imagenet_test.py 12.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import unittest

Karmel Allison's avatar
Karmel Allison committed
22
import tensorflow as tf  # pylint: disable=g-bad-import-order
23

24
from official.resnet import imagenet_main
25
from official.utils.testing import integration
26

27
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
28

29
_BATCH_SIZE = 32
30
31
32
33
34
_LABEL_CLASSES = 1001


class BaseTest(tf.test.TestCase):

35
36
  _num_validation_images = None

37
38
39
40
  @classmethod
  def setUpClass(cls):  # pylint: disable=invalid-name
    super(BaseTest, cls).setUpClass()
    imagenet_main.define_imagenet_flags()
41
42
43
44
45

  def setUp(self):
    super(BaseTest, self).setUp()
    self._num_validation_images = imagenet_main.NUM_IMAGES['validation']
    imagenet_main.NUM_IMAGES['validation'] = 4
46

47
48
  def tearDown(self):
    super(BaseTest, self).tearDown()
49
    tf.io.gfile.rmtree(self.get_temp_dir())
50
    imagenet_main.NUM_IMAGES['validation'] = self._num_validation_images
51

52
  def _tensor_shapes_helper(self, resnet_size, resnet_version, dtype, with_gpu):
53
54
    """Checks the tensor shapes after each phase of the ResNet model."""
    def reshape(shape):
Karmel Allison's avatar
Karmel Allison committed
55
56
      """Returns the expected dimensions depending on if a GPU is being used."""

57
58
      # If a GPU is used for the test, the shape is returned (already in NCHW
      # form). When GPU is not used, the shape is converted to NHWC.
59
60
61
62
63
64
65
      if with_gpu:
        return shape
      return shape[0], shape[2], shape[3], shape[1]

    graph = tf.Graph()

    with graph.as_default(), self.test_session(
66
        graph=graph, use_gpu=with_gpu, force_gpu=with_gpu):
67
      model = imagenet_main.ImagenetModel(
68
          resnet_size=resnet_size,
69
          data_format='channels_first' if with_gpu else 'channels_last',
70
          resnet_version=resnet_version,
71
72
          dtype=dtype
      )
73
      inputs = tf.random.uniform([1, 224, 224, 3])
74
      output = model(inputs, training=True)
75

76
77
78
79
80
81
82
83
      initial_conv = graph.get_tensor_by_name('resnet_model/initial_conv:0')
      max_pool = graph.get_tensor_by_name('resnet_model/initial_max_pool:0')
      block_layer1 = graph.get_tensor_by_name('resnet_model/block_layer1:0')
      block_layer2 = graph.get_tensor_by_name('resnet_model/block_layer2:0')
      block_layer3 = graph.get_tensor_by_name('resnet_model/block_layer3:0')
      block_layer4 = graph.get_tensor_by_name('resnet_model/block_layer4:0')
      reduce_mean = graph.get_tensor_by_name('resnet_model/final_reduce_mean:0')
      dense = graph.get_tensor_by_name('resnet_model/final_dense:0')
84
85
86
87
88
89
90
91
92
93
94

      self.assertAllEqual(initial_conv.shape, reshape((1, 64, 112, 112)))
      self.assertAllEqual(max_pool.shape, reshape((1, 64, 56, 56)))

      # The number of channels after each block depends on whether we're
      # using the building_block or the bottleneck_block.
      if resnet_size < 50:
        self.assertAllEqual(block_layer1.shape, reshape((1, 64, 56, 56)))
        self.assertAllEqual(block_layer2.shape, reshape((1, 128, 28, 28)))
        self.assertAllEqual(block_layer3.shape, reshape((1, 256, 14, 14)))
        self.assertAllEqual(block_layer4.shape, reshape((1, 512, 7, 7)))
95
        self.assertAllEqual(reduce_mean.shape, reshape((1, 512, 1, 1)))
96
97
98
99
100
      else:
        self.assertAllEqual(block_layer1.shape, reshape((1, 256, 56, 56)))
        self.assertAllEqual(block_layer2.shape, reshape((1, 512, 28, 28)))
        self.assertAllEqual(block_layer3.shape, reshape((1, 1024, 14, 14)))
        self.assertAllEqual(block_layer4.shape, reshape((1, 2048, 7, 7)))
101
        self.assertAllEqual(reduce_mean.shape, reshape((1, 2048, 1, 1)))
102

103
104
      self.assertAllEqual(dense.shape, (1, _LABEL_CLASSES))
      self.assertAllEqual(output.shape, (1, _LABEL_CLASSES))
105

106
107
108
  def tensor_shapes_helper(self, resnet_size, resnet_version, with_gpu=False):
    self._tensor_shapes_helper(resnet_size=resnet_size,
                               resnet_version=resnet_version,
109
                               dtype=tf.float32, with_gpu=with_gpu)
110
111
    self._tensor_shapes_helper(resnet_size=resnet_size,
                               resnet_version=resnet_version,
112
113
                               dtype=tf.float16, with_gpu=with_gpu)

114
  def test_tensor_shapes_resnet_18_v1(self):
115
    self.tensor_shapes_helper(18, resnet_version=1)
116

