mnist.py 8.15 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#  Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
"""Convolutional Neural Network Estimator for MNIST, built with tf.layers."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

20
21
from absl import app as absl_app
from absl import flags
Karmel Allison's avatar
Karmel Allison committed
22
import tensorflow as tf  # pylint: disable=g-bad-import-order
23

24
from official.mnist import dataset
25
from official.utils.flags import core as flags_core
26
from official.utils.logs import hooks_helper
27
from official.utils.misc import distribution_utils
28
from official.utils.misc import model_helpers
29

30

31
LEARNING_RATE = 1e-4
32

Karmel Allison's avatar
Karmel Allison committed
33

34
def create_model(data_format):
Asim Shankar's avatar
Asim Shankar committed
35
  """Model to recognize digits in the MNIST dataset.
Asim Shankar's avatar
Asim Shankar committed
36
37
38
39
40
41

  Network structure is equivalent to:
  https://github.com/tensorflow/tensorflow/blob/r1.5/tensorflow/examples/tutorials/mnist/mnist_deep.py
  and
  https://github.com/tensorflow/models/blob/master/tutorials/image/mnist/convolutional.py

42
43
44
  But uses the tf.keras API.

  Args:
Asim Shankar's avatar
Asim Shankar committed
45
46
47
    data_format: Either 'channels_first' or 'channels_last'. 'channels_first' is
      typically faster on GPUs while 'channels_last' is typically faster on
      CPUs. See
48
      https://www.tensorflow.org/performance/performance_guide#data_formats
Asim Shankar's avatar
Asim Shankar committed
49

50
51
52
53
54
55
56
57
58
  Returns:
    A tf.keras.Model.
  """
  if data_format == 'channels_first':
    input_shape = [1, 28, 28]
  else:
    assert data_format == 'channels_last'
    input_shape = [28, 28, 1]

Asim Shankar's avatar
Asim Shankar committed
59
60
61
  l = tf.keras.layers
  max_pool = l.MaxPooling2D(
      (2, 2), (2, 2), padding='same', data_format=data_format)
62
63
  # The model consists of a sequential chain of layers, so tf.keras.Sequential
  # (a subclass of tf.keras.Model) makes for a compact description.
Asim Shankar's avatar
Asim Shankar committed
64
65
  return tf.keras.Sequential(
      [
66
67
68
          l.Reshape(
              target_shape=input_shape,
              input_shape=(28 * 28,)),
Asim Shankar's avatar
Asim Shankar committed
69
70
71
72
73
          l.Conv2D(
              32,
              5,
              padding='same',
              data_format=data_format,
74
75
              activation=tf.nn.relu),
          max_pool,
Asim Shankar's avatar
Asim Shankar committed
76
77
78
79
80
          l.Conv2D(
              64,
              5,
              padding='same',
              data_format=data_format,
81
82
              activation=tf.nn.relu),
          max_pool,
Asim Shankar's avatar
Asim Shankar committed
83
84
85
86
87
          l.Flatten(),
          l.Dense(1024, activation=tf.nn.relu),
          l.Dropout(0.4),
          l.Dense(10)
      ])
Asim Shankar's avatar
Asim Shankar committed
88
89


90
def define_mnist_flags():
91
  flags_core.define_base()
92
  flags_core.define_performance(inter_op=True, intra_op=True,
93
94
                                num_parallel_calls=False,
                                all_reduce_alg=True)
95
96
97
98
99
100
101
102
  flags_core.define_image()
  flags.adopt_module_key_flags(flags_core)
  flags_core.set_defaults(data_dir='/tmp/mnist_data',
                          model_dir='/tmp/mnist_model',
                          batch_size=100,
                          train_epochs=40)


Asim Shankar's avatar
Asim Shankar committed
103
104
def model_fn(features, labels, mode, params):
  """The model_fn argument for creating an Estimator."""
105
  model = create_model(params['data_format'])
106
107
108
109
  image = features
  if isinstance(image, dict):
    image = features['image']

Asim Shankar's avatar
Asim Shankar committed
110
  if mode == tf.estimator.ModeKeys.PREDICT:
111
112
113
114
115
116
117
118
119
120
121
    logits = model(image, training=False)
    predictions = {
        'classes': tf.argmax(logits, axis=1),
        'probabilities': tf.nn.softmax(logits),
    }
    return tf.estimator.EstimatorSpec(
        mode=tf.estimator.ModeKeys.PREDICT,
        predictions=predictions,
        export_outputs={
            'classify': tf.estimator.export.PredictOutput(predictions)
        })
Asim Shankar's avatar
Asim Shankar committed
122
  if mode == tf.estimator.ModeKeys.TRAIN:
123
    optimizer = tf.train.AdamOptimizer(learning_rate=LEARNING_RATE)
124

125
    logits = model(image, training=True)
126
    loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits)
127
    accuracy = tf.metrics.accuracy(
128
        labels=labels, predictions=tf.argmax(logits, axis=1))
129
130
131
132

    # Name tensors to be logged with LoggingTensorHook.
    tf.identity(LEARNING_RATE, 'learning_rate')
    tf.identity(loss, 'cross_entropy')
133
    tf.identity(accuracy[1], name='train_accuracy')
134
135

