model_lib.py 49.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
r"""Constructs model, inputs, and training environment."""
16
17
18
19
20

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

21
import copy
22
import functools
23
import os
24

25
import tensorflow.compat.v1 as tf
26
import tensorflow.compat.v2 as tf2
27
28
import tf_slim as slim

29
from object_detection import eval_util
30
from object_detection import exporter as exporter_lib
31
from object_detection import inputs
32
from object_detection.builders import graph_rewriter_builder
33
34
35
36
37
from object_detection.builders import model_builder
from object_detection.builders import optimizer_builder
from object_detection.core import standard_fields as fields
from object_detection.utils import config_util
from object_detection.utils import label_map_util
38
from object_detection.utils import ops
39
40
41
42
from object_detection.utils import shape_utils
from object_detection.utils import variables_helper
from object_detection.utils import visualization_utils as vis_utils

43
44
45
46
47
48
49
50
# pylint: disable=g-import-not-at-top
try:
  from tensorflow.contrib import learn as contrib_learn
except ImportError:
  # TF 2.0 doesn't ship with contrib.
  pass
# pylint: enable=g-import-not-at-top

51
52
53
54
55
56
57
58
# A map of names to methods that help build the model.
MODEL_BUILD_UTIL_MAP = {
    'get_configs_from_pipeline_file':
        config_util.get_configs_from_pipeline_file,
    'create_pipeline_proto_from_configs':
        config_util.create_pipeline_proto_from_configs,
    'merge_external_params_with_configs':
        config_util.merge_external_params_with_configs,
59
60
61
62
63
64
    'create_train_input_fn':
        inputs.create_train_input_fn,
    'create_eval_input_fn':
        inputs.create_eval_input_fn,
    'create_predict_input_fn':
        inputs.create_predict_input_fn,
65
    'detection_model_fn_base': model_builder.build,
66
67
68
}


69
70
def _prepare_groundtruth_for_eval(detection_model, class_agnostic,
                                  max_number_of_boxes):
71
  """Extracts groundtruth data from detection_model and prepares it for eval.
72
73
74
75

  Args:
    detection_model: A `DetectionModel` object.
    class_agnostic: Whether the detections are class_agnostic.
76
    max_number_of_boxes: Max number of groundtruth boxes.
77
78
79
80

  Returns:
    A tuple of:
    groundtruth: Dictionary with the following fields:
81
82
83
84
85
      'groundtruth_boxes': [batch_size, num_boxes, 4] float32 tensor of boxes,
        in normalized coordinates.
      'groundtruth_classes': [batch_size, num_boxes] int64 tensor of 1-indexed
        classes.
      'groundtruth_masks': 4D float32 tensor of instance masks (if provided in
86
        groundtruth)
87
88
      'groundtruth_is_crowd': [batch_size, num_boxes] bool tensor indicating
        is_crowd annotations (if provided in groundtruth).
89
90
91
      'groundtruth_area': [batch_size, num_boxes] float32 tensor indicating
        the area (in the original absolute coordinates) of annotations (if
        provided in groundtruth).
92
93
      'num_groundtruth_boxes': [batch_size] tensor containing the maximum number
        of groundtruth boxes per image..
94
95
      'groundtruth_keypoints': [batch_size, num_boxes, num_keypoints, 2] float32
        tensor of keypoints (if provided in groundtruth).
96
97
98
99
100
101
102
103
104
      'groundtruth_dp_num_points_list': [batch_size, num_boxes] int32 tensor
        with the number of DensePose points for each instance (if provided in
        groundtruth).
      'groundtruth_dp_part_ids_list': [batch_size, num_boxes,
        max_sampled_points] int32 tensor with the part ids for each DensePose
        sampled point (if provided in groundtruth).
      'groundtruth_dp_surface_coords_list': [batch_size, num_boxes,
        max_sampled_points, 4] containing the DensePose surface coordinates for
        each sampled point (if provided in groundtruth).
105
106
      'groundtruth_track_ids_list': [batch_size, num_boxes] int32 tensor
        with track ID for each instance (if provided in groundtruth).
107
108
109
110
      'groundtruth_group_of': [batch_size, num_boxes] bool tensor indicating
        group_of annotations (if provided in groundtruth).
      'groundtruth_labeled_classes': [batch_size, num_classes] int64
        tensor of 1-indexed classes.
111
112
113
114
115
116
      'groundtruth_verified_neg_classes': [batch_size, num_classes] float32
        K-hot representation of 1-indexed classes which were verified as not
        present in the image.
      'groundtruth_not_exhaustive_classes': [batch_size, num_classes] K-hot
        representation of 1-indexed classes which don't have all of their
        instances marked exhaustively.
117
118
119
120
      'input_data_fields.groundtruth_image_classes': integer representation of
        the classes that were sent for verification for a given image. Note that
        this field does not support batching as the number of classes can be
        variable.
121
122
123
    class_agnostic: Boolean indicating whether detections are class agnostic.
  """
  input_data_fields = fields.InputDataFields()
124
125
126
  groundtruth_boxes = tf.stack(
      detection_model.groundtruth_lists(fields.BoxListFields.boxes))
  groundtruth_boxes_shape = tf.shape(groundtruth_boxes)
127
128
129
  # For class-agnostic models, groundtruth one-hot encodings collapse to all
  # ones.
  if class_agnostic:
130
131
    groundtruth_classes_one_hot = tf.ones(
        [groundtruth_boxes_shape[0], groundtruth_boxes_shape[1], 1])
132
  else:
133
134
    groundtruth_classes_one_hot = tf.stack(
        detection_model.groundtruth_lists(fields.BoxListFields.classes))
135
136
  label_id_offset = 1  # Applying label id offset (b/63711816)
  groundtruth_classes = (
137
      tf.argmax(groundtruth_classes_one_hot, axis=2) + label_id_offset)
138
139
140
141
  groundtruth = {
      input_data_fields.groundtruth_boxes: groundtruth_boxes,
      input_data_fields.groundtruth_classes: groundtruth_classes
  }
142

143
144
145
146
147
148
149
150
151
152
153
154
  if detection_model.groundtruth_has_field(
      input_data_fields.groundtruth_image_classes):
    groundtruth_image_classes_k_hot = tf.stack(
        detection_model.groundtruth_lists(
            input_data_fields.groundtruth_image_classes))
    # We do not add label_id_offset here because it was not added when encoding
    # groundtruth_image_classes.
    groundtruth_image_classes = tf.expand_dims(
        tf.where(groundtruth_image_classes_k_hot > 0)[:, 1], 0)
    groundtruth[
        input_data_fields.groundtruth_image_classes] = groundtruth_image_classes

155
  if detection_model.groundtruth_has_field(fields.BoxListFields.masks):
156
157
158
    groundtruth[input_data_fields.groundtruth_instance_masks] = tf.stack(
        detection_model.groundtruth_lists(fields.BoxListFields.masks))

