README.md 9.54 KB
Newer Older
zhuwenwen's avatar
zhuwenwen committed
1
2
3
4
<!--
 * @Author: zhuww
 * @email: zhuww@sugon.com
 * @Date: 2023-03-31 17:09:07
zhuwenwen's avatar
zhuwenwen committed
5
 * @LastEditTime: 2023-12-26 17:32:01
zhuwenwen's avatar
zhuwenwen committed
6
-->
dcuai's avatar
dcuai committed
7
# FastFold
zhuwenwen's avatar
zhuwenwen committed
8
9
10
## 论文
- [https://arxiv.org/abs/2203.00854](https://arxiv.org/abs/2203.00854)

zhuwenwen's avatar
zhuwenwen committed
11
12
13
## 模型结构
模型基于Transformer架构,主要结构包括Evofomer(48 blocks)和Struture module(8 blocks)两个模块。

zhuwenwen's avatar
zhuwenwen committed
14
15
![img](./docs/alphafold2.png)

zhuwenwen's avatar
zhuwenwen committed
16
17
## 算法原理
FastFold通过搜索同源序列和模板进行特征构造,基于蛋白质结构预测模型,进行推理的性能优化,预测蛋白质的结构。
zhuwenwen's avatar
zhuwenwen committed
18

zhuwenwen's avatar
zhuwenwen committed
19
20
![img](./docs/alphafold2_1.png)

zhuwenwen's avatar
zhuwenwen committed
21
## 环境配置
zhuwenwen's avatar
zhuwenwen committed
22
提供[光源](https://www.sourcefind.cn/#/service-details)拉取推理的docker镜像:
zhuwenwen's avatar
zhuwenwen committed
23
```
yuhai's avatar
yuhai committed
24
docker pull image.sourcefind.cn:5000/dcu/admin/base/custom:fastfold-torch2.1.0-dtk24.04-centos7.6
zhuwenwen's avatar
zhuwenwen committed
25
26
27
# <Image ID>用上面拉取docker镜像的ID替换
# <Host Path>主机端路径
# <Container Path>容器映射路径
yuhai's avatar
yuhai committed
28
docker run -it -d --name fastfold --device=/dev/kfd --privileged --network=host --device=/dev/dri --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v /opt/hyhal:/opt/hyhal:ro -v /usr/local/hyhal:/usr/local/hyhal:ro --group-add video --shm-size 32G -v <Host Path>:<Container Path> <Image ID>
zhuwenwen's avatar
zhuwenwen committed
29
30
31
```

镜像版本依赖:
yuhai's avatar
yuhai committed
32
33
34
35
* DTK驱动:dtk24.04
* Pytorch: 2.1.0
* fastfold: 0.2.1
* python: python3.10
zhuwenwen's avatar
zhuwenwen committed
36

yuhai's avatar
yuhai committed
37
38
激活镜像环境:
`source /home/env.sh`
zhuwenwen's avatar
zhuwenwen committed
39

yuhai's avatar
yuhai committed
40
单体测试目录:
yuhai's avatar
yuhai committed
41
`/home/fastfold_pytorch`
zhuwenwen's avatar
zhuwenwen committed
42

zhuwenwen's avatar
zhuwenwen committed
43
## 数据集
zhuwenwen's avatar
zhuwenwen committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
推荐使用AlphaFold2中的开源数据集,包括BFD、MGnify、PDB70、Uniclust、Uniref90等,数据集大小约3TB。数据集格式如下:
```
$DOWNLOAD_DIR/                             
    bfd/  
        bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt_hhm.ffindex
        bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt_hhm.ffdata 
        bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt_cs219.ffindex                           
        ...
    mgnify/                                
        mgy_clusters_2018_12.fa
    params/                                
        params_model_1.npz
        params_model_2.npz
        params_model_3.npz
        ...
    pdb70/                                
        pdb_filter.dat
        pdb70_hhm.ffindex
        pdb70_hhm.ffdata
        ...
    pdb_mmcif/                            
        mmcif_files/
            100d.cif
            101d.cif
            101m.cif
            ...
        obsolete.dat
    pdb_seqres/                            
        pdb_seqres.txt
    small_bfd/                           
        bfd-first_non_consensus_sequences.fasta
    uniclust30/                            
        uniclust30_2018_08/
            uniclust30_2018_08_md5sum
            uniclust30_2018_08_hhm_db.index
            uniclust30_2018_08_hhm_db
            ...
    uniprot/                               
        uniprot.fasta
    uniref90/                             
        uniref90.fasta
```
zhuwenwen's avatar
zhuwenwen committed
86
87
88
89
90
91
92

