lowering.cpp 20.3 KB
Newer Older
Shucai Xiao's avatar
Shucai Xiao committed
1
#include <iterator>
Paul's avatar
Paul committed
2
3
4
#include <migraphx/gpu/lowering.hpp>
#include <migraphx/manage_ptr.hpp>
#include <migraphx/instruction.hpp>
5
6
7
8
9
10
11
12
#include <migraphx/make_op.hpp>

#include <migraphx/op/abs.hpp>
#include <migraphx/op/batch_norm_inference.hpp>
#include <migraphx/op/convolution.hpp>
#include <migraphx/op/deconvolution.hpp>
#include <migraphx/op/dot.hpp>
#include <migraphx/op/elu.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
13
#include <migraphx/op/if_op.hpp>
turneram's avatar
turneram committed
14
#include <migraphx/op/layernorm.hpp>
15
16
17
18
19
20
21
22
23
#include <migraphx/op/leaky_relu.hpp>
#include <migraphx/op/lrn.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/op/reshape.hpp>
#include <migraphx/op/quant_convolution.hpp>
#include <migraphx/op/quant_dot.hpp>

#include <migraphx/gpu/abs.hpp>
#include <migraphx/gpu/batch_norm_inference.hpp>
Paul's avatar
Paul committed
24
25
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/convolution.hpp>
kahmed10's avatar
kahmed10 committed
26
#include <migraphx/gpu/deconvolution.hpp>
27
#include <migraphx/gpu/device_name.hpp>
Khalique's avatar
Khalique committed
28
#include <migraphx/gpu/elu.hpp>
29
#include <migraphx/gpu/equal.hpp>
Paul's avatar
Paul committed
30
#include <migraphx/gpu/gemm.hpp>
31
#include <migraphx/gpu/greater.hpp>
32
#include <migraphx/gpu/int8_conv_pack.hpp>
turneram's avatar
turneram committed
33
#include <migraphx/gpu/layernorm.hpp>
34
#include <migraphx/gpu/leaky_relu.hpp>
35
#include <migraphx/gpu/less.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
36
37
38
#include <migraphx/gpu/logical_and.hpp>
#include <migraphx/gpu/logical_or.hpp>
#include <migraphx/gpu/logical_xor.hpp>
39
40
41
42
#include <migraphx/gpu/lrn.hpp>
#include <migraphx/gpu/miopen.hpp>
#include <migraphx/gpu/quant_convolution.hpp>
#include <migraphx/gpu/rocblas.hpp>
43
#include <migraphx/gpu/unary_not.hpp>
turneram's avatar
turneram committed
44
#include <migraphx/gpu/where.hpp>
45
#include <migraphx/gpu/compiler.hpp>
46
#include <migraphx/iterator_for.hpp>
47
#include <migraphx/program.hpp>
Paul's avatar
Paul committed
48
#include <utility>
49
#include <functional>
Khalique's avatar
Khalique committed
50
#include <algorithm>
Shucai Xiao's avatar
Shucai Xiao committed
51
#include <map>
Paul's avatar
Paul committed
52

Paul's avatar
Paul committed
53
namespace migraphx {
Paul's avatar
Paul committed
54
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
55
namespace gpu {
Paul's avatar
Paul committed
56
57
58

struct miopen_apply
{
Shucai Xiao's avatar
Shucai Xiao committed
59
    module* mod          = nullptr;
60
    const lowering* pass = nullptr;
Shucai Xiao's avatar
Shucai Xiao committed
61
    std::unordered_map<std::string, std::function<instruction_ref(instruction_ref)>> apply_map{};
Shucai Xiao's avatar
Shucai Xiao committed
62
    instruction_ref last{};
63
    std::unordered_map<instruction_ref, std::string> prog_output_names{};
Shucai Xiao's avatar
Shucai Xiao committed
64
65
    bool offload_copy   = false;
    bool int8_x4_format = true;
66
    bool compute_fp32   = false;
Paul's avatar
Paul committed
67

68
    context& get_context() const
69
70
71
72
73
74
    {
        assert(pass != nullptr);
        assert(pass->ctx != nullptr);
        return *pass->ctx;
    }

