keras_common.py 18.9 KB
Newer Older
1
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
"""Common util functions and classes used by both keras cifar and imagenet."""
16
17
18
19
20

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

21
22
import multiprocessing
import os
23

24
25
import numpy as np

Toby Boyd's avatar
Toby Boyd committed
26
27
28
# pylint: disable=g-bad-import-order
from absl import flags
import tensorflow as tf
29

30
31
from official.utils.misc import keras_utils
# pylint: disable=ungrouped-imports
32
from tensorflow.core.protobuf import rewriter_config_pb2
33
34
from tensorflow.python.keras.optimizer_v2 import (gradient_descent as
                                                  gradient_descent_v2)
35

Shining Sun's avatar
Shining Sun committed
36
FLAGS = flags.FLAGS
Shining Sun's avatar
Shining Sun committed
37
BASE_LEARNING_RATE = 0.1  # This matches Jing's version.
38
39
TRAIN_TOP_1 = 'training_accuracy_top_1'

Shining Sun's avatar
Shining Sun committed
40

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
class LearningRateBatchScheduler(tf.keras.callbacks.Callback):
  """Callback to update learning rate on every batch (not epoch boundaries).

  N.B. Only support Keras optimizers, not TF optimizers.

  Args:
      schedule: a function that takes an epoch index and a batch index as input
          (both integer, indexed from 0) and returns a new learning rate as
          output (float).
  """

  def __init__(self, schedule, batch_size, num_images):
    super(LearningRateBatchScheduler, self).__init__()
    self.schedule = schedule
    self.batches_per_epoch = num_images / batch_size
    self.batch_size = batch_size
    self.epochs = -1
    self.prev_lr = -1

  def on_epoch_begin(self, epoch, logs=None):
61
62
    if not hasattr(self.model.optimizer, 'learning_rate'):
      raise ValueError('Optimizer must have a "learning_rate" attribute.')
63
64
65
    self.epochs += 1

  def on_batch_begin(self, batch, logs=None):
66
    """Executes before step begins."""
67
68
69
70
    lr = self.schedule(self.epochs,
                       batch,
                       self.batches_per_epoch,
                       self.batch_size)
71
72
73
    if not isinstance(lr, (float, np.float32, np.float64)):
      raise ValueError('The output of the "schedule" function should be float.')
    if lr != self.prev_lr:
Shining Sun's avatar
Shining Sun committed
74
      self.model.optimizer.learning_rate = lr  # lr should be a float here
75
      self.prev_lr = lr
76
77
78
      tf.compat.v1.logging.debug(
          'Epoch %05d Batch %05d: LearningRateBatchScheduler '
          'change learning rate to %s.', self.epochs, batch, lr)
79

80

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
class PiecewiseConstantDecayWithWarmup(
    tf.keras.optimizers.schedules.LearningRateSchedule):
  """Piecewise constant decay with warmup schedule."""

  def __init__(self, batch_size, epoch_size, warmup_epochs, boundaries,
               multipliers, compute_lr_on_cpu=True, name=None):
    super(PiecewiseConstantDecayWithWarmup, self).__init__()
    if len(boundaries) != len(multipliers) - 1:
      raise ValueError('The length of boundaries must be 1 less than the '
                       'length of multipliers')

    base_lr_batch_size = 256
    num_batches_per_epoch = epoch_size // batch_size

    self.rescaled_lr = BASE_LEARNING_RATE * batch_size / base_lr_batch_size
    self.step_boundaries = [float(num_batches_per_epoch) * x
                            for x in boundaries]
    self.lr_values = [self.rescaled_lr * m for m in multipliers]
    self.warmup_steps = warmup_epochs * num_batches_per_epoch
    self.compute_lr_on_cpu = compute_lr_on_cpu
    self.name = name

103
    self.learning_rate_ops_cache = {}
104
105
106
107
108
109
110
111

  def __call__(self, step):
    if tf.executing_eagerly():
      return self._get_learning_rate(step)

