
442
    checkpoint = tf.train.Checkpoint(
        model=model, optimizer=optimizer, global_step=optimizer.iterations)
Chen Chen's avatar
Chen Chen committed
443
    sub_model_checkpoint = tf.train.Checkpoint(
Le Hou's avatar
Le Hou committed
444
445
        model=sub_model,
        global_step=optimizer.iterations) if sub_model_export_name else None
Chen Chen's avatar
Chen Chen committed
446

447
448
    latest_checkpoint_file = tf.train.latest_checkpoint(model_dir)
    if latest_checkpoint_file:
Tianqi Liu's avatar
Tianqi Liu committed
449
450
      logging.info('Checkpoint file %s found and restoring from '
                   'checkpoint', latest_checkpoint_file)
451
452
453
454
455
456
      checkpoint.restore(latest_checkpoint_file)
      logging.info('Loading from checkpoint file completed')

    current_step = optimizer.iterations.numpy()
    checkpoint_name = 'ctl_step_{step}.ckpt'

Tianqi Liu's avatar
Tianqi Liu committed
457
    logs = {}
458
459
    callback_list.on_train_begin()
    while current_step < total_training_steps and not model.stop_training:
460
      if current_step % steps_per_epoch == 0:
Tianqi Liu's avatar
Tianqi Liu committed
461
462
        callback_list.on_epoch_begin(
            int(current_step / steps_per_epoch) + 1)
463

464
465
466
467
468
469
      # Training loss/metric are taking average over steps inside micro
      # training loop. We reset the their values before each round.
      train_loss_metric.reset_states()
      for metric in train_metrics + model.metrics:
        metric.reset_states()

470
      callback_list.on_batch_begin(current_step)
471
      # Runs several steps in the host while loop.
Tianqi Liu's avatar
Tianqi Liu committed
472
      steps = steps_to_run(current_step, steps_between_evals, steps_per_loop)
473

474
      if tf.config.list_physical_devices('GPU'):
475
476
        # TODO(zongweiz): merge with train_steps once tf.while_loop
        # GPU performance bugs are fixed.
477
478
        for _ in range(steps):
          train_single_step(train_iterator)
479
480
      else:
        # Converts steps to a Tensor to avoid tf.function retracing.
Tianqi Liu's avatar
Tianqi Liu committed
481
        train_steps(train_iterator, tf.convert_to_tensor(steps, dtype=tf.int32))
482
      train_loss = _float_metric_value(train_loss_metric)
483
484
485
486
487
488
      current_step += steps

      # Updates training logging.
      training_status = 'Train Step: %d/%d  / loss = %s' % (
          current_step, total_training_steps, train_loss)

Chen Chen's avatar
Chen Chen committed
489
490
491
492
493
494
495
      if current_step >= last_summary_step + train_summary_interval:
        summary_writer = train_summary_writer
        last_summary_step = current_step
      else:
        summary_writer = tf.summary.create_noop_writer()

      with summary_writer.as_default():
496
497
498
499
500
        if callable(optimizer.learning_rate):
          tf.summary.scalar(
              'learning_rate',
              optimizer.learning_rate(current_step),
              step=current_step)
Tianqi Liu's avatar
Tianqi Liu committed
501
        tf.summary.scalar(train_loss_metric.name, train_loss, step=current_step)
Chen Chen's avatar
Chen Chen committed
502
503
504
505
506
        for metric in train_metrics + model.metrics:
          metric_value = _float_metric_value(metric)
          training_status += '  %s = %f' % (metric.name, metric_value)
          tf.summary.scalar(metric.name, metric_value, step=current_step)
        summary_writer.flush()
507
508
      logging.info(training_status)

Tianqi Liu's avatar
Tianqi Liu committed
509
510
511
512
513
      # If no need for evaluation, we only call on_batch_end with train_loss,
      # this is to ensure we get granular global_step/sec on Tensorboard.
      if current_step % steps_between_evals:
        callback_list.on_batch_end(current_step - 1, {'loss': train_loss})
      else:
514
515
516
517
518
519
520
521
522
        # Save a submodel with the step in the file name after each epoch.
        if sub_model_export_name:
          _save_checkpoint(
              strategy, sub_model_checkpoint, model_dir,
              '%s_step_%d.ckpt' % (sub_model_export_name, current_step))

        # Save model checkpoints and run validation steps after each epoch
        # (with the exception of the final epoch which is handled after the
        # training loop).
523
        if current_step < total_training_steps:
524
          _save_checkpoint(strategy, checkpoint, model_dir,
525
                           checkpoint_name.format(step=current_step))
526
527
          if eval_input_fn:
            logging.info('Running evaluation after step: %s.', current_step)
528
529
            logs = _run_evaluation(current_step,
                                   _get_input_iterator(eval_input_fn, strategy))
530
            # Re-initialize evaluation metric.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
531
            eval_loss_metric.reset_states()
532
533
            for metric in eval_metrics + model.metrics:
              metric.reset_states()
Tianqi Liu's avatar
Tianqi Liu committed
534
535
536
537
        # We add train_loss here rather than call on_batch_end twice to make
        # sure that no duplicated values are generated.
        logs['loss'] = train_loss
        callback_list.on_batch_end(current_step - 1, logs)
538

Tianqi Liu's avatar
Tianqi Liu committed
539
540
541
542
      # Calls on_epoch_end after each real epoch ends to prevent mis-calculation
      # of training steps.
      if current_step % steps_per_epoch == 0:
        callback_list.on_epoch_end(int(current_step / steps_per_epoch), logs)
543

Chen Chen's avatar
Chen Chen committed
544
    if sub_model_export_name:
545
      _save_checkpoint(strategy, sub_model_checkpoint, model_dir,
Chen Chen's avatar
Chen Chen committed
546
                       '%s.ckpt' % sub_model_export_name)
547

548
549
    _save_checkpoint(strategy, checkpoint, model_dir,
                     checkpoint_name.format(step=current_step))
550
551
    if eval_input_fn:
      logging.info('Running final evaluation after training is complete.')
552
553
554
      logs = _run_evaluation(current_step,
                             _get_input_iterator(eval_input_fn, strategy))
    callback_list.on_epoch_end(int(current_step / steps_per_epoch), logs)
555
556
557
558
    training_summary = {
        'total_training_steps': total_training_steps,
        'train_loss': _float_metric_value(train_loss_metric),
    }
559
560
    for metric in model.metrics:
      training_summary[metric.name] = _float_metric_value(metric)
561
562
563
564
    if eval_metrics:
      training_summary['last_train_metrics'] = _float_metric_value(
          train_metrics[0])
      training_summary['eval_metrics'] = _float_metric_value(eval_metrics[0])
565

566
    write_txt_summary(training_summary, summary_dir)
567

568
569
570
    if not _should_export_summary(strategy):
      tf.io.gfile.rmtree(summary_dir)

571
572
    callback_list.on_train_end()

573
    return model