Paul's avatar
Paul committed
75
76
77
78
79
80
81
    void check_shape(shape x, instruction_ref i)
    {
        assert(x == i->get_shape());
        (void)x;
        (void)i;
    }

82
83
    void create_output_names()
    {
Shucai Xiao's avatar
Shucai Xiao committed
84
        this->last = instruction::get_output_alias(std::prev(mod->end()));
85
86
        if(this->last->name() == "@return")
        {
87
            const auto& prog_outputs = last->inputs();
88
89
90
91
92
93
94
95
96
97
            std::vector<instruction_ref> outputs_alias(prog_outputs.size());

            std::transform(prog_outputs.begin(),
                           prog_outputs.end(),
                           outputs_alias.begin(),
                           [](const auto& i) { return instruction::get_output_alias(i); });

            std::size_t index = 0;
            for(auto ins : outputs_alias)
            {
Shucai Xiao's avatar
Shucai Xiao committed
98
                prog_output_names[ins] = mod->name() + ":#output_" + std::to_string(index++);
99
100
101
102
            }
        }
    }

103
104
105
106
107
108
    const std::unordered_set<std::string>& get_rocblas_fp32_archs()
    {
        static std::unordered_set<std::string> supported_archs{"gfx908", "gfx90a"};
        return supported_archs;
    }

109
110
    void init()
    {
Shucai Xiao's avatar
Shucai Xiao committed
111
        assert(mod != nullptr);
112
        assert(pass != nullptr);
113

Shucai Xiao's avatar
Shucai Xiao committed
114
#if ROCBLAS_VERSION_MAJOR >= 2 && ROCBLAS_VERSION_MINOR >= 38
115
116
117
118
        auto& ctx              = get_context();
        const auto device_name = trim(split_string(get_device_name(), ':').front());
        if(contains(get_rocblas_fp32_archs(), device_name))
            compute_fp32 = true;
Shucai Xiao's avatar
Shucai Xiao committed
119
120
121
122
123
        rocblas_gemm_flags flag;
        rocblas_query_int8_layout_flag(ctx.get_stream().get_rocblas(), &flag);
        int8_x4_format = (flag == rocblas_gemm_flags_pack_int8x4);
#endif

Shucai Xiao's avatar
Shucai Xiao committed
124
        offload_copy = (mod->name() == "main") ? pass->offload_copy : false;
125
        create_output_names();
Paul's avatar
Paul committed
126

127
128
129
130
131
132
133
134
135
136
137
138
        add_generic_op("acos");
        add_generic_op("acosh");
        add_generic_op("add");
        add_generic_op("asin");
        add_generic_op("asinh");
        add_generic_op("atan");
        add_generic_op("atanh");
        add_generic_op("ceil");
        add_generic_op("contiguous");
        add_generic_op("cos");
        add_generic_op("cosh");
        add_generic_op("div");
139
        add_generic_op("equal");
140
141
142
        add_generic_op("erf");
        add_generic_op("exp");
        add_generic_op("floor");
143
        add_generic_op("greater");
turneram's avatar
turneram committed
144
        add_generic_op("layernorm");
145
        add_generic_op("less");
146
        add_generic_op("log");
Shucai Xiao's avatar
Shucai Xiao committed
147
148
149
        add_generic_op("logical_and");
        add_generic_op("logical_or");
        add_generic_op("logical_xor");
150
151
152
        add_generic_op("max");
        add_generic_op("min");
        add_generic_op("mul");
153
        add_generic_op("not");
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
        add_generic_op("pow");
        add_generic_op("prelu");
        add_generic_op("recip");
        add_generic_op("relu");
        add_generic_op("round");
        add_generic_op("rsqrt");
        add_generic_op("sigmoid");
        add_generic_op("sign");
        add_generic_op("sin");
        add_generic_op("sinh");
        add_generic_op("sqdiff");
        add_generic_op("sqrt");
        add_generic_op("sub");
        add_generic_op("tan");
        add_generic_op("tanh");
turneram's avatar
turneram committed
169
        add_generic_op("where");
170