159
  if detection_model.groundtruth_has_field(fields.BoxListFields.is_crowd):
160
161
162
    groundtruth[input_data_fields.groundtruth_is_crowd] = tf.stack(
        detection_model.groundtruth_lists(fields.BoxListFields.is_crowd))

163
164
165
166
167
168
169
170
  if detection_model.groundtruth_has_field(input_data_fields.groundtruth_area):
    groundtruth[input_data_fields.groundtruth_area] = tf.stack(
        detection_model.groundtruth_lists(input_data_fields.groundtruth_area))

  if detection_model.groundtruth_has_field(fields.BoxListFields.keypoints):
    groundtruth[input_data_fields.groundtruth_keypoints] = tf.stack(
        detection_model.groundtruth_lists(fields.BoxListFields.keypoints))

171
172
173
174
175
176
177
178
179
  if detection_model.groundtruth_has_field(
      fields.BoxListFields.keypoint_depths):
    groundtruth[input_data_fields.groundtruth_keypoint_depths] = tf.stack(
        detection_model.groundtruth_lists(fields.BoxListFields.keypoint_depths))
    groundtruth[
        input_data_fields.groundtruth_keypoint_depth_weights] = tf.stack(
            detection_model.groundtruth_lists(
                fields.BoxListFields.keypoint_depth_weights))

180
181
182
183
184
185
  if detection_model.groundtruth_has_field(
      fields.BoxListFields.keypoint_visibilities):
    groundtruth[input_data_fields.groundtruth_keypoint_visibilities] = tf.stack(
        detection_model.groundtruth_lists(
            fields.BoxListFields.keypoint_visibilities))

186
187
188
189
  if detection_model.groundtruth_has_field(fields.BoxListFields.group_of):
    groundtruth[input_data_fields.groundtruth_group_of] = tf.stack(
        detection_model.groundtruth_lists(fields.BoxListFields.group_of))

190
  label_id_offset_paddings = tf.constant([[0, 0], [1, 0]])
191
  if detection_model.groundtruth_has_field(
192
      input_data_fields.groundtruth_verified_neg_classes):
193
194
195
196
    groundtruth[input_data_fields.groundtruth_verified_neg_classes] = tf.pad(
        tf.stack(detection_model.groundtruth_lists(
            input_data_fields.groundtruth_verified_neg_classes)),
        label_id_offset_paddings)
197
198
199
200

  if detection_model.groundtruth_has_field(
      input_data_fields.groundtruth_not_exhaustive_classes):
    groundtruth[
201
202
203
204
        input_data_fields.groundtruth_not_exhaustive_classes] = tf.pad(
            tf.stack(detection_model.groundtruth_lists(
                input_data_fields.groundtruth_not_exhaustive_classes)),
            label_id_offset_paddings)
205

206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
  if detection_model.groundtruth_has_field(
      fields.BoxListFields.densepose_num_points):
    groundtruth[input_data_fields.groundtruth_dp_num_points] = tf.stack(
        detection_model.groundtruth_lists(
            fields.BoxListFields.densepose_num_points))
  if detection_model.groundtruth_has_field(
      fields.BoxListFields.densepose_part_ids):
    groundtruth[input_data_fields.groundtruth_dp_part_ids] = tf.stack(
        detection_model.groundtruth_lists(
            fields.BoxListFields.densepose_part_ids))
  if detection_model.groundtruth_has_field(
      fields.BoxListFields.densepose_surface_coords):
    groundtruth[input_data_fields.groundtruth_dp_surface_coords] = tf.stack(
        detection_model.groundtruth_lists(
            fields.BoxListFields.densepose_surface_coords))
221
222
223
224
225

  if detection_model.groundtruth_has_field(fields.BoxListFields.track_ids):
    groundtruth[input_data_fields.groundtruth_track_ids] = tf.stack(
        detection_model.groundtruth_lists(fields.BoxListFields.track_ids))

226
227
  if detection_model.groundtruth_has_field(
      input_data_fields.groundtruth_labeled_classes):
228
229
230
231
232
    groundtruth[input_data_fields.groundtruth_labeled_classes] = tf.pad(
        tf.stack(
            detection_model.groundtruth_lists(
                input_data_fields.groundtruth_labeled_classes)),
        label_id_offset_paddings)
233

234
235
  groundtruth[input_data_fields.num_groundtruth_boxes] = (
      tf.tile([max_number_of_boxes], multiples=[groundtruth_boxes_shape[0]]))
236
237
238
239
240
241
242
  return groundtruth


def unstack_batch(tensor_dict, unpad_groundtruth_tensors=True):
  """Unstacks all tensors in `tensor_dict` along 0th dimension.

  Unstacks tensor from the tensor dict along 0th dimension and returns a
243
  tensor_dict containing values that are lists of unstacked, unpadded tensors.
244
245
246
247
248
249

  Tensors in the `tensor_dict` are expected to be of one of the three shapes:
  1. [batch_size]
  2. [batch_size, height, width, channels]
  3. [batch_size, num_boxes, d1, d2, ... dn]

250
251
  When unpad_groundtruth_tensors is set to true, unstacked tensors of form 3
  above are sliced along the `num_boxes` dimension using the value in tensor
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
  field.InputDataFields.num_groundtruth_boxes.

  Note that this function has a static list of input data fields and has to be
  kept in sync with the InputDataFields defined in core/standard_fields.py

  Args:
    tensor_dict: A dictionary of batched groundtruth tensors.
    unpad_groundtruth_tensors: Whether to remove padding along `num_boxes`
      dimension of the groundtruth tensors.

  Returns:
    A dictionary where the keys are from fields.InputDataFields and values are
    a list of unstacked (optionally unpadded) tensors.

  Raises:
    ValueError: If unpad_tensors is True and `tensor_dict` does not contain
      `num_groundtruth_boxes` tensor.
  """
270
271
272
  unbatched_tensor_dict = {
      key: tf.unstack(tensor) for key, tensor in tensor_dict.items()
  }
273
274
275
276
277
278
279
280
281
282
283
284
  if unpad_groundtruth_tensors:
    if (fields.InputDataFields.num_groundtruth_boxes not in
        unbatched_tensor_dict):
      raise ValueError('`num_groundtruth_boxes` not found in tensor_dict. '
                       'Keys available: {}'.format(
                           unbatched_tensor_dict.keys()))
    unbatched_unpadded_tensor_dict = {}
    unpad_keys = set([
        # List of input data fields that are padded along the num_boxes
        # dimension. This list has to be kept in sync with InputDataFields in
        # standard_fields.py.
        fields.InputDataFields.groundtruth_instance_masks,
285
        fields.InputDataFields.groundtruth_instance_mask_weights,
286
287
288
        fields.InputDataFields.groundtruth_classes,
        fields.InputDataFields.groundtruth_boxes,
        fields.InputDataFields.groundtruth_keypoints,
289
290
        fields.InputDataFields.groundtruth_keypoint_depths,
        fields.InputDataFields.groundtruth_keypoint_depth_weights,
291
        fields.InputDataFields.groundtruth_keypoint_visibilities,
292
293
294
        fields.InputDataFields.groundtruth_dp_num_points,
        fields.InputDataFields.groundtruth_dp_part_ids,
        fields.InputDataFields.groundtruth_dp_surface_coords,
295
        fields.InputDataFields.groundtruth_track_ids,
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
        fields.InputDataFields.groundtruth_group_of,
        fields.InputDataFields.groundtruth_difficult,
        fields.InputDataFields.groundtruth_is_crowd,
        fields.InputDataFields.groundtruth_area,
        fields.InputDataFields.groundtruth_weights
    ]).intersection(set(unbatched_tensor_dict.keys()))