    # In an eager function or graph, the current implementation of optimizer
    # repeatedly call and thus create ops for the learning rate schedule. To
    # avoid this, we cache the ops if not executing eagerly.
112
113
    graph = tf.compat.v1.get_default_graph()
    if graph not in self.learning_rate_ops_cache:
114
115
      if self.compute_lr_on_cpu:
        with tf.device('/device:CPU:0'):
116
          self.learning_rate_ops_cache[graph] = self._get_learning_rate(step)
117
      else:
118
119
        self.learning_rate_ops_cache[graph] = self._get_learning_rate(step)
    return self.learning_rate_ops_cache[graph]
120
121
122

  def _get_learning_rate(self, step):
    """Compute learning rate at given step."""
Haoyu Zhang's avatar
Haoyu Zhang committed
123
124
125
126
    with tf.compat.v1.name_scope(self.name, 'PiecewiseConstantDecayWithWarmup',
                                 [self.rescaled_lr, self.step_boundaries,
                                  self.lr_values, self.warmup_steps,
                                  self.compute_lr_on_cpu]):
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
      def warmup_lr(step):
        return self.rescaled_lr * (
            tf.cast(step, tf.float32) / tf.cast(self.warmup_steps, tf.float32))
      def piecewise_lr(step):
        return tf.compat.v1.train.piecewise_constant(
            step, self.step_boundaries, self.lr_values)
      return tf.cond(step < self.warmup_steps,
                     lambda: warmup_lr(step),
                     lambda: piecewise_lr(step))

  def get_config(self):
    return {
        'rescaled_lr': self.rescaled_lr,
        'step_boundaries': self.step_boundaries,
        'lr_values': self.lr_values,
        'warmup_steps': self.warmup_steps,
        'compute_lr_on_cpu': self.compute_lr_on_cpu,
        'name': self.name
    }


148
def get_config_proto_v1():
149
150
151
  """Return config proto according to flag settings, or None to use default."""
  config = None
  if FLAGS.enable_xla:
152
    config = tf.compat.v1.ConfigProto()
153
154
155
156
157
158
    config.graph_options.optimizer_options.global_jit_level = (
        tf.OptimizerOptions.ON_2)
    # Disable PinToHostOptimizer in grappler when enabling XLA because it causes
    # OOM and performance regression.
    config.graph_options.rewrite_options.pin_to_host_optimization = (
        rewriter_config_pb2.RewriterConfig.OFF)
159
160
161
162
163
164
165
166
167
  # TODO(b/76028325): Remove when generic layout optimizer will be ready.
  if not FLAGS.enable_grappler_layout_optimizer:
    if config is None:
      config = tf.compat.v1.ConfigProto()
    # Disable LayoutOptimizer in grappler, because it might de-optimize fp16
    # graphs, and force NCHW data format in all convolutions and batch
    # normalizations.
    config.graph_options.rewrite_options.layout_optimizer = (
        rewriter_config_pb2.RewriterConfig.OFF)
168
169
170
  return config


171
172
173
174
175
176
177
def set_config_v2():
  """Config eager context according to flag values using TF 2.0 API."""
  if FLAGS.enable_xla:
    tf.config.optimizer.set_jit(True)
    # Disable PinToHostOptimizer in grappler when enabling XLA because it
    # causes OOM and performance regression.
    tf.config.optimizer.set_experimental_options(
178
179
180
181
182
183
184
185
186
        {'pin_to_host_optimization': False}
    )
  # TODO(b/76028325): Remove when generic layout optimizer will be ready.
  if not FLAGS.enable_grappler_layout_optimizer:
    # Disable LayoutOptimizer in grappler, because it might de-optimize fp16
    # graphs, and force NCHW data format in all convolutions and batch
    # normalizations.
    tf.config.optimizer.set_experimental_options(
        {'layout_optimizer': False}
187
188
189
    )


190
191
192
193
194
195
def set_gpu_thread_mode_and_count(flags_obj):
  """Set GPU thread mode and count, and adjust dataset threads count."""
  cpu_count = multiprocessing.cpu_count()
  tf.compat.v1.logging.info('Logical CPU cores: %s', cpu_count)

  # Allocate private thread pool for each GPU to schedule and launch kernels
196
  per_gpu_thread_count = flags_obj.per_gpu_thread_count or 2
197
198
199
200
201
202
203
204
205
206
  os.environ['TF_GPU_THREAD_MODE'] = flags_obj.tf_gpu_thread_mode
  os.environ['TF_GPU_THREAD_COUNT'] = str(per_gpu_thread_count)
  tf.compat.v1.logging.info('TF_GPU_THREAD_COUNT: %s',
                            os.environ['TF_GPU_THREAD_COUNT'])
  tf.compat.v1.logging.info('TF_GPU_THREAD_MODE: %s',
                            os.environ['TF_GPU_THREAD_MODE'])