    # Save accuracy scalar to Tensorboard output.
136
    tf.summary.scalar('train_accuracy', accuracy[1])
137

138
139
140
141
    return tf.estimator.EstimatorSpec(
        mode=tf.estimator.ModeKeys.TRAIN,
        loss=loss,
        train_op=optimizer.minimize(loss, tf.train.get_or_create_global_step()))
Asim Shankar's avatar
Asim Shankar committed
142
  if mode == tf.estimator.ModeKeys.EVAL:
143
    logits = model(image, training=False)
144
    loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits)
145
146
147
148
149
150
    return tf.estimator.EstimatorSpec(
        mode=tf.estimator.ModeKeys.EVAL,
        loss=loss,
        eval_metric_ops={
            'accuracy':
                tf.metrics.accuracy(
Asim Shankar's avatar
Asim Shankar committed
151
                    labels=labels, predictions=tf.argmax(logits, axis=1)),
152
        })
153
154


155
156
157
158
159
160
def run_mnist(flags_obj):
  """Run MNIST training and eval loop.

  Args:
    flags_obj: An object containing parsed flag values.
  """
161
  model_helpers.apply_clean(flags_obj)
162
163
  model_function = model_fn

164
165
166
167
  session_config = tf.ConfigProto(
      inter_op_parallelism_threads=flags_obj.inter_op_parallelism_threads,
      intra_op_parallelism_threads=flags_obj.intra_op_parallelism_threads,
      allow_soft_placement=True)
168

169
  distribution_strategy = distribution_utils.get_distribution_strategy(
170
171
172
      distribution_strategy=flags_obj.distribution_strategy,
      num_gpus=flags_core.get_num_gpus(flags_obj),
      all_reduce_alg=flags_obj.all_reduce_alg)
173

174
175
  run_config = tf.estimator.RunConfig(
      train_distribute=distribution_strategy, session_config=session_config)
176

177
  data_format = flags_obj.data_format
Asim Shankar's avatar
Asim Shankar committed
178
179
180
  if data_format is None:
    data_format = ('channels_first'
                   if tf.test.is_built_with_cuda() else 'channels_last')
181
  mnist_classifier = tf.estimator.Estimator(
182
      model_fn=model_function,
183
      model_dir=flags_obj.model_dir,
184
      config=run_config,
Asim Shankar's avatar
Asim Shankar committed
185
      params={
186
          'data_format': data_format,
Asim Shankar's avatar
Asim Shankar committed
187
      })
188

189
  # Set up training and evaluation input functions.
Asim Shankar's avatar
Asim Shankar committed
190
  def train_input_fn():
Karmel Allison's avatar
Karmel Allison committed
191
192
    """Prepare data for training."""

Asim Shankar's avatar
Asim Shankar committed
193
194
195
    # When choosing shuffle buffer sizes, larger sizes result in better
    # randomness, while smaller sizes use less memory. MNIST is a small
    # enough dataset that we can easily shuffle the full epoch.
196
197
    ds = dataset.train(flags_obj.data_dir)
    ds = ds.cache().shuffle(buffer_size=50000).batch(flags_obj.batch_size)
Asim Shankar's avatar
Asim Shankar committed
198

199
200
    # Iterate through the dataset a set number (`epochs_between_evals`) of times
    # during each training session.
201
    ds = ds.repeat(flags_obj.epochs_between_evals)
202
    return ds
203

Asim Shankar's avatar
Asim Shankar committed
204
  def eval_input_fn():
205
206
    return dataset.test(flags_obj.data_dir).batch(
        flags_obj.batch_size).make_one_shot_iterator().get_next()
Asim Shankar's avatar
Asim Shankar committed
207

208
209
  # Set up hook that outputs training logs every 100 steps.
  train_hooks = hooks_helper.get_train_hooks(
210
211
      flags_obj.hooks, model_dir=flags_obj.model_dir,
      batch_size=flags_obj.batch_size)
212
213

  # Train and evaluate model.
214
  for _ in range(flags_obj.train_epochs // flags_obj.epochs_between_evals):
215
216
217
    mnist_classifier.train(input_fn=train_input_fn, hooks=train_hooks)
    eval_results = mnist_classifier.evaluate(input_fn=eval_input_fn)
    print('\nEvaluation results:\n\t%s\n' % eval_results)
218

219
    if model_helpers.past_stop_threshold(flags_obj.stop_threshold,
Asim Shankar's avatar
Asim Shankar committed
220
                                         eval_results['accuracy']):
221
222
      break

223
  # Export the model
224
  if flags_obj.export_dir is not None:
Asim Shankar's avatar
Asim Shankar committed
225
226
    image = tf.placeholder(tf.float32, [None, 28, 28])
    input_fn = tf.estimator.export.build_raw_serving_input_receiver_fn({
227
        'image': image,
Asim Shankar's avatar
Asim Shankar committed
228
    })
229
230
    mnist_classifier.export_savedmodel(flags_obj.export_dir, input_fn,
                                       strip_default_attrs=True)
231
232


233
234
235
236
def main(_):
  run_mnist(flags.FLAGS)


237
if __name__ == '__main__':
238
  tf.logging.set_verbosity(tf.logging.INFO)
239
240
  define_mnist_flags()
  absl_app.run(main)