    for key in unpad_keys:
      unpadded_tensor_list = []
      for num_gt, padded_tensor in zip(
          unbatched_tensor_dict[fields.InputDataFields.num_groundtruth_boxes],
          unbatched_tensor_dict[key]):
        tensor_shape = shape_utils.combined_static_and_dynamic_shape(
            padded_tensor)
        slice_begin = tf.zeros([len(tensor_shape)], dtype=tf.int32)
        slice_size = tf.stack(
            [num_gt] + [-1 if dim is None else dim for dim in tensor_shape[1:]])
        unpadded_tensor = tf.slice(padded_tensor, slice_begin, slice_size)
        unpadded_tensor_list.append(unpadded_tensor)
      unbatched_unpadded_tensor_dict[key] = unpadded_tensor_list
316

317
318
319
320
321
    unbatched_tensor_dict.update(unbatched_unpadded_tensor_dict)

  return unbatched_tensor_dict


322
def provide_groundtruth(model, labels, training_step=None):
323
324
325
326
327
328
329
330
331
  """Provides the labels to a model as groundtruth.

  This helper function extracts the corresponding boxes, classes,
  keypoints, weights, masks, etc. from the labels, and provides it
  as groundtruth to the models.

  Args:
    model: The detection model to provide groundtruth to.
    labels: The labels for the training or evaluation inputs.
332
333
    training_step: int, optional. The training step for the model. Useful
      for models which want to anneal loss weights.
334
335
336
337
338
339
340
  """
  gt_boxes_list = labels[fields.InputDataFields.groundtruth_boxes]
  gt_classes_list = labels[fields.InputDataFields.groundtruth_classes]
  gt_masks_list = None
  if fields.InputDataFields.groundtruth_instance_masks in labels:
    gt_masks_list = labels[
        fields.InputDataFields.groundtruth_instance_masks]
341
342
343
344
  gt_mask_weights_list = None
  if fields.InputDataFields.groundtruth_instance_mask_weights in labels:
    gt_mask_weights_list = labels[
        fields.InputDataFields.groundtruth_instance_mask_weights]
345
346
347
  gt_keypoints_list = None
  if fields.InputDataFields.groundtruth_keypoints in labels:
    gt_keypoints_list = labels[fields.InputDataFields.groundtruth_keypoints]
348
349
350
351
352
353
354
  gt_keypoint_depths_list = None
  gt_keypoint_depth_weights_list = None
  if fields.InputDataFields.groundtruth_keypoint_depths in labels:
    gt_keypoint_depths_list = (
        labels[fields.InputDataFields.groundtruth_keypoint_depths])
    gt_keypoint_depth_weights_list = (
        labels[fields.InputDataFields.groundtruth_keypoint_depth_weights])
355
356
357
358
  gt_keypoint_visibilities_list = None
  if fields.InputDataFields.groundtruth_keypoint_visibilities in labels:
    gt_keypoint_visibilities_list = labels[
        fields.InputDataFields.groundtruth_keypoint_visibilities]
359
360
361
362
363
364
365
366
367
368
369
370
  gt_dp_num_points_list = None
  if fields.InputDataFields.groundtruth_dp_num_points in labels:
    gt_dp_num_points_list = labels[
        fields.InputDataFields.groundtruth_dp_num_points]
  gt_dp_part_ids_list = None
  if fields.InputDataFields.groundtruth_dp_part_ids in labels:
    gt_dp_part_ids_list = labels[
        fields.InputDataFields.groundtruth_dp_part_ids]
  gt_dp_surface_coords_list = None
  if fields.InputDataFields.groundtruth_dp_surface_coords in labels:
    gt_dp_surface_coords_list = labels[
        fields.InputDataFields.groundtruth_dp_surface_coords]
371
372
373
374
  gt_track_ids_list = None
  if fields.InputDataFields.groundtruth_track_ids in labels:
    gt_track_ids_list = labels[
        fields.InputDataFields.groundtruth_track_ids]
375
376
377
378
379
380
381
382
383
384
  gt_weights_list = None
  if fields.InputDataFields.groundtruth_weights in labels:
    gt_weights_list = labels[fields.InputDataFields.groundtruth_weights]
  gt_confidences_list = None
  if fields.InputDataFields.groundtruth_confidences in labels:
    gt_confidences_list = labels[
        fields.InputDataFields.groundtruth_confidences]
  gt_is_crowd_list = None
  if fields.InputDataFields.groundtruth_is_crowd in labels:
    gt_is_crowd_list = labels[fields.InputDataFields.groundtruth_is_crowd]
385
386
387
  gt_group_of_list = None
  if fields.InputDataFields.groundtruth_group_of in labels:
    gt_group_of_list = labels[fields.InputDataFields.groundtruth_group_of]
388
389
390
391
392
393
394
  gt_area_list = None
  if fields.InputDataFields.groundtruth_area in labels:
    gt_area_list = labels[fields.InputDataFields.groundtruth_area]
  gt_labeled_classes = None
  if fields.InputDataFields.groundtruth_labeled_classes in labels:
    gt_labeled_classes = labels[
        fields.InputDataFields.groundtruth_labeled_classes]
395
396
397
398
399
400
401
402
  gt_verified_neg_classes = None
  if fields.InputDataFields.groundtruth_verified_neg_classes in labels:
    gt_verified_neg_classes = labels[
        fields.InputDataFields.groundtruth_verified_neg_classes]
  gt_not_exhaustive_classes = None
  if fields.InputDataFields.groundtruth_not_exhaustive_classes in labels:
    gt_not_exhaustive_classes = labels[
        fields.InputDataFields.groundtruth_not_exhaustive_classes]
403
404
405
406
  groundtruth_image_classes = None
  if fields.InputDataFields.groundtruth_image_classes in labels:
    groundtruth_image_classes = labels[
        fields.InputDataFields.groundtruth_image_classes]
407
408
409
410
  model.provide_groundtruth(
      groundtruth_boxes_list=gt_boxes_list,
      groundtruth_classes_list=gt_classes_list,
      groundtruth_confidences_list=gt_confidences_list,
411
      groundtruth_labeled_classes=gt_labeled_classes,
412
      groundtruth_masks_list=gt_masks_list,
413
      groundtruth_mask_weights_list=gt_mask_weights_list,
414
      groundtruth_keypoints_list=gt_keypoints_list,
415
      groundtruth_keypoint_visibilities_list=gt_keypoint_visibilities_list,
416
417
418
      groundtruth_dp_num_points_list=gt_dp_num_points_list,
      groundtruth_dp_part_ids_list=gt_dp_part_ids_list,
      groundtruth_dp_surface_coords_list=gt_dp_surface_coords_list,
419
      groundtruth_weights_list=gt_weights_list,
420
      groundtruth_is_crowd_list=gt_is_crowd_list,
421
      groundtruth_group_of_list=gt_group_of_list,
422
      groundtruth_area_list=gt_area_list,
423
424
      groundtruth_track_ids_list=gt_track_ids_list,
      groundtruth_verified_neg_classes=gt_verified_neg_classes,
425
426
      groundtruth_not_exhaustive_classes=gt_not_exhaustive_classes,
      groundtruth_keypoint_depths_list=gt_keypoint_depths_list,
427
      groundtruth_keypoint_depth_weights_list=gt_keypoint_depth_weights_list,
428
      groundtruth_image_classes=groundtruth_image_classes,
429
      training_step=training_step)
430
431