我们提供了一个脚本download_all_data.sh用于下载使用的数据集和模型文件:

    ./scripts/download_all_data.sh 数据集下载目录

## 推理
我们分别提供了基于Pytorch的单体和多体的推理脚本。
zhuwenwen's avatar
zhuwenwen committed
93

zhuwenwen's avatar
zhuwenwen committed
94
### 单体
zhuwenwen's avatar
zhuwenwen committed
95

yuhai's avatar
yuhai committed
96
97
98
99
    python inference.py T1024.fasta /data/pdb_mmcif/mmcif_files/ \
    --output_dir ./output \
    --gpus 4 \
    --use_precomputed_alignments data/alignments/ \
zhuwenwen's avatar
zhuwenwen committed
100
    --param_path /data/params/params_model_1.npz  \
yuhai's avatar
yuhai committed
101
102
103
104
105
    --uniref90_database_path /data/uniref90/uniref90.fasta \
    --mgnify_database_path /data/mgnify/mgy_clusters_2018_12.fa \
    --pdb70_database_path /data/pdb70/pdb70 \
    --uniclust30_database_path /data/uniclust30/uniclust30_2018_08/uniclust30_2018_08 \
    --bfd_database_path /data/bfd/bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt \
zhuwenwen's avatar
zhuwenwen committed
106
107
108
109
110
111
112
    --jackhmmer_binary_path `which jackhmmer` \
    --hhblits_binary_path `which hhblits` \
    --hhsearch_binary_path `which hhsearch` \
    --kalign_binary_path `which kalign` \
    --chunk_size 4 \
    --inplace

yuhai's avatar
yuhai committed
113
或者使用`sh inference.sh`
zhuwenwen's avatar
zhuwenwen committed
114

zhuwenwen's avatar
zhuwenwen committed
115
#### 单体推理参数说明
zhuwenwen's avatar
zhuwenwen committed
116
T1024.fasta为推理的单体序列;data修改为数据集下载目录;
zhuwenwen's avatar
zhuwenwen committed
117
118
`--output_dir`为输出目录;`--gpus`为使用的gpu数量;`--use_precomputed_alignments`为搜索对齐目录,可以加载已经搜索对齐的序列,若不添加则进行搜索对齐;
`--param_path`为加载单体模型路径,需要和`--model_name`保持一致,默认为model_1;`--chunk_size`为分块数量,设置为4,并且使用`--inplace`来降低显存占用;
yuhai's avatar
yuhai committed
119
120
默认不进行relax操作,若需要,添加`--relaxation`;默认不保存输出的.pkl文件,若需要,添加`--save_outputs`
如果bfd数据集过大只能下载small_bfd数据集,请指定`--bfd_database_path`为small_bfd路径并且添加参数`--preset reduced_dbs`
yuhai's avatar
yuhai committed
121
如果没有数据集、无法下载数据集、想进行快速测试,可使用`data/pkl/`下的对应pkl文件进行测试,将`inference.py`改为`inference_use_pkl.py`,此时不再需要alphafold数据集路径。
zhuwenwen's avatar
zhuwenwen committed
122
123