Shucai Xiao's avatar
Shucai Xiao committed
171
        add_extend_op("abs");
172
173
174
175
176
        add_extend_op("argmax");
        add_extend_op("argmin");
        add_extend_op("clip");
        add_extend_op("concat");
        add_extend_op("convert");
Shucai Xiao's avatar
Shucai Xiao committed
177
        add_extend_op("elu");
178
        add_extend_op("gather");
Shucai Xiao's avatar
Shucai Xiao committed
179
        add_extend_op("leaky_relu");
180
        add_extend_op("logsoftmax");
Shucai Xiao's avatar
Shucai Xiao committed
181
        add_extend_op("lrn");
turneram's avatar
turneram committed
182
        add_extend_op("multinomial");
Shucai Xiao's avatar
Shucai Xiao committed
183
        add_extend_op("nonzero");
184
        add_extend_op("pad");
185
        add_extend_op("pooling");
186
        add_extend_op("prefix_scan_sum");
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
187
        add_extend_op("reverse");
188
189
190
        add_extend_op("rnn_var_sl_last_output");
        add_extend_op("rnn_var_sl_shift_output");
        add_extend_op("rnn_var_sl_shift_sequence");
191
        add_extend_op("scatter_none");
192
        add_extend_op("softmax");
Shucai Xiao's avatar
Shucai Xiao committed
193
        add_extend_op("topk");
194

Shucai Xiao's avatar
Shucai Xiao committed
195
        add_batch_norm_inference_op();
196
        add_convolution_op();
kahmed10's avatar
kahmed10 committed
197
        add_deconvolution_op();
Shucai Xiao's avatar
Shucai Xiao committed
198
199
        add_gemm_op<op::dot>("dot");
        add_gemm_op<op::quant_dot>("quant_dot");
Shucai Xiao's avatar
Shucai Xiao committed
200
        add_if_op();
Shucai Xiao's avatar
Shucai Xiao committed
201
        add_loop_op();
Shucai Xiao's avatar
Shucai Xiao committed
202
        add_neg_op();
203
        add_nms_op();
Shucai Xiao's avatar
Shucai Xiao committed
204
        add_quant_convolution_op();
205
206
    }

207
208
    void copy_params()
    {
Shucai Xiao's avatar
Shucai Xiao committed
209
        if(not offload_copy)
210
            return;
211

Shucai Xiao's avatar
Shucai Xiao committed
212
        for(auto ins : iterator_for(*mod))
213
214
215
        {
            if(ins->name() != "@param")
                continue;
216

Shucai Xiao's avatar
Shucai Xiao committed
217
218
219
220
            // parameter no outputs, no need to insert copy to gpu
            if(ins->outputs().empty())
                continue;

221
222
            auto pos = std::next(ins);
            auto a   = insert_allocation(pos, ins->get_shape());
223
            auto c   = mod->insert_instruction(pos, make_op("hip::copy_to_gpu"), ins, a);
Shucai Xiao's avatar
Shucai Xiao committed
224
            mod->replace_instruction(ins, c);
225
        }
226
227

        // return instruction
Shucai Xiao's avatar
Shucai Xiao committed
228
        auto ret = std::prev(mod->end());
229
230
        if(ret->name() == "@return")
        {
231
            const auto& inputs = ret->inputs();
232
233
234

            // each input of ret need to be copied from gpu to host, and replace
            // output with copy output
235
            for(const auto& in : inputs)
236
            {
237
                auto p_output = mod->insert_instruction(ret, make_op("hip::copy_from_gpu"), in);
238
239
240
241
242
243
                instruction::replace_argument(ret, in, p_output);
            }
        }
        // else branch to handle legacy program without the return instruction
        else
        {
244
            mod->add_instruction(make_op("hip::copy_from_gpu"), ret);
245
        }
246
247
    }

Paul's avatar
Paul committed
248
249
    void apply()
    {
250
        init();
Shucai Xiao's avatar
Shucai Xiao committed
251
        for(auto it = mod->begin(); it != mod->end(); it++)
Paul's avatar
Paul committed
252
        {
Paul's avatar
Paul committed
253
            auto s = it->get_shape();
254
            if(apply_map.count(it->name()) > 0)
255
            {
256
                check_shape(s, apply_map.at(it->name())(it));
Paul's avatar
Paul committed
257
            }
258
259
260
261
            else if(has_compiler_for(it->name()))
            {
                check_shape(s, insert_precompile_op(it));
            }
Paul's avatar
Paul committed
262
        }
263