432
def create_model_fn(detection_model_fn, configs, hparams=None, use_tpu=False,
433
                    postprocess_on_cpu=False):
434
435
436
437
438
439
440
441
  """Creates a model function for `Estimator`.

  Args:
    detection_model_fn: Function that returns a `DetectionModel` instance.
    configs: Dictionary of pipeline config objects.
    hparams: `HParams` object.
    use_tpu: Boolean indicating whether model should be constructed for
        use on TPU.
442
443
    postprocess_on_cpu: When use_tpu and postprocess_on_cpu is true, postprocess
        is scheduled on the host cpu.
444
445
446
447
448
449

  Returns:
    `model_fn` for `Estimator`.
  """
  train_config = configs['train_config']
  eval_input_config = configs['eval_input_config']
450
  eval_config = configs['eval_config']
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468

  def model_fn(features, labels, mode, params=None):
    """Constructs the object detection model.

    Args:
      features: Dictionary of feature tensors, returned from `input_fn`.
      labels: Dictionary of groundtruth tensors if mode is TRAIN or EVAL,
        otherwise None.
      mode: Mode key from tf.estimator.ModeKeys.
      params: Parameter dictionary passed from the estimator.

    Returns:
      An `EstimatorSpec` that encapsulates the model and its serving
        configurations.
    """
    params = params or {}
    total_loss, train_op, detections, export_outputs = None, None, None, None
    is_training = mode == tf.estimator.ModeKeys.TRAIN
469
470
471
472

    # Make sure to set the Keras learning phase. True during training,
    # False for inference.
    tf.keras.backend.set_learning_phase(is_training)
473
474
475
    # Set policy for mixed-precision training with Keras-based models.
    if use_tpu and train_config.use_bfloat16:
      # Enable v2 behavior, as `mixed_bfloat16` is only supported in TF 2.0.
476
      tf.keras.layers.enable_v2_dtype_behavior()
477
      tf2.keras.mixed_precision.set_global_policy('mixed_bfloat16')
478
479
    detection_model = detection_model_fn(
        is_training=is_training, add_summaries=(not use_tpu))
480
481
482
483
484
485
486
    scaffold_fn = None

    if mode == tf.estimator.ModeKeys.TRAIN:
      labels = unstack_batch(
          labels,
          unpad_groundtruth_tensors=train_config.unpad_groundtruth_tensors)
    elif mode == tf.estimator.ModeKeys.EVAL:
487
488
489
490
491
      # For evaling on train data, it is necessary to check whether groundtruth
      # must be unpadded.
      boxes_shape = (
          labels[fields.InputDataFields.groundtruth_boxes].get_shape()
          .as_list())
492
      unpad_groundtruth_tensors = boxes_shape[1] is not None and not use_tpu
493
494
      labels = unstack_batch(
          labels, unpad_groundtruth_tensors=unpad_groundtruth_tensors)
495
496

    if mode in (tf.estimator.ModeKeys.TRAIN, tf.estimator.ModeKeys.EVAL):
pkulzc's avatar
pkulzc committed
497
      provide_groundtruth(detection_model, labels)
498
499

    preprocessed_images = features[fields.InputDataFields.image]
500
501
502

    side_inputs = detection_model.get_side_inputs(features)

503
    if use_tpu and train_config.use_bfloat16:
504
      with tf.tpu.bfloat16_scope():
505
506
        prediction_dict = detection_model.predict(
            preprocessed_images,
507
            features[fields.InputDataFields.true_image_shape], **side_inputs)
508
        prediction_dict = ops.bfloat16_to_float32_nested(prediction_dict)
509
510
511
    else:
      prediction_dict = detection_model.predict(
          preprocessed_images,
512
          features[fields.InputDataFields.true_image_shape], **side_inputs)
513
514
515
516

    def postprocess_wrapper(args):
      return detection_model.postprocess(args[0], args[1])

517
    if mode in (tf.estimator.ModeKeys.EVAL, tf.estimator.ModeKeys.PREDICT):
518
      if use_tpu and postprocess_on_cpu:
519
        detections = tf.tpu.outside_compilation(
520
521
522
523
524
525
526
            postprocess_wrapper,
            (prediction_dict,
             features[fields.InputDataFields.true_image_shape]))
      else:
        detections = postprocess_wrapper((
            prediction_dict,
            features[fields.InputDataFields.true_image_shape]))
527
528

    if mode == tf.estimator.ModeKeys.TRAIN:
529
530
      load_pretrained = hparams.load_pretrained if hparams else False
      if train_config.fine_tune_checkpoint and load_pretrained:
531
532
533
534
535
536
537
538
        if not train_config.fine_tune_checkpoint_type:
          # train_config.from_detection_checkpoint field is deprecated. For
          # backward compatibility, set train_config.fine_tune_checkpoint_type
          # based on train_config.from_detection_checkpoint.
          if train_config.from_detection_checkpoint:
            train_config.fine_tune_checkpoint_type = 'detection'
          else:
            train_config.fine_tune_checkpoint_type = 'classification'
539
        asg_map = detection_model.restore_map(
540
            fine_tune_checkpoint_type=train_config.fine_tune_checkpoint_type,
541
542
543
544
            load_all_detection_checkpoint_vars=(
                train_config.load_all_detection_checkpoint_vars))
        available_var_map = (
            variables_helper.get_variables_available_in_checkpoint(
545
546
                asg_map,
                train_config.fine_tune_checkpoint,
547
548
                include_global_step=False))
        if use_tpu:
549