117
  def test_tensor_shapes_resnet_18_v2(self):
118
    self.tensor_shapes_helper(18, resnet_version=2)
119

120
  def test_tensor_shapes_resnet_34_v1(self):
121
    self.tensor_shapes_helper(34, resnet_version=1)
122

123
  def test_tensor_shapes_resnet_34_v2(self):
124
    self.tensor_shapes_helper(34, resnet_version=2)
125

126
  def test_tensor_shapes_resnet_50_v1(self):
127
    self.tensor_shapes_helper(50, resnet_version=1)
128

129
  def test_tensor_shapes_resnet_50_v2(self):
130
    self.tensor_shapes_helper(50, resnet_version=2)
131
132

  def test_tensor_shapes_resnet_101_v1(self):
133
    self.tensor_shapes_helper(101, resnet_version=1)
134
135

  def test_tensor_shapes_resnet_101_v2(self):
136
    self.tensor_shapes_helper(101, resnet_version=2)
137
138

  def test_tensor_shapes_resnet_152_v1(self):
139
    self.tensor_shapes_helper(152, resnet_version=1)
140
141

  def test_tensor_shapes_resnet_152_v2(self):
142
    self.tensor_shapes_helper(152, resnet_version=2)
143
144

  def test_tensor_shapes_resnet_200_v1(self):
145
    self.tensor_shapes_helper(200, resnet_version=1)
146
147

  def test_tensor_shapes_resnet_200_v2(self):
148
    self.tensor_shapes_helper(200, resnet_version=2)
149
150
151

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
  def test_tensor_shapes_resnet_18_with_gpu_v1(self):
152
    self.tensor_shapes_helper(18, resnet_version=1, with_gpu=True)
153
154
155

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
  def test_tensor_shapes_resnet_18_with_gpu_v2(self):
156
    self.tensor_shapes_helper(18, resnet_version=2, with_gpu=True)
157
158
159

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
  def test_tensor_shapes_resnet_34_with_gpu_v1(self):
160
    self.tensor_shapes_helper(34, resnet_version=1, with_gpu=True)
161
162
163

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
  def test_tensor_shapes_resnet_34_with_gpu_v2(self):
164
    self.tensor_shapes_helper(34, resnet_version=2, with_gpu=True)
165
166

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
167
  def test_tensor_shapes_resnet_50_with_gpu_v1(self):
168
    self.tensor_shapes_helper(50, resnet_version=1, with_gpu=True)
169
170

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
171
  def test_tensor_shapes_resnet_50_with_gpu_v2(self):
172
    self.tensor_shapes_helper(50, resnet_version=2, with_gpu=True)
173
174

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
175
  def test_tensor_shapes_resnet_101_with_gpu_v1(self):
176
    self.tensor_shapes_helper(101, resnet_version=1, with_gpu=True)
177
178

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
179
  def test_tensor_shapes_resnet_101_with_gpu_v2(self):
180
    self.tensor_shapes_helper(101, resnet_version=2, with_gpu=True)
181
182

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
183
  def test_tensor_shapes_resnet_152_with_gpu_v1(self):
184
    self.tensor_shapes_helper(152, resnet_version=1, with_gpu=True)
185
186

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
187
  def test_tensor_shapes_resnet_152_with_gpu_v2(self):
188
    self.tensor_shapes_helper(152, resnet_version=2, with_gpu=True)
189

190
191
  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
  def test_tensor_shapes_resnet_200_with_gpu_v1(self):
192
    self.tensor_shapes_helper(200, resnet_version=1, with_gpu=True)
193
194
195

  @unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
  def test_tensor_shapes_resnet_200_with_gpu_v2(self):
196
    self.tensor_shapes_helper(200, resnet_version=2, with_gpu=True)
197

198
  def resnet_model_fn_helper(self, mode, resnet_version, dtype):
199
    """Tests that the EstimatorSpec is given the appropriate arguments."""
200
    tf.compat.v1.train.create_global_step()
201

Toby Boyd's avatar
Toby Boyd committed
202
    input_fn = imagenet_main.get_synth_input_fn(dtype)
203
    dataset = input_fn(True, '', _BATCH_SIZE)
204
    iterator = tf.compat.v1.data.make_initializable_iterator(dataset)
205
206
207
208
209
210
211
    features, labels = iterator.get_next()
    spec = imagenet_main.imagenet_model_fn(
        features, labels, mode, {
            'dtype': dtype,
            'resnet_size': 50,
            'data_format': 'channels_last',
            'batch_size': _BATCH_SIZE,
212
            'resnet_version': resnet_version,
213
            'loss_scale': 128 if dtype == tf.float16 else 1,
Zac Wellmer's avatar
Zac Wellmer committed
214
            'fine_tune': False,
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
        })

    predictions = spec.predictions
    self.assertAllEqual(predictions['probabilities'].shape,
                        (_BATCH_SIZE, _LABEL_CLASSES))
    self.assertEqual(predictions['probabilities'].dtype, tf.float32)
    self.assertAllEqual(predictions['classes'].shape, (_BATCH_SIZE,))
    self.assertEqual(predictions['classes'].dtype, tf.int64)

    if mode != tf.estimator.ModeKeys.PREDICT:
      loss = spec.loss
      self.assertAllEqual(loss.shape, ())
      self.assertEqual(loss.dtype, tf.float32)

    if mode == tf.estimator.ModeKeys.EVAL:
      eval_metric_ops = spec.eval_metric_ops
      self.assertAllEqual(eval_metric_ops['accuracy'][0].shape, ())
      self.assertAllEqual(eval_metric_ops['accuracy'][1].shape, ())
      self.assertEqual(eval_metric_ops['accuracy'][0].dtype, tf.float32)
      self.assertEqual(eval_metric_ops['accuracy'][1].dtype, tf.float32)
235