zhuwenwen's avatar
zhuwenwen committed
124
Alphafold的数据预处理需要花费大量时间,因此我们通过[ray](https://docs.ray.io/en/latest/workflows/concepts.html)加快了数据预处理工作流程。
zhuwenwen's avatar
zhuwenwen committed
125
126
要使用ray工作流运行推理,应将参数--enable_workflow添加到cmdline或`./inference.sh`脚本中。

zhuwenwen's avatar
zhuwenwen committed
127
### 多体
yuhai's avatar
yuhai committed
128

yuhai's avatar
yuhai committed
129
130
本项目因为多体测试要进行序列搜索,昆山节点CPU在这项工作上非常耗时,所以没有提供对应的`alignments`以及内置`params_model_1_multimer.npz`,但经过测试确认能正常运行。
若您想要进行多体测试,请挂载AF2数据集目录至/data,例如在创建容器时添加`-v /public/DL_DATA/AI/alphaflod:/data:ro`
yuhai's avatar
yuhai committed
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

    python3 inference.py SUGP1.fasta /data/pdb_mmcif/mmcif_files \
    --output_dir ./output  \
    --gpus 2  \
    --model_preset multimer  \
    --uniref90_database_path /data/uniref90/uniref90.fasta  \
    --mgnify_database_path /data/mgnify/mgy_clusters_2018_12.fa  \
    --pdb70_database_path /data/pdb70/pdb70  \
    --uniclust30_database_path /data/uniclust30/uniclust30_2018_08/uniclust30_2018_08  \
    --bfd_database_path /data/bfd/bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt  \
    --uniprot_database_path /data/uniprot/uniprot_sprot.fasta  \
    --pdb_seqres_database_path /data/pdb_seqres/pdb_seqres.txt  \
    --param_path /data/params/params_model_1_multimer.npz  \
    --model_name model_1_multimer  \
    --jackhmmer_binary_path `which jackhmmer`  \
    --hhblits_binary_path `which hhblits`  \
    --hhsearch_binary_path `which hhsearch`  \
    --kalign_binary_path `which kalign`  \
    --chunk_size 4  \
yuhai's avatar
yuhai committed
150
    --inplace \
zhuwenwen's avatar
zhuwenwen committed
151

yuhai's avatar
yuhai committed
152
或者使用`sh inference_multimer.sh`,请根据实际情况修改数据集路径。
yuhai's avatar
yuhai committed
153

yuhai's avatar
yuhai committed
154
155
#### 多体推理参数说明
SUGP1.fasta为推理的多体序列;`--param_path`为加载多体模型路径,需要和`--model_name`保持一致。
yuhai's avatar
yuhai committed
156

yuhai's avatar
yuhai committed
157
注意您运行多体测试时,如果挂载的AF2数据集如果没有`bfd`而是`small_bfd`,请删除`--bfd_database_path /data/bfd/bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt`;如果提示您没有`/data/uniprot/uniprot_sprot.fasta`,请将`uniprot_sprot.fasta`换成您数据目录下有的`uniprot_*.fasta`,例如`/data/uniprot/uniprot_trembl.fasta`
zhuwenwen's avatar
zhuwenwen committed
158

yuhai's avatar
yuhai committed
159
运行后您会发现卡在`running in multimer mode...`并且没有使用DCU,这是正常的,因为要使用CPU进行序列搜索一段时间,以本项目的多体测试为例,序列搜索结束后会输出`Finished running alignment for sp_Q8IWZ8_SUGP1_HUMAN_SURP_and_G-patch_domain-containing_protein_1_OS_Homo_sapiens_OX_9606_GN_SUGP1_PE_1-SV_2_188_242`信息,然后会卡在这个输出信息,无法使用DCU加速,这是正常现象,因为正在进行更加耗时的CPU操作,具体耗时与您的CPU型号有关。
zhuwenwen's avatar
zhuwenwen committed
160