  # Limit data preprocessing threadpool to CPU cores minus number of total GPU
  # private threads and memory copy threads.
  total_gpu_thread_count = per_gpu_thread_count * flags_obj.num_gpus
207
  num_runtime_threads = flags_obj.num_gpus
208
  if not flags_obj.datasets_num_private_threads:
209
210
211
    flags_obj.datasets_num_private_threads = min(
        cpu_count - total_gpu_thread_count - num_runtime_threads,
        flags_obj.num_gpus * 8)
212
213
214
215
    tf.compat.v1.logging.info('Set datasets_num_private_threads to %s',
                              flags_obj.datasets_num_private_threads)


216
def get_optimizer(learning_rate=0.1):
217
218
  """Returns optimizer to use."""
  # The learning_rate is overwritten at the beginning of each step by callback.
219
  return gradient_descent_v2.SGD(learning_rate=learning_rate, momentum=0.9)
220
221


222
def get_callbacks(learning_rate_schedule_fn, num_images):
223
  """Returns common callbacks."""
224
  time_callback = keras_utils.TimeHistory(FLAGS.batch_size, FLAGS.log_steps)
225
226
227
228
229
230
231
232
  callbacks = [time_callback]

  if not FLAGS.use_tensor_lr:
    lr_callback = LearningRateBatchScheduler(
        learning_rate_schedule_fn,
        batch_size=FLAGS.batch_size,
        num_images=num_images)
    callbacks.append(lr_callback)
233
234
235
236
237
238
239

  if FLAGS.enable_tensorboard:
    tensorboard_callback = tf.keras.callbacks.TensorBoard(
        log_dir=FLAGS.model_dir)
    callbacks.append(tensorboard_callback)

  if FLAGS.profile_steps:
240
241
242
243
    profiler_callback = keras_utils.get_profiler_callback(
        FLAGS.model_dir,
        FLAGS.profile_steps,
        FLAGS.enable_tensorboard)
244
245
246
247
248
249
    callbacks.append(profiler_callback)

  return callbacks


def build_stats(history, eval_output, callbacks):
250
251
252
253
254
255
256
  """Normalizes and returns dictionary of stats.

  Args:
    history: Results of the training step. Supports both categorical_accuracy
      and sparse_categorical_accuracy.
    eval_output: Output of the eval step. Assumes first value is eval_loss and
      second value is accuracy_top_1.
257
258
    callbacks: a list of callbacks which might include a time history callback
      used during keras.fit.
259
260
261
262
263
264
265
266

  Returns:
    Dictionary of normalized results.
  """
  stats = {}
  if eval_output:
    stats['accuracy_top_1'] = eval_output[1].item()
    stats['eval_loss'] = eval_output[0].item()
267

268
269
270
271
272
273
274
275
276
277
  if history and history.history:
    train_hist = history.history
    # Gets final loss from training.
    stats['loss'] = train_hist['loss'][-1].item()
    # Gets top_1 training accuracy.
    if 'categorical_accuracy' in train_hist:
      stats[TRAIN_TOP_1] = train_hist['categorical_accuracy'][-1].item()
    elif 'sparse_categorical_accuracy' in train_hist:
      stats[TRAIN_TOP_1] = train_hist['sparse_categorical_accuracy'][-1].item()

278
279
280
281
282
283
284
285
286
287
288
289
290
291
  if not callbacks:
    return stats

  # Look for the time history callback which was used during keras.fit
  for callback in callbacks:
    if isinstance(callback, keras_utils.TimeHistory):
      timestamp_log = callback.timestamp_log
      stats['step_timestamp_log'] = timestamp_log
      stats['train_finish_time'] = callback.train_finish_time
      if len(timestamp_log) > 1:
        stats['avg_exp_per_second'] = (
            callback.batch_size * callback.log_steps *
            (len(callback.timestamp_log)-1) /
            (timestamp_log[-1].timestamp - timestamp_log[0].timestamp))
292
293
294
  return stats


Shining Sun's avatar
Shining Sun committed
295
def define_keras_flags():
296
  """Define flags for Keras models."""
297