264
        copy_params();
Paul's avatar
Paul committed
265
266
    }

267
268
269
270
271
272
273
274
275
276
277
278
279
    instruction_ref insert_precompile_op(instruction_ref ins)
    {
        auto output                       = insert_allocation(ins, ins->get_shape());
        std::vector<instruction_ref> refs = ins->inputs();
        refs.push_back(output);

        return mod->replace_instruction(
            ins,
            make_op("gpu::precompile_op", {{"op", to_value(ins->get_operator())}}),
            refs,
            ins->module_inputs());
    }

Paul's avatar
Paul committed
280
    instruction_ref insert_allocation(instruction_ref ins, const shape& s, std::string tag = "")
Paul's avatar
Paul committed
281
    {
282
        // Instruction's output is an input of the ret instruction
Shucai Xiao's avatar
Shucai Xiao committed
283
        if(offload_copy)
Paul's avatar
Paul committed
284
        {
285
286
            auto result = mod->insert_instruction(
                ins, make_op("hip::allocate", {{"shape", to_value(s)}, {"tag", std::move(tag)}}));
Paul's avatar
Paul committed
287
288
            return result;
        }
289
290
291
292

        auto ins_alias = instruction::get_output_alias(ins);
        if(last->name() == "@return" and tag.empty() and prog_output_names.count(ins_alias) > 0)
        {
Shucai Xiao's avatar
Shucai Xiao committed
293
            return mod->add_parameter(prog_output_names[ins_alias], s);
294
295
296
        }
        else if(ins == last and tag.empty())
        {
Shucai Xiao's avatar
Shucai Xiao committed
297
            return mod->add_parameter("output", s);
298
299
        }

300
301
        return mod->insert_instruction(
            ins, make_op("hip::allocate", {{"shape", to_value(s)}, {"tag", std::move(tag)}}));
Paul's avatar
Paul committed
302
303
    }

Shucai Xiao's avatar
Shucai Xiao committed
304
    void add_convolution_op()
Paul's avatar
Paul committed
305
    {
306
307
        apply_map.emplace("convolution", [=](instruction_ref ins) {
            auto&& op = any_cast<op::convolution>(ins->get_operator());
Paul's avatar
Paul committed
308

309
            auto conv = miopen_convolution{op, make_conv(op)};
310
            auto ws   = conv.find(get_context(), ins->get_shape(), to_shapes(ins->inputs()));
Paul's avatar
Paul committed
311

312
313
            auto workspace = insert_allocation(ins, ws, "workspace");
            auto output    = insert_allocation(ins, ins->get_shape());
kahmed10's avatar
kahmed10 committed
314

Shucai Xiao's avatar
Shucai Xiao committed
315
            return mod->replace_instruction(
kahmed10's avatar
kahmed10 committed
316
317
318
319
320
321
322
323
324
325
326
327
328
329
                ins, conv, ins->inputs().at(0), ins->inputs().at(1), workspace, output);
        });
    }

    void add_deconvolution_op()
    {
        apply_map.emplace("deconvolution", [=](instruction_ref ins) {
            auto&& op = any_cast<op::deconvolution>(ins->get_operator());

            auto conv = miopen_deconvolution{op, make_deconv(op)};
            auto ws   = conv.compile(get_context(), ins->get_shape(), to_shapes(ins->inputs()));

            auto workspace = insert_allocation(ins, ws, "workspace");
            auto output    = insert_allocation(ins, ins->get_shape());
Paul's avatar
Paul committed
330

Shucai Xiao's avatar
Shucai Xiao committed
331
            return mod->replace_instruction(
332
333
                ins, conv, ins->inputs().at(0), ins->inputs().at(1), workspace, output);
        });
Paul's avatar
Paul committed
334
335
    }