550
551
552
553
          def tpu_scaffold():
            tf.train.init_from_checkpoint(train_config.fine_tune_checkpoint,
                                          available_var_map)
            return tf.train.Scaffold()
554

555
556
557
558
559
560
          scaffold_fn = tpu_scaffold
        else:
          tf.train.init_from_checkpoint(train_config.fine_tune_checkpoint,
                                        available_var_map)

    if mode in (tf.estimator.ModeKeys.TRAIN, tf.estimator.ModeKeys.EVAL):
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
      if (mode == tf.estimator.ModeKeys.EVAL and
          eval_config.use_dummy_loss_in_eval):
        total_loss = tf.constant(1.0)
        losses_dict = {'Loss/total_loss': total_loss}
      else:
        losses_dict = detection_model.loss(
            prediction_dict, features[fields.InputDataFields.true_image_shape])
        losses = [loss_tensor for loss_tensor in losses_dict.values()]
        if train_config.add_regularization_loss:
          regularization_losses = detection_model.regularization_losses()
          if use_tpu and train_config.use_bfloat16:
            regularization_losses = ops.bfloat16_to_float32_nested(
                regularization_losses)
          if regularization_losses:
            regularization_loss = tf.add_n(
                regularization_losses, name='regularization_loss')
            losses.append(regularization_loss)
            losses_dict['Loss/regularization_loss'] = regularization_loss
        total_loss = tf.add_n(losses, name='total_loss')
        losses_dict['Loss/total_loss'] = total_loss
581

582
583
584
585
586
      if 'graph_rewriter_config' in configs:
        graph_rewriter_fn = graph_rewriter_builder.build(
            configs['graph_rewriter_config'], is_training=is_training)
        graph_rewriter_fn()

587
588
      # TODO(rathodv): Stop creating optimizer summary vars in EVAL mode once we
      # can write learning rate summaries on TPU without host calls.
589
590
591
592
      global_step = tf.train.get_or_create_global_step()
      training_optimizer, optimizer_summary_vars = optimizer_builder.build(
          train_config.optimizer)

593
    if mode == tf.estimator.ModeKeys.TRAIN:
594
      if use_tpu:
595
        training_optimizer = tf.tpu.CrossShardOptimizer(training_optimizer)
596
597
598

      # Optionally freeze some layers by setting their gradients to be zero.
      trainable_variables = None
599
600
601
602
603
604
      include_variables = (
          train_config.update_trainable_variables
          if train_config.update_trainable_variables else None)
      exclude_variables = (
          train_config.freeze_variables
          if train_config.freeze_variables else None)
605
      trainable_variables = slim.filter_variables(
606
607
608
          tf.trainable_variables(),
          include_patterns=include_variables,
          exclude_patterns=exclude_variables)
609
610
611
612
613
614
615
616
617

      clip_gradients_value = None
      if train_config.gradient_clipping_by_norm > 0:
        clip_gradients_value = train_config.gradient_clipping_by_norm

      if not use_tpu:
        for var in optimizer_summary_vars:
          tf.summary.scalar(var.op.name, var)
      summaries = [] if use_tpu else None
618
619
      if train_config.summarize_gradients:
        summaries = ['gradients', 'gradient_norm', 'global_gradient_norm']
620
      train_op = slim.optimizers.optimize_loss(
621
622
623
624
625
          loss=total_loss,
          global_step=global_step,
          learning_rate=None,
          clip_gradients=clip_gradients_value,
          optimizer=training_optimizer,
626
          update_ops=detection_model.updates(),
627
628
629
630
631
          variables=trainable_variables,
          summaries=summaries,
          name='')  # Preventing scope prefix on all variables.

    if mode == tf.estimator.ModeKeys.PREDICT:
632
      exported_output = exporter_lib.add_output_tensor_nodes(detections)
633
634
      export_outputs = {
          tf.saved_model.signature_constants.PREDICT_METHOD_NAME:
635
              tf.estimator.export.PredictOutput(exported_output)
636
637
638
      }

    eval_metric_ops = None
639
    scaffold = None
640
    if mode == tf.estimator.ModeKeys.EVAL:
641
642
      class_agnostic = (
          fields.DetectionResultFields.detection_classes not in detections)
643
644
645
      groundtruth = _prepare_groundtruth_for_eval(
          detection_model, class_agnostic,
          eval_input_config.max_number_of_boxes)
646
      use_original_images = fields.InputDataFields.original_image in features
pkulzc's avatar
pkulzc committed
647
      if use_original_images:
648
649
650
651
652
        eval_images = features[fields.InputDataFields.original_image]
        true_image_shapes = tf.slice(
            features[fields.InputDataFields.true_image_shape], [0, 0], [-1, 3])
        original_image_spatial_shapes = features[fields.InputDataFields
                                                 .original_image_spatial_shape]
pkulzc's avatar
pkulzc committed
653
654
      else:
        eval_images = features[fields.InputDataFields.image]
655
656
        true_image_shapes = None
        original_image_spatial_shapes = None
pkulzc's avatar
pkulzc committed
657

658
659
660
      eval_dict = eval_util.result_dict_for_batched_example(
          eval_images,
          features[inputs.HASH_KEY],
661
662
663
          detections,
          groundtruth,
          class_agnostic=class_agnostic,
664
665
666
          scale_to_absolute=True,
          original_image_spatial_shapes=original_image_spatial_shapes,
          true_image_shapes=true_image_shapes)
667

668
669
670
671
      if fields.InputDataFields.image_additional_channels in features:
        eval_dict[fields.InputDataFields.image_additional_channels] = features[
            fields.InputDataFields.image_additional_channels]

672
673
674
675
676
      if class_agnostic:
        category_index = label_map_util.create_class_agnostic_category_index()
      else:
        category_index = label_map_util.create_category_index_from_labelmap(
            eval_input_config.label_map_path)
677
      vis_metric_ops = None
678
      if not use_tpu and use_original_images:
679
680
681
        keypoint_edges = [
            (kp.start, kp.end) for kp in eval_config.keypoint_edge]

682
683
684
685
686
        eval_metric_op_vis = vis_utils.VisualizeSingleFrameDetections(
            category_index,
            max_examples_to_draw=eval_config.num_visualizations,
            max_boxes_to_draw=eval_config.max_num_boxes_to_visualize,
            min_score_thresh=eval_config.min_score_threshold,
687
688
            use_normalized_coordinates=False,
            keypoint_edges=keypoint_edges or None)
689
690
        vis_metric_ops = eval_metric_op_vis.get_estimator_eval_metric_ops(
            eval_dict)
691

