README.md 3.05 KB
Newer Older
yangql's avatar
yangql committed
1
# ResNet50
yangql's avatar
yangql committed
2
3
## 论文
`Deep Residual Learning for Image Recognition`
yangql's avatar
yangql committed
4

yangql's avatar
yangql committed
5
- https://arxiv.org/abs/1512.03385
yangql's avatar
yangql committed
6
7
8
9

## 模型结构
ResNet50模型包含了49个卷积层、一个全连接层。

yangql's avatar
yangql committed
10
![ResNet50模型结构](./Doc/images/1.png)
yangql's avatar
yangql committed
11

yangql's avatar
yangql committed
12
13
## 算法原理
ResNet50使用了多个具有残差连接的残差块来解决梯度消失或梯度爆炸问题,并使得网络可以向更深层发展。
yangql's avatar
yangql committed
14

yangql's avatar
yangql committed
15
![算法原理](./Doc/images/2.png)
yangql's avatar
yangql committed
16

yangql's avatar
yangql committed
17
## 环境配置
yangql's avatar
yangql committed
18
### Docker(方法一)
yangql's avatar
yangql committed
19
拉取镜像:
yangql's avatar
yangql committed
20
21
22
23
```python
docker pull image.sourcefind.cn:5000/dcu/admin/base/custom:ort1.14.0_migraphx3.0.0-dtk22.10.1
```

yangql's avatar
yangql committed
24
创建并启动容器:
yangql's avatar
yangql committed
25
```
yangql's avatar
yangql committed
26
docker run --shm-size 16g --network=host --name=resnet50_ort --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v $PWD/resnet50_onnxruntime:/home/resnet50_onnxruntime -it <Your Image ID> /bin/bash
yangql's avatar
yangql committed
27
28
29

# 激活dtk
source /opt/dtk/env.sh
yangql's avatar
yangql committed
30
```
yangql's avatar
yangql committed
31
32
33
34
35
36
37
### Dockerfile(方法二)
```
cd ./docker
docker build --no-cache -t resnet50_onnxruntime:2.0 .

docker run --shm-size 16g --network=host --name=resnet50_ort --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v $PWD/resnet50_onnxruntime:/home/resnet50_onnxruntime -it <Your Image ID> /bin/bash
```
yangql's avatar
yangql committed
38

yangql's avatar
yangql committed
39
## 数据集
yangql's avatar
yangql committed
40
该推理模型使用Imagenet-1k数据集训练而成。
yangql's avatar
yangql committed
41

yangql's avatar
yangql committed
42
43
44
## 推理
### Python版本推理
采用ONNXRuntime框架使用DCU进行推理,下面介绍如何运行python代码示例,Python示例的详细说明见Doc目录下的Tutorial_Python.md。
yangql's avatar
yangql committed
45
#### 配置环境
yangql's avatar
yangql committed
46
```python
yangql's avatar
yangql committed
47
48
# 进入resnet50 onnxruntime工程根目录
cd <path_to_resnet50_onnxruntime> 
yangql's avatar
yangql committed
49
50

# 安装依赖
yangql's avatar
yangql committed
51
pip install -r ./Python/requirements.txt
yangql's avatar
yangql committed
52
53
54
55
56
57
58
59
```
#### 运行示例
```python
# 进入resnet50 onnxruntime工程根目录
cd <path_to_resnet50_onnxruntime> 

# 进入示例程序目录
cd Python/
yangql's avatar
yangql committed
60

yangql's avatar
yangql committed
61
# 运行示例
yangql's avatar
yangql committed
62
63
64
python Classifier.py
```

yangql's avatar
yangql committed
65
### C++版本推理
yangql's avatar
yangql committed
66
采用ONNXRuntime框架使用DCU进行推理,下面介绍如何运行C++代码示例,C++示例的详细说明见Doc目录下的Tutorial_Cpp.md。
yangql's avatar
yangql committed
67
#### 构建工程
yangql's avatar
yangql committed
68
```c++
yangql's avatar
yangql committed
69
70
cd <path_to_resnet50_onnxruntime>

yangql's avatar
yangql committed
71
# 安装Opencv依赖
yangql's avatar
yangql committed
72
sh ./3rdParty/InstallOpenCVDependences.sh
yangql's avatar
yangql committed
73

yangql's avatar
yangql committed
74
75
rbuild build -d depend
```
yangql's avatar
yangql committed
76
#### 设置环境变量
yangql's avatar
yangql committed
77
将依赖库依赖加入环境变量LD_LIBRARY_PATH,在~/.bashrc中添加如下语句:
yangql's avatar
yangql committed
78
```c++
yangql's avatar
yangql committed
79
export LD_LIBRARY_PATH=<path_to_resnet50_onnxruntime>/depend/lib64/:$LD_LIBRARY_PATH
yangql's avatar
yangql committed
80
81
82
83
84
```
然后执行:
```
source ~/.bashrc
```
yangql's avatar
yangql committed
85

yangql's avatar
yangql committed
86
#### 运行示例
yangql's avatar
yangql committed
87
```c++
yangql's avatar
yangql committed
88
# 进入resnet50_onnxruntime工程根目录
yangql's avatar
yangql committed
89
cd <path_to_resnet50_onnxruntime> 
yangql's avatar
yangql committed
90
91
92
93
94
95
96

# 进入build目录
cd build/

# 执行示例程序
./ResNet50
```
yangql's avatar
yangql committed
97
## result
yangql's avatar
yangql committed
98
99
100
101
102
103
### python版本
```
class=n01843065 jacamar ; probability=11.903831
```
### C++版本
```
yangql's avatar
yangql committed
104
class=n01843065 jacamar ;probability=11.903832
yangql's avatar
yangql committed
105
```
yangql's avatar
yangql committed
106
107
### 精度

yangql's avatar
yangql committed
108

yangql's avatar
yangql committed
109
110
111
## 应用场景
### 算法类别
`图像分类`
yangql's avatar
yangql committed
112

yangql's avatar
yangql committed
113
114
115
116
117
### 热点应用行业
`制造,政府,医疗,科研`

## 源码仓库及问题反馈
https://developer.hpccube.com/codes/modelzoo/resnet50_onnxruntime
yangql's avatar
yangql committed
118

yangql's avatar
yangql committed
119
## 参考资料
yangql's avatar
yangql committed
120
121
https://github.com/onnx/models/tree/main/vision/classification/resnet