README.md 2.79 KB
Newer Older
yangql's avatar
yangql committed
1
# ResNet50
yangql's avatar
yangql committed
2
3
## 论文
`Deep Residual Learning for Image Recognition`
yangql's avatar
yangql committed
4

yangql's avatar
yangql committed
5
- https://arxiv.org/abs/1512.03385
yangql's avatar
yangql committed
6
7
8
9

## 模型结构
ResNet50模型包含了49个卷积层、一个全连接层。

yangql's avatar
yangql committed
10
![ResNet50模型结构]()
yangql's avatar
yangql committed
11

yangql's avatar
yangql committed
12
13
## 算法原理
ResNet50使用了多个具有残差连接的残差块来解决梯度消失或梯度爆炸问题,并使得网络可以向更深层发展。
yangql's avatar
yangql committed
14

yangql's avatar
yangql committed
15
![算法原理]()
yangql's avatar
yangql committed
16

yangql's avatar
yangql committed
17
18
19
## 环境配置
### Docker 
拉取镜像:
yangql's avatar
yangql committed
20
21
22
23
```python
docker pull image.sourcefind.cn:5000/dcu/admin/base/custom:ort1.14.0_migraphx3.0.0-dtk22.10.1
```

yangql's avatar
yangql committed
24
创建并启动容器:
yangql's avatar
yangql committed
25
```
yangql's avatar
yangql committed
26
27
28
29
docker run --shm-size 16g --network=host --name=resnet50_ort --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v $PWD/resnet50_ort:/home/resnet50_ort -it <Your Image ID> /bin/bash

# 激活dtk
source /opt/dtk/env.sh
yangql's avatar
yangql committed
30
31
```

yangql's avatar
yangql committed
32
33
## 数据集
Imagenet-1k
yangql's avatar
yangql committed
34

yangql's avatar
yangql committed
35
36
37
38
39
40
41
42
## 推理
### Python版本推理
采用ONNXRuntime框架使用DCU进行推理,下面介绍如何运行python代码示例,Python示例的详细说明见Doc目录下的Tutorial_Python.md。
#### 设置Python环境变量
```
export PYTHONPATH=/opt/dtk/lib:$PYTHONPATH
```
#### 运行示例
yangql's avatar
yangql committed
43
```python
yangql's avatar
yangql committed
44
# 进入resnet50 ort工程根目录
yangql's avatar
yangql committed
45
46
47
48
49
50
51
cd <path_to_resnet50_ort> 

# 进入示例程序目录
cd Python/

# 安装依赖
pip install -r requirements.txt
yangql's avatar
yangql committed
52

yangql's avatar
yangql committed
53
# 下载模型
yangql's avatar
yangql committed
54
sh ./Resource/Models/download.sh
yangql's avatar
yangql committed
55

yangql's avatar
yangql committed
56
# 运行示例
yangql's avatar
yangql committed
57
58
59
python Classifier.py
```

yangql's avatar
yangql committed
60
### C++版本推理
yangql's avatar
yangql committed
61
采用ONNXRuntime框架使用DCU进行推理,下面介绍如何运行C++代码示例,C++示例的详细说明见Doc目录下的Tutorial_Cpp.md。
yangql's avatar
yangql committed
62
#### 配置c++环境变量
yangql's avatar
yangql committed
63
```
yangql's avatar
yangql committed
64
65
# 安装Opencv依赖
cd <path_to_resnet50_onnxruntime>
yangql's avatar
yangql committed
66
67
sh ./3rdParty/InstallOpenCVDependences.sh
```
yangql's avatar
yangql committed
68
#### 构建工程
yangql's avatar
yangql committed
69
70
71
72
```
source /opt/dtk/env.sh
rbuild build -d depend
```
yangql's avatar
yangql committed
73
#### 设置环境变量
yangql's avatar
yangql committed
74
75
将依赖库依赖加入环境变量LD_LIBRARY_PATH,在~/.bashrc中添加如下语句:
```
yangql's avatar
yangql committed
76
export LD_LIBRARY_PATH=<path_to_resnet50_onnxruntime>/depend/lib64/:$LD_LIBRARY_PATH
yangql's avatar
yangql committed
77
78
79
80
81
```
然后执行:
```
source ~/.bashrc
```
yangql's avatar
yangql committed
82
83
84
85
####下载模型
sh ./Resource/Models/download.sh
#### 运行示例
```
yangql's avatar
yangql committed
86
# 进入resnet50 ort工程根目录
yangql's avatar
yangql committed
87
cd <path_to_resnet50_onnxruntime> 
yangql's avatar
yangql committed
88
89
90
91
92
93
94

# 进入build目录
cd build/

# 执行示例程序
./ResNet50
```
yangql's avatar
yangql committed
95
## result
yangql's avatar
yangql committed
96

yangql's avatar
yangql committed
97
98
99
100
101
## 精度
### 测试环境
- 加速卡:Z100
- 软件栈:dtk22.10.1
- 数据集:imagenet-1k
yangql's avatar
yangql committed
102

yangql's avatar
yangql committed
103
104
105
106
### 性能
| Engine | Model Path| Model Format | Accuracy(%) | Time(ms) |
| :------: | :------: | :------: | :------: | :------: |
| ONNXRuntime | model/resnet50-v2-7.onnx | onnx | 75.70 | 6.67 |
yangql's avatar
yangql committed
107

yangql's avatar
yangql committed
108
109
110
## 应用场景
### 算法类别
`图像分类`
yangql's avatar
yangql committed
111

yangql's avatar
yangql committed
112
113
114
115
116
### 热点应用行业
`制造,政府,医疗,科研`

## 源码仓库及问题反馈
https://developer.hpccube.com/codes/modelzoo/resnet50_onnxruntime
yangql's avatar
yangql committed
117

yangql's avatar
yangql committed
118
## 参考资料
yangql's avatar
yangql committed
119
120
https://github.com/onnx/models/tree/main/vision/classification/resnet