692
693
      # Eval metrics on a single example.
      eval_metric_ops = eval_util.get_eval_metric_ops_for_evaluators(
DefineFC's avatar
DefineFC committed
694
          eval_config, list(category_index.values()), eval_dict)
695
696
697
698
      for loss_key, loss_tensor in iter(losses_dict.items()):
        eval_metric_ops[loss_key] = tf.metrics.mean(loss_tensor)
      for var in optimizer_summary_vars:
        eval_metric_ops[var.op.name] = (var, tf.no_op())
699
700
      if vis_metric_ops is not None:
        eval_metric_ops.update(vis_metric_ops)
701
      eval_metric_ops = {str(k): v for k, v in eval_metric_ops.items()}
702

703
704
705
706
707
708
709
710
711
712
      if eval_config.use_moving_averages:
        variable_averages = tf.train.ExponentialMovingAverage(0.0)
        variables_to_restore = variable_averages.variables_to_restore()
        keep_checkpoint_every_n_hours = (
            train_config.keep_checkpoint_every_n_hours)
        saver = tf.train.Saver(
            variables_to_restore,
            keep_checkpoint_every_n_hours=keep_checkpoint_every_n_hours)
        scaffold = tf.train.Scaffold(saver=saver)

713
714
    # EVAL executes on CPU, so use regular non-TPU EstimatorSpec.
    if use_tpu and mode != tf.estimator.ModeKeys.EVAL:
715
      return tf.estimator.tpu.TPUEstimatorSpec(
716
717
718
719
720
721
722
723
          mode=mode,
          scaffold_fn=scaffold_fn,
          predictions=detections,
          loss=total_loss,
          train_op=train_op,
          eval_metrics=eval_metric_ops,
          export_outputs=export_outputs)
    else:
724
725
726
727
728
729
730
731
732
      if scaffold is None:
        keep_checkpoint_every_n_hours = (
            train_config.keep_checkpoint_every_n_hours)
        saver = tf.train.Saver(
            sharded=True,
            keep_checkpoint_every_n_hours=keep_checkpoint_every_n_hours,
            save_relative_paths=True)
        tf.add_to_collection(tf.GraphKeys.SAVERS, saver)
        scaffold = tf.train.Scaffold(saver=saver)
733
734
735
736
737
738
      return tf.estimator.EstimatorSpec(
          mode=mode,
          predictions=detections,
          loss=total_loss,
          train_op=train_op,
          eval_metric_ops=eval_metric_ops,
739
740
          export_outputs=export_outputs,
          scaffold=scaffold)
741
742
743
744

  return model_fn


745
def create_estimator_and_inputs(run_config,
746
747
                                hparams=None,
                                pipeline_config_path=None,
748
                                config_override=None,
749
                                train_steps=None,
750
                                sample_1_of_n_eval_examples=1,
751
                                sample_1_of_n_eval_on_train_examples=1,
752
753
754
755
756
                                model_fn_creator=create_model_fn,
                                use_tpu_estimator=False,
                                use_tpu=False,
                                num_shards=1,
                                params=None,
757
                                override_eval_num_epochs=True,
758
                                save_final_config=False,
759
760
                                postprocess_on_cpu=False,
                                export_to_tpu=None,
761
762
                                **kwargs):
  """Creates `Estimator`, input functions, and steps.
763
764
765

  Args:
    run_config: A `RunConfig`.
766
    hparams: (optional) A `HParams`.
767
    pipeline_config_path: A path to a pipeline config file.
768
769
    config_override: A pipeline_pb2.TrainEvalPipelineConfig text proto to
      override the config from `pipeline_config_path`.
770
771
    train_steps: Number of training steps. If None, the number of training steps
      is set from the `TrainConfig` proto.
772
773
774
775
776
    sample_1_of_n_eval_examples: Integer representing how often an eval example
      should be sampled. If 1, will sample all examples.
    sample_1_of_n_eval_on_train_examples: Similar to
      `sample_1_of_n_eval_examples`, except controls the sampling of training
      data for evaluation.
777
778
779
780
781
782
783
784
785
786
    model_fn_creator: A function that creates a `model_fn` for `Estimator`.
      Follows the signature:

      * Args:
        * `detection_model_fn`: Function that returns `DetectionModel` instance.
        * `configs`: Dictionary of pipeline config objects.
        * `hparams`: `HParams` object.
      * Returns:
        `model_fn` for `Estimator`.

787
788
789
790
791
792
793
794
    use_tpu_estimator: Whether a `TPUEstimator` should be returned. If False,
      an `Estimator` will be returned.
    use_tpu: Boolean, whether training and evaluation should run on TPU. Only
      used if `use_tpu_estimator` is True.
    num_shards: Number of shards (TPU cores). Only used if `use_tpu_estimator`
      is True.
    params: Parameter dictionary passed from the estimator. Only used if
      `use_tpu_estimator` is True.
795
796
    override_eval_num_epochs: Whether to overwrite the number of epochs to 1 for
      eval_input.
797
798
    save_final_config: Whether to save final config (obtained after applying
      overrides) to `estimator.model_dir`.
799
800
801
802
803
    postprocess_on_cpu: When use_tpu and postprocess_on_cpu are true,
      postprocess is scheduled on the host cpu.
    export_to_tpu: When use_tpu and export_to_tpu are true,
      `export_savedmodel()` exports a metagraph for serving on TPU besides the
      one on CPU.
804
805
806
    **kwargs: Additional keyword arguments for configuration override.

  Returns:
807
808
809
    A dictionary with the following fields:
    'estimator': An `Estimator` or `TPUEstimator`.
    'train_input_fn': A training input function.
810
811
    'eval_input_fns': A list of all evaluation input functions.
    'eval_input_names': A list of names for each evaluation input.
812
    'eval_on_train_input_fn': An evaluation-on-train input function.
813
814
815
    'predict_input_fn': A prediction input function.
    'train_steps': Number of training steps. Either directly from input or from
      configuration.
816
  """
817
818
819
820
  get_configs_from_pipeline_file = MODEL_BUILD_UTIL_MAP[
      'get_configs_from_pipeline_file']
  merge_external_params_with_configs = MODEL_BUILD_UTIL_MAP[
      'merge_external_params_with_configs']
821
822
  create_pipeline_proto_from_configs = MODEL_BUILD_UTIL_MAP[
      'create_pipeline_proto_from_configs']
823
824
825
  create_train_input_fn = MODEL_BUILD_UTIL_MAP['create_train_input_fn']
  create_eval_input_fn = MODEL_BUILD_UTIL_MAP['create_eval_input_fn']
  create_predict_input_fn = MODEL_BUILD_UTIL_MAP['create_predict_input_fn']
826
  detection_model_fn_base = MODEL_BUILD_UTIL_MAP['detection_model_fn_base']
827