236
  def test_resnet_model_fn_train_mode_v1(self):
237
    self.resnet_model_fn_helper(tf.estimator.ModeKeys.TRAIN, resnet_version=1,
238
                                dtype=tf.float32)
239

240
  def test_resnet_model_fn_train_mode_v2(self):
241
    self.resnet_model_fn_helper(tf.estimator.ModeKeys.TRAIN, resnet_version=2,
242
                                dtype=tf.float32)
243
244

  def test_resnet_model_fn_eval_mode_v1(self):
245
    self.resnet_model_fn_helper(tf.estimator.ModeKeys.EVAL, resnet_version=1,
246
                                dtype=tf.float32)
247

248
  def test_resnet_model_fn_eval_mode_v2(self):
249
    self.resnet_model_fn_helper(tf.estimator.ModeKeys.EVAL, resnet_version=2,
250
                                dtype=tf.float32)
Karmel Allison's avatar
Karmel Allison committed
251

252
  def test_resnet_model_fn_predict_mode_v1(self):
253
    self.resnet_model_fn_helper(tf.estimator.ModeKeys.PREDICT, resnet_version=1,
254
                                dtype=tf.float32)
255

256
  def test_resnet_model_fn_predict_mode_v2(self):
257
    self.resnet_model_fn_helper(tf.estimator.ModeKeys.PREDICT, resnet_version=2,
258
                                dtype=tf.float32)
259

260
  def _test_imagenetmodel_shape(self, resnet_version):
Neal Wu's avatar
Neal Wu committed
261
262
263
    batch_size = 135
    num_classes = 246

264
265
    model = imagenet_main.ImagenetModel(
        50, data_format='channels_last', num_classes=num_classes,
266
        resnet_version=resnet_version)
267

268
    fake_input = tf.random.uniform([batch_size, 224, 224, 3])
269
270
271
272
273
    output = model(fake_input, training=True)

    self.assertAllEqual(output.shape, (batch_size, num_classes))

  def test_imagenetmodel_shape_v1(self):
274
    self._test_imagenetmodel_shape(resnet_version=1)
Neal Wu's avatar
Neal Wu committed
275

276
  def test_imagenetmodel_shape_v2(self):
277
    self._test_imagenetmodel_shape(resnet_version=2)
Neal Wu's avatar
Neal Wu committed
278

279
  def test_imagenet_end_to_end_synthetic_v1(self):
280
    integration.run_synthetic(
281
        main=imagenet_main.run_imagenet, tmp_root=self.get_temp_dir(),
282
        extra_flags=['-resnet_version', '1', '-batch_size', '4']
283
    )
284
285

  def test_imagenet_end_to_end_synthetic_v2(self):
286
    integration.run_synthetic(
287
        main=imagenet_main.run_imagenet, tmp_root=self.get_temp_dir(),
288
        extra_flags=['-resnet_version', '2', '-batch_size', '4']
289
    )
290
291

  def test_imagenet_end_to_end_synthetic_v1_tiny(self):
292
    integration.run_synthetic(
293
        main=imagenet_main.run_imagenet, tmp_root=self.get_temp_dir(),
294
295
        extra_flags=['-resnet_version', '1', '-batch_size', '4',
                     '-resnet_size', '18']
296
    )
297
298

  def test_imagenet_end_to_end_synthetic_v2_tiny(self):
299
    integration.run_synthetic(
300
        main=imagenet_main.run_imagenet, tmp_root=self.get_temp_dir(),
301
302
        extra_flags=['-resnet_version', '2', '-batch_size', '4',
                     '-resnet_size', '18']
303
    )
304
305

  def test_imagenet_end_to_end_synthetic_v1_huge(self):
306
    integration.run_synthetic(
307
        main=imagenet_main.run_imagenet, tmp_root=self.get_temp_dir(),
308
309
        extra_flags=['-resnet_version', '1', '-batch_size', '4',
                     '-resnet_size', '200']
310
    )
311
312

  def test_imagenet_end_to_end_synthetic_v2_huge(self):
313
    integration.run_synthetic(
314
        main=imagenet_main.run_imagenet, tmp_root=self.get_temp_dir(),
315
316
317
318
        extra_flags=['-resnet_version', '2', '-batch_size', '4',
                     '-resnet_size', '200']
    )

319

320
321
if __name__ == '__main__':
  tf.test.main()