detr.py 9.82 KB
Newer Older
Frederick Liu's avatar
Frederick Liu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""DETR configurations."""

import dataclasses
Gunho Park's avatar
Gunho Park committed
18
19
20
import os
from typing import List, Optional, Union

Frederick Liu's avatar
Frederick Liu committed
21
22
from official.core import config_definitions as cfg
from official.core import exp_factory
Gunho Park's avatar
Gunho Park committed
23
from official.modeling import hyperparams
Gunho Park's avatar
Gunho Park committed
24
from official.vision.configs import common
Gunho Park's avatar
Gunho Park committed
25
from official.vision.configs import backbones
26
27
from official.projects.detr import optimization
from official.projects.detr.dataloaders import coco
Frederick Liu's avatar
Frederick Liu committed
28

Gunho Park's avatar
Gunho Park committed
29
30
31
32
33
34
35
36
37
38
39
40
41
# pylint: disable=missing-class-docstring
@dataclasses.dataclass
class DataConfig(cfg.DataConfig):
  """Input config for training."""
  input_path: str = ''
  global_batch_size: int = 0
  is_training: bool = False
  dtype: str = 'bfloat16'
  decoder: common.DataDecoder = common.DataDecoder()
  #parser: Parser = Parser()
  shuffle_buffer_size: int = 10000
  file_type: str = 'tfrecord'

Frederick Liu's avatar
Frederick Liu committed
42
@dataclasses.dataclass
Gunho Park's avatar
Gunho Park committed
43
class Losses(hyperparams.Config):
Gunho Park's avatar
Gunho Park committed
44
  class_offset: int = 0
Frederick Liu's avatar
Frederick Liu committed
45
46
47
  lambda_cls: float = 1.0
  lambda_box: float = 5.0
  lambda_giou: float = 2.0
Gunho Park's avatar
Gunho Park committed
48
  background_cls_weight: float = 0.1
Gunho Park's avatar
Gunho Park committed
49
  l2_weight_decay: float = 1e-4
Frederick Liu's avatar
Frederick Liu committed
50

Gunho Park's avatar
Gunho Park committed
51
52
53
54
@dataclasses.dataclass
class Detr(hyperparams.Config):
  num_queries: int = 100
  hidden_size: int = 256
Gunho Park's avatar
Gunho Park committed
55
  num_classes: int = 91  # 0: background
Frederick Liu's avatar
Frederick Liu committed
56
57
  num_encoder_layers: int = 6
  num_decoder_layers: int = 6
Gunho Park's avatar
Gunho Park committed
58
59
60
  input_size: List[int] = dataclasses.field(default_factory=list)
  backbone: backbones.Backbone = backbones.Backbone(
      type='resnet', resnet=backbones.ResNet(
Gunho Park's avatar
Gunho Park committed
61
          model_id=50,
Gunho Park's avatar
Gunho Park committed
62
63
          bn_trainable=False))
  norm_activation: common.NormActivation = common.NormActivation()
Frederick Liu's avatar
Frederick Liu committed
64

Gunho Park's avatar
Gunho Park committed
65
66
67
68
69
70
71
72
73
74
@dataclasses.dataclass
class DetrTask(cfg.TaskConfig):
  model: Detr = Detr()
  train_data: cfg.DataConfig = cfg.DataConfig()
  validation_data: cfg.DataConfig = cfg.DataConfig()
  losses: Losses = Losses()
  init_checkpoint: Optional[str] = None
  init_checkpoint_modules: Union[
      str, List[str]] = 'all'  # all, backbone
  annotation_file: Optional[str] = None
Frederick Liu's avatar
Frederick Liu committed
75
76
  per_category_metrics: bool = False