828
829
  configs = get_configs_from_pipeline_file(
      pipeline_config_path, config_override=config_override)
830
831
  kwargs.update({
      'train_steps': train_steps,
832
      'use_bfloat16': configs['train_config'].use_bfloat16 and use_tpu
833
  })
pkulzc's avatar
pkulzc committed
834
835
836
837
  if sample_1_of_n_eval_examples >= 1:
    kwargs.update({
        'sample_1_of_n_eval_examples': sample_1_of_n_eval_examples
    })
838
839
840
841
  if override_eval_num_epochs:
    kwargs.update({'eval_num_epochs': 1})
    tf.logging.warning(
        'Forced number of epochs for all eval validations to be 1.')
842
  configs = merge_external_params_with_configs(
843
      configs, hparams, kwargs_dict=kwargs)
844
845
846
847
  model_config = configs['model']
  train_config = configs['train_config']
  train_input_config = configs['train_input_config']
  eval_config = configs['eval_config']
848
849
850
851
852
853
854
855
856
857
858
  eval_input_configs = configs['eval_input_configs']
  eval_on_train_input_config = copy.deepcopy(train_input_config)
  eval_on_train_input_config.sample_1_of_n_examples = (
      sample_1_of_n_eval_on_train_examples)
  if override_eval_num_epochs and eval_on_train_input_config.num_epochs != 1:
    tf.logging.warning('Expected number of evaluation epochs is 1, but '
                       'instead encountered `eval_on_train_input_config'
                       '.num_epochs` = '
                       '{}. Overwriting `num_epochs` to 1.'.format(
                           eval_on_train_input_config.num_epochs))
    eval_on_train_input_config.num_epochs = 1
859

860
861
862
  # update train_steps from config but only when non-zero value is provided
  if train_steps is None and train_config.num_steps != 0:
    train_steps = train_config.num_steps
863
864

  detection_model_fn = functools.partial(
865
      detection_model_fn_base, model_config=model_config)
866

867
  # Create the input functions for TRAIN/EVAL/PREDICT.
868
  train_input_fn = create_train_input_fn(
869
870
871
      train_config=train_config,
      train_input_config=train_input_config,
      model_config=model_config)
872
873
874
875
876
877
878
879
  eval_input_fns = []
  for eval_input_config in eval_input_configs:
    eval_input_fns.append(
        create_eval_input_fn(
            eval_config=eval_config,
            eval_input_config=eval_input_config,
            model_config=model_config))

880
881
882
  eval_input_names = [
      eval_input_config.name for eval_input_config in eval_input_configs
  ]
883
884
  eval_on_train_input_fn = create_eval_input_fn(
      eval_config=eval_config,
885
      eval_input_config=eval_on_train_input_config,
886
      model_config=model_config)
887
  predict_input_fn = create_predict_input_fn(
888
      model_config=model_config, predict_input_config=eval_input_configs[0])
889

890
  # Read export_to_tpu from hparams if not passed.
891
  if export_to_tpu is None and hparams is not None:
892
    export_to_tpu = hparams.get('export_to_tpu', False)
893
894
  tf.logging.info('create_estimator_and_inputs: use_tpu %s, export_to_tpu %s',
                  use_tpu, export_to_tpu)
895
896
  model_fn = model_fn_creator(detection_model_fn, configs, hparams, use_tpu,
                              postprocess_on_cpu)
897
  if use_tpu_estimator:
898
    estimator = tf.estimator.tpu.TPUEstimator(
899
900
901
902
903
904
        model_fn=model_fn,
        train_batch_size=train_config.batch_size,
        # For each core, only batch size 1 is supported for eval.
        eval_batch_size=num_shards * 1 if use_tpu else 1,
        use_tpu=use_tpu,
        config=run_config,
905
906
        export_to_tpu=export_to_tpu,
        eval_on_tpu=False,  # Eval runs on CPU, so disable eval on TPU
pkulzc's avatar
pkulzc committed
907
        params=params if params else {})
908
909
  else:
    estimator = tf.estimator.Estimator(model_fn=model_fn, config=run_config)
910

911
  # Write the as-run pipeline config to disk.
912
  if run_config.is_chief and save_final_config:
913
    pipeline_config_final = create_pipeline_proto_from_configs(configs)
914
    config_util.save_pipeline_config(pipeline_config_final, estimator.model_dir)
915

916
  return dict(
917
918
      estimator=estimator,
      train_input_fn=train_input_fn,
919
920
      eval_input_fns=eval_input_fns,
      eval_input_names=eval_input_names,
921
      eval_on_train_input_fn=eval_on_train_input_fn,
922
      predict_input_fn=predict_input_fn,
923
      train_steps=train_steps)
924
925
926


def create_train_and_eval_specs(train_input_fn,
927
                                eval_input_fns,
928
                                eval_on_train_input_fn,
929
930
931
932
                                predict_input_fn,
                                train_steps,
                                eval_on_train_data=False,
                                final_exporter_name='Servo',
933
                                eval_spec_names=None):
934
935
936
937
  """Creates a `TrainSpec` and `EvalSpec`s.

  Args:
    train_input_fn: Function that produces features and labels on train data.
938
939
    eval_input_fns: A list of functions that produce features and labels on eval
      data.
940
941
    eval_on_train_input_fn: Function that produces features and labels for
      evaluation on train data.
942
943
944
945
946
    predict_input_fn: Function that produces features for inference.
    train_steps: Number of training steps.
    eval_on_train_data: Whether to evaluate model on training data. Default is
      False.
    final_exporter_name: String name given to `FinalExporter`.
947
    eval_spec_names: A list of string names for each `EvalSpec`.
948
949

  Returns:
950
951
952
    Tuple of `TrainSpec` and list of `EvalSpecs`. If `eval_on_train_data` is
    True, the last `EvalSpec` in the list will correspond to training data. The
    rest EvalSpecs in the list are evaluation datas.
953
954
955
956
  """
  train_spec = tf.estimator.TrainSpec(
      input_fn=train_input_fn, max_steps=train_steps)

957
  if eval_spec_names is None:
958
    eval_spec_names = [str(i) for i in range(len(eval_input_fns))]
959
960

  eval_specs = []
961
962
963
964
965
966
967
968
  for index, (eval_spec_name, eval_input_fn) in enumerate(
      zip(eval_spec_names, eval_input_fns)):
    # Uses final_exporter_name as exporter_name for the first eval spec for
    # backward compatibility.
    if index == 0:
      exporter_name = final_exporter_name
    else:
      exporter_name = '{}_{}'.format(final_exporter_name, eval_spec_name)
969
970
971
972
973
974
975
976
    exporter = tf.estimator.FinalExporter(
        name=exporter_name, serving_input_receiver_fn=predict_input_fn)
    eval_specs.append(
        tf.estimator.EvalSpec(
            name=eval_spec_name,
            input_fn=eval_input_fn,
            steps=None,
            exporters=exporter))
977
978
979
980

  if eval_on_train_data:
    eval_specs.append(
        tf.estimator.EvalSpec(
981
            name='eval_on_train', input_fn=eval_on_train_input_fn, steps=None))
982
983

  return train_spec, eval_specs
984
985


986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
def _evaluate_checkpoint(estimator,
                         input_fn,
                         checkpoint_path,
                         name,
                         max_retries=0):
  """Evaluates a checkpoint.