336
337
    template <typename Op>
    void add_gemm_op(const std::string& name)
338
339
    {
        apply_map.emplace(name, [=](instruction_ref ins) {
340
            std::vector<instruction_ref> refs = ins->inputs();
Shucai Xiao's avatar
Shucai Xiao committed
341
            if(refs.size() == 2)
342
343
            {
                auto output = insert_allocation(ins, ins->get_shape());
Shucai Xiao's avatar
Shucai Xiao committed
344
345
346
347
348
349
                refs.push_back(output);
            }
            else
            {
                auto c_alias = instruction::get_output_alias(refs.back());
                if(ins == last or refs.back()->outputs().size() > 1 or c_alias->inputs().empty())
350
                {
351
352
353
354
                    auto output = insert_allocation(ins, ins->get_shape());
                    auto copy_out =
                        mod->insert_instruction(ins, make_op("hip::copy"), refs.back(), output);
                    refs.back() = copy_out;
355
356
                    refs.push_back(copy_out);
                }
Shucai Xiao's avatar
Shucai Xiao committed
357
358
359
360
                else
                {
                    refs.push_back(refs.back());
                }
361
            }
Shucai Xiao's avatar
Shucai Xiao committed
362
            return mod->replace_instruction(
363
                ins, rocblas_gemm<Op>{Op{}, 1, 0, int8_x4_format, compute_fp32}, refs);
364
365
366
        });
    }

367
368
369
370
371
    void add_quant_convolution_op()
    {
        apply_map.emplace("quant_convolution", [=](instruction_ref ins) {
            auto&& op = any_cast<op::quant_convolution>(ins->get_operator());
            auto conv = miopen_quant_convolution{op, make_conv(op)};
372
            auto ws   = conv.compile(get_context(), ins->get_shape(), to_shapes(ins->inputs()));
373

Shucai Xiao's avatar
Shucai Xiao committed
374
            auto args      = ins->inputs();
375
            auto workspace = insert_allocation(ins, ws, "workspace");
Shucai Xiao's avatar
Shucai Xiao committed
376
377
            auto output    = insert_allocation(ins, ins->get_shape());

Shucai Xiao's avatar
Shucai Xiao committed
378
            return mod->replace_instruction(ins, conv, args[0], args[1], workspace, output);
Shucai Xiao's avatar
Shucai Xiao committed
379
380
381
        });
    }

382
383
384
    // add_generic_op just constructs the operator with no fields whereas add_extend_op copies over
    // the fields Since it doesn't have fields its default constructed

385
386
387
    void add_generic_op(const std::string& name) { add_generic_op(name, "gpu::" + name); }

    void add_generic_op(const std::string& op_name, const std::string& gpu_name)
Paul's avatar
Paul committed
388
    {
389
        apply_map.emplace(op_name, [=](instruction_ref ins) {
390
391
392
            auto output                       = insert_allocation(ins, ins->get_shape());
            std::vector<instruction_ref> refs = ins->inputs();
            refs.push_back(output);
Paul's avatar
Paul committed
393

Shucai Xiao's avatar
Shucai Xiao committed
394
            return mod->replace_instruction(ins, make_op(gpu_name), refs);
395
        });
Paul's avatar
Paul committed
396
    }
Paul's avatar
Paul committed
397

398
399
400
    void add_extend_op(const std::string& name) { add_extend_op(name, "gpu::" + name); }

    void add_extend_op(const std::string& op_name, const std::string& gpu_name)
Khalique's avatar
Khalique committed
401
    {
402
403
        apply_map.emplace(op_name, [=](instruction_ref ins) {
            auto&& op                         = ins->get_operator();
404
405
406
            auto output                       = insert_allocation(ins, ins->get_shape());
            std::vector<instruction_ref> refs = ins->inputs();
            refs.push_back(output);
Paul's avatar
Paul committed
407

Shucai Xiao's avatar
Shucai Xiao committed
408
            return mod->replace_instruction(ins, make_op(gpu_name, op.to_value()), refs);
409
        });
Khalique's avatar
Khalique committed
410
411
    }