Shining Sun's avatar
Shining Sun committed
298
  flags.DEFINE_boolean(name='enable_eager', default=False, help='Enable eager?')
299
300
301
  flags.DEFINE_boolean(
      name='run_eagerly', default=False,
      help='Run the model op by op without building a model function.')
302
  flags.DEFINE_boolean(name='skip_eval', default=False, help='Skip evaluation?')
Haoyu Zhang's avatar
Haoyu Zhang committed
303
304
  flags.DEFINE_boolean(name='use_trivial_model', default=False,
                       help='Whether to use a trivial Keras model.')
305
306
  flags.DEFINE_boolean(name='report_accuracy_metrics', default=True,
                       help='Report metrics during training and evaluation.')
307
308
  flags.DEFINE_boolean(name='use_tensor_lr', default=False,
                       help='Use learning rate tensor instead of a callback.')
309
310
311
312
  flags.DEFINE_boolean(
      name='enable_xla', default=False,
      help='Whether to enable XLA auto jit compilation. This is still an '
      'experimental feature, and is not yet effective with TF 2.0.')
313
314
315
  flags.DEFINE_boolean(
      name='enable_tensorboard', default=False,
      help='Whether to enable Tensorboard callback.')
Shining Sun's avatar
Shining Sun committed
316
  flags.DEFINE_integer(
317
318
      name='train_steps', default=None,
      help='The number of steps to run for training. If it is larger than '
Shining Sun's avatar
Shining Sun committed
319
      '# batches per epoch, then use # batches per epoch. When this flag is '
320
      'set, only one epoch is going to run for training.')
321
322
323
324
325
326
327
328
  flags.DEFINE_string(
      name='profile_steps', default=None,
      help='Save profiling data to model dir at given range of steps. The '
      'value must be a comma separated pair of positive integers, specifying '
      'the first and last step to profile. For example, "--profile_steps=2,4" '
      'triggers the profiler to process 3 steps, starting from the 2nd step. '
      'Note that profiler has a non-trivial performance overhead, and the '
      'output file can be gigantic if profiling many steps.')
329
  flags.DEFINE_boolean(
330
      name='data_delay_prefetch', default=False,
331
332
333
334
335
      help='Add a small delay in tf.data prefetch to prioritize memory copy of '
      'other tensors over the data minibatch for the (T+1)th step. It should '
      'help improve performance using EagerIterator and function. The codepath '
      'when enabling this feature is experimental and will be removed once the '
      'corresponding performance features are fully supported in TensorFlow.')
336
337
338
339
  flags.DEFINE_boolean(
      name='batchnorm_spatial_persistent', default=True,
      help='Enable the spacial persistent mode for CuDNN batch norm kernel.')
  flags.DEFINE_boolean(
340
      name='clone_model_in_keras_dist_strat', default=None,
341
342
      help='If False, then the experimental code path is used that doesn\'t '
           'clone models for distribution.')
343
344
345
  flags.DEFINE_boolean(
      name='enable_get_next_as_optional', default=False,
      help='Enable get_next_as_optional behavior in DistributedIterator.')
346
347
348
349
350
351
352
353
354
  # TODO(b/76028325): Remove when generic layout optimizer is ready.
  flags.DEFINE_boolean(
      name='enable_grappler_layout_optimizer',
      default=True,
      help='Enable Grappler layout optimizer. Currently Grappler can '
           'de-optimize fp16 graphs byt forcing NCHW layout for all '
           'convolutions and batch normalizations, and this flag allows to '
           'disable it.'
  )
Shining Sun's avatar
Shining Sun committed
355
356

def get_synth_input_fn(height, width, num_channels, num_classes,
357
                       dtype=tf.float32, drop_remainder=True):
Shining Sun's avatar
Shining Sun committed
358
359
360
361
362
  """Returns an input function that returns a dataset with random data.