77
78
79
80
81
82
83
84
85
86
87
@exp_factory.register_config_factory('detr_coco')
def detr_coco() -> cfg.ExperimentConfig:
  """Config to get results that matches the paper."""
  train_batch_size = 64
  eval_batch_size = 64
  num_train_data = 118287
  num_steps_per_epoch = num_train_data // train_batch_size
  train_steps = 500 * num_steps_per_epoch  # 500 epochs
  decay_at = train_steps - 100 * num_steps_per_epoch  # 400 epochs
  config = cfg.ExperimentConfig(
      task=DetrTask(
Gunho Park's avatar
Gunho Park committed
88
          init_checkpoint='gs://tf_model_garden/vision/resnet50_imagenet/ckpt-62400',
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
          init_checkpoint_modules='backbone',
          model=Detr(
              num_classes=81,
              input_size=[1333, 1333, 3],
              norm_activation=common.NormActivation(use_sync_bn=False)),
          losses=Losses(),
          train_data=coco.COCODataConfig(
              tfds_name='coco/2017',
              tfds_split='train',
              is_training=True,
              global_batch_size=train_batch_size,
              shuffle_buffer_size=1000,
          ),
          validation_data=coco.COCODataConfig(
              tfds_name='coco/2017',
              tfds_split='validation',
              is_training=False,
              global_batch_size=eval_batch_size,
              drop_remainder=False
          )
      ),
      trainer=cfg.TrainerConfig(
          train_steps=train_steps,
          validation_steps=-1,
          steps_per_loop=10000,
          summary_interval=10000,
          checkpoint_interval=10000,
          validation_interval=10000,
          max_to_keep=1,
          best_checkpoint_export_subdir='best_ckpt',
          best_checkpoint_eval_metric='AP',
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'detr_adamw',
                  'detr_adamw': {
                      'weight_decay_rate': 1e-4,
                      'global_clipnorm': 0.1,
                      # Avoid AdamW legacy behavior.
                      'gradient_clip_norm': 0.0
                  }
              },
              'learning_rate': {
                  'type': 'stepwise',
                  'stepwise': {
                      'boundaries': [decay_at],
                      'values': [0.0001, 1.0e-05]
                  }
              },
              })
          ),
      restrictions=[
          'task.train_data.is_training != None',
      ])
  return config

Gunho Park's avatar
Gunho Park committed
144
COCO_INPUT_PATH_BASE = ''
Gunho Park's avatar
Gunho Park committed
145
COCO_TRAIN_EXAMPLES = 118287
Gunho Park's avatar
Gunho Park committed
146
COCO_VAL_EXAMPLES = 5000
Frederick Liu's avatar
Frederick Liu committed
147

