README.md 3.22 KB
Newer Older
yangql's avatar
yangql committed
1
# ResNet50
yangql's avatar
yangql committed
2
3
## 论文
`Deep Residual Learning for Image Recognition`
yangql's avatar
yangql committed
4

yangql's avatar
yangql committed
5
- https://arxiv.org/abs/1512.03385
yangql's avatar
yangql committed
6
7
8
9

## 模型结构
ResNet50模型包含了49个卷积层、一个全连接层。

yangql's avatar
yangql committed
10
![ResNet50模型结构](./Doc/images/1.png)
yangql's avatar
yangql committed
11

yangql's avatar
yangql committed
12
13
## 算法原理
ResNet50使用了多个具有残差连接的残差块来解决梯度消失或梯度爆炸问题,并使得网络可以向更深层发展。
yangql's avatar
yangql committed
14

yangql's avatar
yangql committed
15
![算法原理](./Doc/images/2.png)
yangql's avatar
yangql committed
16

yangql's avatar
yangql committed
17
## 环境配置
yangql's avatar
yangql committed
18
### Docker(方法一)
yangql's avatar
yangql committed
19
拉取镜像:
yangql's avatar
yangql committed
20
```python
21
docker pull image.sourcefind.cn:5000/dcu/admin/base/migraphx:4.3.0-ubuntu20.04-dtk24.04.1-py3.10
yangql's avatar
yangql committed
22
23
```

yangql's avatar
yangql committed
24
创建并启动容器:
yangql's avatar
yangql committed
25
```
26
docker run --shm-size 16g --network=host --name=resnet50_onnxruntime -v /opt/hyhal:/opt/hyhal:ro --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v $PWD/resnet50_onnxruntime:/home/resnet50_onnxruntime -it <Your Image ID> /bin/bash
yangql's avatar
yangql committed
27
28
29

# 激活dtk
source /opt/dtk/env.sh
yangql's avatar
yangql committed
30
```
yangql's avatar
yangql committed
31
32
33
34
35
### Dockerfile(方法二)
```
cd ./docker
docker build --no-cache -t resnet50_onnxruntime:2.0 .

36
docker run --shm-size 16g --network=host --name=resnet50_onnxruntime -v /opt/hyhal:/opt/hyhal:ro --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v $PWD/resnet50_onnxruntime:/home/resnet50_onnxruntime -it <Your Image ID> /bin/bash
yangql's avatar
yangql committed
37
```
yangql's avatar
yangql committed
38

yangql's avatar
yangql committed
39
## 数据集
dcuai's avatar
dcuai committed
40
41
42


<!--
chenzk's avatar
chenzk committed
43
下载ImageNet-2012数据集:[ImageNet (image-net.org)](https://image-net.org/)
yangql's avatar
yangql committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

```
data
    |
    train
        |
        n01440764
        n01443537
        ...
    val
        |
        n01440764
        n01443537
        ...
```
dcuai's avatar
dcuai committed
59
-->
yangql's avatar
yangql committed
60
61
62
## 推理
### Python版本推理
采用ONNXRuntime框架使用DCU进行推理,下面介绍如何运行python代码示例,Python示例的详细说明见Doc目录下的Tutorial_Python.md。
yangql's avatar
yangql committed
63
#### 配置环境
yangql's avatar
yangql committed
64
```python
yangql's avatar
yangql committed
65
66
# 进入resnet50 onnxruntime工程根目录
cd <path_to_resnet50_onnxruntime> 
yangql's avatar
yangql committed
67
68

# 安装依赖
yangql's avatar
yangql committed
69
pip install -r ./Python/requirements.txt
yangql's avatar
yangql committed
70
71
72
73
74
75
76
77
```
#### 运行示例
```python
# 进入resnet50 onnxruntime工程根目录
cd <path_to_resnet50_onnxruntime> 

# 进入示例程序目录
cd Python/
yangql's avatar
yangql committed
78

yangql's avatar
yangql committed
79
# 运行示例
yangql's avatar
yangql committed
80
81
82
python Classifier.py
```

yangql's avatar
yangql committed
83
### C++版本推理
yangql's avatar
yangql committed
84
采用ONNXRuntime框架使用DCU进行推理,下面介绍如何运行C++代码示例,C++示例的详细说明见Doc目录下的Tutorial_Cpp.md。
yangql's avatar
yangql committed
85
#### 构建工程
yangql's avatar
yangql committed
86
```c++
yangql's avatar
yangql committed
87
88
cd <path_to_resnet50_onnxruntime>

yangql's avatar
yangql committed
89
90
rbuild build -d depend
```
yangql's avatar
yangql committed
91
#### 设置环境变量
yangql's avatar
yangql committed
92
将依赖库依赖加入环境变量LD_LIBRARY_PATH,在~/.bashrc中添加如下语句:
yangql's avatar
yangql committed
93
```c++
yangql's avatar
yangql committed
94
export LD_LIBRARY_PATH=<path_to_resnet50_onnxruntime>/depend/lib64/:$LD_LIBRARY_PATH
yangql's avatar
yangql committed
95
96
97
98
99
```
然后执行:
```
source ~/.bashrc
```
yangql's avatar
yangql committed
100

yangql's avatar
yangql committed
101
#### 运行示例
yangql's avatar
yangql committed
102
```c++
yangql's avatar
yangql committed
103
# 进入resnet50_onnxruntime工程根目录
yangql's avatar
yangql committed
104
cd <path_to_resnet50_onnxruntime> 
yangql's avatar
yangql committed
105
106
107
108
109
110
111

# 进入build目录
cd build/

# 执行示例程序
./ResNet50
```
yangql's avatar
yangql committed
112
## result
yangql's avatar
yangql committed
113
### python版本
yangql's avatar
yangql committed
114
115

![result](./Doc/images/output_image.jpg)
yangql's avatar
yangql committed
116
### C++版本
yangql's avatar
yangql committed
117
118

![result](./Doc/images/output_image.jpg)
yangql's avatar
yangql committed
119
120
### 精度

yangql's avatar
yangql committed
121

yangql's avatar
yangql committed
122
123
124
## 应用场景
### 算法类别
`图像分类`
yangql's avatar
yangql committed
125

yangql's avatar
yangql committed
126
127
128
129
### 热点应用行业
`制造,政府,医疗,科研`

## 源码仓库及问题反馈
chenzk's avatar
chenzk committed
130
https://developer.sourcefind.cn/codes/modelzoo/resnet50_onnxruntime
yangql's avatar
yangql committed
131

yangql's avatar
yangql committed
132
## 参考资料
yangql's avatar
yangql committed
133
134
https://github.com/onnx/models/tree/main/vision/classification/resnet