  Args:
    estimator: Estimator object to use for evaluation.
    input_fn: Input function to use for evaluation.
    checkpoint_path: Path of the checkpoint to evaluate.
    name: Namescope for eval summary.
    max_retries: Maximum number of times to retry the evaluation on encountering
      a tf.errors.InvalidArgumentError. If negative, will always retry the
      evaluation.

  Returns:
    Estimator evaluation results.
  """
  always_retry = True if max_retries < 0 else False
  retries = 0
  while always_retry or retries <= max_retries:
    try:
      return estimator.evaluate(
          input_fn=input_fn,
          steps=None,
          checkpoint_path=checkpoint_path,
          name=name)
    except tf.errors.InvalidArgumentError as e:
      if always_retry or retries < max_retries:
        tf.logging.info('Retrying checkpoint evaluation after exception: %s', e)
        retries += 1
      else:
        raise e


1022
1023
1024
1025
1026
1027
def continuous_eval_generator(estimator,
                              model_dir,
                              input_fn,
                              train_steps,
                              name,
                              max_retries=0):
1028
1029
1030
1031
1032
1033
1034
1035
1036
  """Perform continuous evaluation on checkpoints written to a model directory.

  Args:
    estimator: Estimator object to use for evaluation.
    model_dir: Model directory to read checkpoints for continuous evaluation.
    input_fn: Input function to use for evaluation.
    train_steps: Number of training steps. This is used to infer the last
      checkpoint and stop evaluation loop.
    name: Namescope for eval summary.
1037
1038
1039
    max_retries: Maximum number of times to retry the evaluation on encountering
      a tf.errors.InvalidArgumentError. If negative, will always retry the
      evaluation.
1040
1041
1042

  Yields:
    Pair of current step and eval_results.
1043
  """
1044

1045
1046
1047
1048
  def terminate_eval():
    tf.logging.info('Terminating eval after 180 seconds of no checkpoints')
    return True

1049
  for ckpt in tf.train.checkpoints_iterator(
1050
1051
1052
1053
1054
      model_dir, min_interval_secs=180, timeout=None,
      timeout_fn=terminate_eval):

    tf.logging.info('Starting Evaluation.')
    try:
1055
1056
1057
1058
1059
1060
      eval_results = _evaluate_checkpoint(
          estimator=estimator,
          input_fn=input_fn,
          checkpoint_path=ckpt,
          name=name,
          max_retries=max_retries)
1061
1062
1063
1064
      tf.logging.info('Eval results: %s' % eval_results)

      # Terminate eval job when final checkpoint is reached
      current_step = int(os.path.basename(ckpt).split('-')[1])
1065
      yield (current_step, eval_results)
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
      if current_step >= train_steps:
        tf.logging.info(
            'Evaluation finished after training step %d' % current_step)
        break

    except tf.errors.NotFoundError:
      tf.logging.info(
          'Checkpoint %s no longer exists, skipping checkpoint' % ckpt)


1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
def continuous_eval(estimator,
                    model_dir,
                    input_fn,
                    train_steps,
                    name,
                    max_retries=0):
  """Performs continuous evaluation on checkpoints written to a model directory.

  Args:
    estimator: Estimator object to use for evaluation.
    model_dir: Model directory to read checkpoints for continuous evaluation.
    input_fn: Input function to use for evaluation.
    train_steps: Number of training steps. This is used to infer the last
      checkpoint and stop evaluation loop.
    name: Namescope for eval summary.
    max_retries: Maximum number of times to retry the evaluation on encountering
      a tf.errors.InvalidArgumentError. If negative, will always retry the
      evaluation.
  """
  for current_step, eval_results in continuous_eval_generator(
      estimator, model_dir, input_fn, train_steps, name, max_retries):
    tf.logging.info('Step %s, Eval results: %s', current_step, eval_results)


1100
1101
1102
1103
1104
1105
1106
1107
def populate_experiment(run_config,
                        hparams,
                        pipeline_config_path,
                        train_steps=None,
                        eval_steps=None,
                        model_fn_creator=create_model_fn,
                        **kwargs):
  """Populates an `Experiment` object.
1108

1109
1110
  EXPERIMENT CLASS IS DEPRECATED. Please switch to
  tf.estimator.train_and_evaluate. As an example, see model_main.py.
1111

1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
  Args:
    run_config: A `RunConfig`.
    hparams: A `HParams`.
    pipeline_config_path: A path to a pipeline config file.
    train_steps: Number of training steps. If None, the number of training steps
      is set from the `TrainConfig` proto.
    eval_steps: Number of evaluation steps per evaluation cycle. If None, the
      number of evaluation steps is set from the `EvalConfig` proto.
    model_fn_creator: A function that creates a `model_fn` for `Estimator`.
      Follows the signature:

      * Args:
        * `detection_model_fn`: Function that returns `DetectionModel` instance.
        * `configs`: Dictionary of pipeline config objects.
        * `hparams`: `HParams` object.
      * Returns:
        `model_fn` for `Estimator`.

    **kwargs: Additional keyword arguments for configuration override.

  Returns:
    An `Experiment` that defines all aspects of training, evaluation, and
    export.
  """
  tf.logging.warning('Experiment is being deprecated. Please use '
                     'tf.estimator.train_and_evaluate(). See model_main.py for '
                     'an example.')
  train_and_eval_dict = create_estimator_and_inputs(
      run_config,
      hparams,
      pipeline_config_path,
      train_steps=train_steps,
      eval_steps=eval_steps,
      model_fn_creator=model_fn_creator,
1146
      save_final_config=True,
1147
1148
1149
      **kwargs)
  estimator = train_and_eval_dict['estimator']
  train_input_fn = train_and_eval_dict['train_input_fn']
1150
  eval_input_fns = train_and_eval_dict['eval_input_fns']
1151
1152
1153
1154
  predict_input_fn = train_and_eval_dict['predict_input_fn']
  train_steps = train_and_eval_dict['train_steps']

  export_strategies = [
1155
      contrib_learn.utils.saved_model_export_utils.make_export_strategy(
1156
1157
1158
          serving_input_fn=predict_input_fn)
  ]

1159
  return contrib_learn.Experiment(
1160
1161
      estimator=estimator,
      train_input_fn=train_input_fn,
1162
      eval_input_fn=eval_input_fns[0],
1163
      train_steps=train_steps,
1164
      eval_steps=None,
1165
      export_strategies=export_strategies,
1166
1167
      eval_delay_secs=120,
  )