148
@exp_factory.register_config_factory('detr_coco_tfrecord')
Frederick Liu's avatar
Frederick Liu committed
149
150
def detr_coco() -> cfg.ExperimentConfig:
  """Config to get results that matches the paper."""
Gunho Park's avatar
Gunho Park committed
151
  train_batch_size = 64
Frederick Liu's avatar
Frederick Liu committed
152
  eval_batch_size = 64
Gunho Park's avatar
Gunho Park committed
153
  steps_per_epoch = COCO_TRAIN_EXAMPLES // train_batch_size
Gunho Park's avatar
Gunho Park committed
154
155
  train_steps = 300 * steps_per_epoch  # 300 epochs
  decay_at = train_steps - 100 * steps_per_epoch  # 200 epochs
Frederick Liu's avatar
Frederick Liu committed
156
  config = cfg.ExperimentConfig(
Gunho Park's avatar
Gunho Park committed
157
      task=DetrTask(
Gunho Park's avatar
Gunho Park committed
158
          init_checkpoint='gs://tf_model_garden/vision/resnet50_imagenet/ckpt-62400',
Gunho Park's avatar
Gunho Park committed
159
          init_checkpoint_modules='backbone',
Gunho Park's avatar
Gunho Park committed
160
161
          annotation_file=os.path.join(COCO_INPUT_PATH_BASE,
                                       'instances_val2017.json'),
Gunho Park's avatar
Gunho Park committed
162
163
164
165
          model=Detr(
              input_size=[1333, 1333, 3],
              norm_activation=common.NormActivation(use_sync_bn=False)),
          losses=Losses(),
Gunho Park's avatar
Gunho Park committed
166
167
          train_data=DataConfig(
              input_path=os.path.join(COCO_INPUT_PATH_BASE, 'train*'),
Frederick Liu's avatar
Frederick Liu committed
168
169
170
171
              is_training=True,
              global_batch_size=train_batch_size,
              shuffle_buffer_size=1000,
          ),
Gunho Park's avatar
Gunho Park committed
172
173
          validation_data=DataConfig(
              input_path=os.path.join(COCO_INPUT_PATH_BASE, 'val*'),
Frederick Liu's avatar
Frederick Liu committed
174
175
              is_training=False,
              global_batch_size=eval_batch_size,
Gunho Park's avatar
Gunho Park committed
176
              drop_remainder=False,
Frederick Liu's avatar
Frederick Liu committed
177
178
179
180
          )
      ),
      trainer=cfg.TrainerConfig(
          train_steps=train_steps,
Gunho Park's avatar
Gunho Park committed
181
182
183
184
185
          validation_steps=COCO_VAL_EXAMPLES // eval_batch_size,
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
          validation_interval=5*steps_per_epoch,
Frederick Liu's avatar
Frederick Liu committed
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
          max_to_keep=1,
          best_checkpoint_export_subdir='best_ckpt',
          best_checkpoint_eval_metric='AP',
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'detr_adamw',
                  'detr_adamw': {
                      'weight_decay_rate': 1e-4,
                      'global_clipnorm': 0.1,
                      # Avoid AdamW legacy behavior.
                      'gradient_clip_norm': 0.0
                  }
              },
              'learning_rate': {
                  'type': 'stepwise',
                  'stepwise': {
                      'boundaries': [decay_at],
                      'values': [0.0001, 1.0e-05]
                  }
              },
              })
          ),
      restrictions=[
          'task.train_data.is_training != None',
      ])
  return config
Gunho Park's avatar
Gunho Park committed
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279

@exp_factory.register_config_factory('detr_coco_tfds')
def detr_coco() -> cfg.ExperimentConfig:
  """Config to get results that matches the paper."""
  train_batch_size = 64
  eval_batch_size = 64
  steps_per_epoch = COCO_TRAIN_EXAMPLES // train_batch_size
  train_steps = 300 * steps_per_epoch  # 300 epochs
  decay_at = train_steps - 100 * steps_per_epoch  # 200 epochs
  config = cfg.ExperimentConfig(
      task=DetrTask(
          init_checkpoint='gs://tf_model_garden/vision/resnet50_imagenet/ckpt-62400',
          init_checkpoint_modules='backbone',
          model=Detr(
              num_classes=81,
              input_size=[1333, 1333, 3],
              norm_activation=common.NormActivation(use_sync_bn=False)),
          losses=Losses(
              class_offset=1
          ),
          train_data=DataConfig(
              tfds_name='coco/2017',
              tfds_split='train',
              is_training=True,
              global_batch_size=train_batch_size,
              shuffle_buffer_size=1000,
          ),
          validation_data=DataConfig(
              tfds_name='coco/2017',
              tfds_split='validation',
              is_training=False,
              global_batch_size=eval_batch_size,
              drop_remainder=False
          )
      ),
      trainer=cfg.TrainerConfig(
          train_steps=train_steps,
          validation_steps=COCO_VAL_EXAMPLES // eval_batch_size,
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
          validation_interval=5*steps_per_epoch,
          max_to_keep=1,
          best_checkpoint_export_subdir='best_ckpt',
          best_checkpoint_eval_metric='AP',
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'detr_adamw',
                  'detr_adamw': {
                      'weight_decay_rate': 1e-4,
                      'global_clipnorm': 0.1,
                      # Avoid AdamW legacy behavior.
                      'gradient_clip_norm': 0.0
                  }
              },
              'learning_rate': {
                  'type': 'stepwise',
                  'stepwise': {
                      'boundaries': [decay_at],
                      'values': [0.0001, 1.0e-05]
                  }
              },
              })
          ),
      restrictions=[
          'task.train_data.is_training != None',
      ])
  return config