zhuwenwen's avatar
zhuwenwen committed
161
162
163
164
165
166
167
168
169
170
171
172
173
174
## result
`--output_dir`目录结构如下:
```
alignments/
    <target_name>/
        bfd_uniclust_hits.a3m
        mgnify_hits.sto
        uniref90_hits.sto
        ...
{target_name}_{model_name}_output_dict.pkl
{target_name}_{model_name}_unrelaxed.pdb
{target_name}_{model_name}_relaxed.pdb
```

zhuwenwen's avatar
zhuwenwen committed
175
176
177
178
179
180
181
[查看蛋白质3D结构](https://www.pdbus.org/3d-view)
<div style="display: flex; justify-content: center; align-items: center;">
  <img src="./docs/result_pdb.png" alt="Image">
  <div style="position: absolute; top: 50%; left: 50%; transform: translate(-50%, -50%); background: rgba(0, 0, 0, 0.5); color: #fff; padding: 10px;">
    红色为真实结构,蓝色为预测结构
  </div>
</div>
zhuwenwen's avatar
zhuwenwen committed
182

zhuwenwen's avatar
zhuwenwen committed
183
## 精度
chenzk's avatar
chenzk committed
184
测试数据:[casp14](https://www.predictioncenter.org/casp14/targetlist.cgi)[uniprot](https://www.uniprot.org/),使用的加速卡:1张 Z100L-32G
zhuwenwen's avatar
zhuwenwen committed
185

dcuai's avatar
dcuai committed
186
<!--1、计算plddts的值
zhuwenwen's avatar
zhuwenwen committed
187
188
189
190
191
192

    python3 pkl2plddt.py
    其中,data_path为推理生成的pkl文件路径。


2、其它精度值计算:[https://zhanggroup.org/TM-score/](https://zhanggroup.org/TM-score/)
dcuai's avatar
dcuai committed
193
-->
zhuwenwen's avatar
zhuwenwen committed
194
准确性数据:
zhuwenwen's avatar
zhuwenwen committed
195
| 数据类型 | 序列类型 | 序列标签 | 序列长度 | GDT-TS | GDT-HA | PLDDTS | TM score | MaxSub | RMSD |
zhuwenwen's avatar
zhuwenwen committed
196
| :------: | :------: | :------: | :------: |:------: |:------: | :------: | :------: | :------: |:------: |
zhuwenwen's avatar
zhuwenwen committed
197
| fp32 | 单体 | T1024  | 408  | 0.595 | 0.441 | 90.828 | 0.663 | 0.489 | 5.779 |
zhuwenwen's avatar
zhuwenwen committed
198
199
200
| fp32 | 单体 | T1053  | 580  | 0.937 | 0.782 | 92.284 | 0.984 | 0.929 | 1.105 |
| fp32 | 单体 | Q9NYK1 | 1046 | 0.907 | 0.744 | 86.642 | 0.962 | 0.905 | 5.757 |

zhuwenwen's avatar
zhuwenwen committed
201
202
203
## 应用场景

### 算法类别
dcuai's avatar
dcuai committed
204
蛋白质结构预测
zhuwenwen's avatar
zhuwenwen committed
205

zhuwenwen's avatar
zhuwenwen committed
206
### 热点应用行业
zhuwenwen's avatar
zhuwenwen committed
207
医疗,科研,教育
zhuwenwen's avatar
zhuwenwen committed
208
209


zhuwenwen's avatar
zhuwenwen committed
210
## 源码仓库及问题反馈
chenzk's avatar
chenzk committed
211
* [https://developer.sourcefind.cn/codes/modelzoo/fastfold_pytorch](https://developer.sourcefind.cn/codes/modelzoo/fastfold_pytorch)
zhuwenwen's avatar
zhuwenwen committed
212

dcuai's avatar
dcuai committed
213
## 参考资料
zhuwenwen's avatar
zhuwenwen committed
214
215
* [https://github.com/deepmind/alphafold](https://github.com/deepmind/alphafold)
* [https://github.com/hpcaitech/FastFold](https://github.com/hpcaitech/FastFold)