  This input_fn returns a data set that iterates over a set of random data and
  bypasses all preprocessing, e.g. jpeg decode and copy. The host to device
  copy is still included. This used to find the upper throughput bound when
Shining Sun's avatar
Shining Sun committed
363
  tuning the full input pipeline.
Shining Sun's avatar
Shining Sun committed
364
365
366
367
368
369
370
371

  Args:
    height: Integer height that will be used to create a fake image tensor.
    width: Integer width that will be used to create a fake image tensor.
    num_channels: Integer depth that will be used to create a fake image tensor.
    num_classes: Number of classes that should be represented in the fake labels
      tensor
    dtype: Data type for features/images.
372
373
    drop_remainder: A boolean indicates whether to drop the remainder of the
      batches. If True, the batch dimension will be static.
Shining Sun's avatar
Shining Sun committed
374
375
376
377
378
379
380
381
382

  Returns:
    An input_fn that can be used in place of a real one to return a dataset
    that can be used for iteration.
  """
  # pylint: disable=unused-argument
  def input_fn(is_training, data_dir, batch_size, *args, **kwargs):
    """Returns dataset filled with random data."""
    # Synthetic input should be within [0, 255].
383
384
385
386
387
388
389
390
391
392
393
    inputs = tf.random.truncated_normal([height, width, num_channels],
                                        dtype=dtype,
                                        mean=127,
                                        stddev=60,
                                        name='synthetic_inputs')

    labels = tf.random.uniform([1],
                               minval=0,
                               maxval=num_classes - 1,
                               dtype=tf.int32,
                               name='synthetic_labels')
394
395
396
    # Cast to float32 for Keras model.
    labels = tf.cast(labels, dtype=tf.float32)

Shining Sun's avatar
Shining Sun committed
397
    data = tf.data.Dataset.from_tensors((inputs, labels)).repeat()
398
399

    # `drop_remainder` will make dataset produce outputs with known shapes.
400
    data = data.batch(batch_size, drop_remainder=drop_remainder)
401
    data = data.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)
Shining Sun's avatar
Shining Sun committed
402
403
404
    return data

  return input_fn
Shining Sun's avatar
Shining Sun committed
405
406


407
408
def is_v2_0():
  """Returns true if using tf 2.0."""
409
410
411
412
  if hasattr(tf, 'contrib'):
    return False
  else:
    return True
413
414


415
def data_delay_prefetch():
416
417
418
419
420
  """Use unstable code for perf tuning purposes."""
  if not FLAGS.use_synthetic_data:
    _monkey_patch_org_create_device_dataset()


421
422
423
424
425
426
def set_cudnn_batchnorm_mode():
  """Set CuDNN batchnorm mode for better performance. Note that the spatial
     persistent mode may lead to accuracy losses for certain models."""
  if FLAGS.batchnorm_spatial_persistent:
    os.environ['TF_USE_CUDNN_BATCHNORM_SPATIAL_PERSISTENT'] = '1'
  else:
427
    os.environ.pop('TF_USE_CUDNN_BATCHNORM_SPATIAL_PERSISTENT', None)
428
429


430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
# TODO(haoyuzhang): remove this monkey patch when the "prefetch with slack"
# feature is available in tf.data.
def _monkey_patch_org_create_device_dataset():
  """Monkey-patch `_create_device_dataset` method with delayed prefetch."""

  import ast  # pylint: disable=g-import-not-at-top
  import inspect  # pylint: disable=g-import-not-at-top
  from tensorflow.python.data.ops import multi_device_iterator_ops  # pylint: disable=g-import-not-at-top

  tf.compat.v1.logging.info(
      'Using monkey-patched version of MultiDeviceIterator. It should be '
      'removed when the prefetch with slack feature is implemented in tf.data.')
  cls_multi_device_iterator = ast.parse(
      inspect.getsource(multi_device_iterator_ops.MultiDeviceIterator))
  org_create_device_dataset_code = inspect.getsource(
      multi_device_iterator_ops.MultiDeviceIterator._create_device_dataset)  # pylint: disable=protected-access
  code_lines = org_create_device_dataset_code.split('\n')
  # Insert in reverse order to avoid line number shift by previous insertions
  code_lines.insert(5, '      ds = ds.apply(sleep_ops.sleep(11000))')  # 11ms
  code_lines.insert(2, '    from tensorflow.python.data.experimental.ops import sleep as sleep_ops')  # pylint: disable=line-too-long
  patched_code = '\n'.join(line[2:] for line in code_lines)
  cls_multi_device_iterator.body[0].body[2] = ast.parse(patched_code).body[0]
  exec(compile(cls_multi_device_iterator, '<string>', 'exec'),  # pylint: disable=exec-used
       multi_device_iterator_ops.__dict__)