Shucai Xiao's avatar
Shucai Xiao committed
412
    void add_batch_norm_inference_op()
413
    {
414
415
416
417
        apply_map.emplace("batch_norm_inference", [=](instruction_ref ins) {
            auto&& op       = any_cast<op::batch_norm_inference>(ins->get_operator());
            auto output     = insert_allocation(ins, ins->get_shape());
            shape old_shape = ins->inputs().at(1)->get_shape();
Shucai Xiao's avatar
Shucai Xiao committed
418
419
420
421
422
423
424
425
426
427
428
429
430
431
            auto input      = ins->inputs()[0];
            auto input_lens = input->get_shape().lens();
            std::vector<int64_t> rsp_lens(input_lens.size(), 1);
            // for per_activation case, also need to reshape input
            if(op.bn_mode == op::batch_norm_inference::per_activation)
            {
                std::copy(input_lens.begin() + 1, input_lens.end(), rsp_lens.begin() + 1);
            }
            else
            {
                rsp_lens[1] = static_cast<int64_t>(old_shape.elements());
            }

            auto reshape_op = op::reshape{rsp_lens};
432
433
            std::vector<instruction_ref> reshapes;
            std::transform(ins->inputs().begin() + 1,
Shucai Xiao's avatar
Shucai Xiao committed
434
435
                           ins->inputs().end(),
                           std::back_inserter(reshapes),
Shucai Xiao's avatar
Shucai Xiao committed
436
                           [&](auto i) { return mod->insert_instruction(ins, reshape_op, i); });
Shucai Xiao's avatar
Shucai Xiao committed
437

Shucai Xiao's avatar
Shucai Xiao committed
438
439
440
441
442
443
444
445
            return mod->replace_instruction(ins,
                                            miopen_batch_norm_inference{op},
                                            input,
                                            reshapes[0],
                                            reshapes[1],
                                            reshapes[2],
                                            reshapes[3],
                                            output);
446
        });
447
    }
Shucai Xiao's avatar
Shucai Xiao committed
448
449
450
451
452
453
454

    // use 0 - input to represent neg
    void add_neg_op()
    {
        apply_map.emplace("neg", [=](instruction_ref ins) {
            auto s = ins->get_shape();
            std::vector<float> zeros(s.elements(), 0.0f);
Shucai Xiao's avatar
Shucai Xiao committed
455
            auto l0     = mod->add_literal(literal(s, zeros));
Shucai Xiao's avatar
Shucai Xiao committed
456
            auto output = insert_allocation(ins, s);
Shucai Xiao's avatar
Shucai Xiao committed
457
            return mod->replace_instruction(
458
                ins, make_op("gpu::sub"), l0, ins->inputs().front(), output);
Shucai Xiao's avatar
Shucai Xiao committed
459
460
        });
    }
Shucai Xiao's avatar
Shucai Xiao committed
461

Shucai Xiao's avatar
Shucai Xiao committed
462
    // add input and output argument for the if operator
Shucai Xiao's avatar
Shucai Xiao committed
463
464
465
466
    void add_if_op()
    {
        apply_map.emplace("if", [=](instruction_ref ins) {
            std::vector<instruction_ref> inputs = ins->inputs();
467
468
469
            auto cpu_cond =
                mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), inputs.front());
            auto sync_cond = mod->insert_instruction(ins, make_op("hip::sync_stream"), cpu_cond);
Shucai Xiao's avatar
Shucai Xiao committed
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
            inputs.front() = sync_cond;

            std::vector<module_ref> mod_args = ins->module_inputs();
            std::map<std::string, shape> name_shapes;
            for(const auto& smod : mod_args)
            {
                auto ps = smod->get_parameter_shapes();
                name_shapes.insert(ps.begin(), ps.end());
            }

            bool ins_output_allocated = false;
            for(auto& pn : name_shapes)
            {
                const auto& s = pn.second;
                instruction_ref output{};
                if(s == ins->get_shape() and not ins_output_allocated)
                {
                    output               = insert_allocation(ins, s);
                    ins_output_allocated = true;
                }
                else
                {
492
493
                    output = mod->insert_instruction(
                        ins, make_op("hip::allocate", {{"shape", to_value(s)}}));
Shucai Xiao's avatar
Shucai Xiao committed
494
495
496
497
498
499
500
                }
                inputs.push_back(output);
            }

            return mod->replace_instruction(ins, ins->get_operator(), inputs, mod_args);
        });
    }
Shucai Xiao's avatar
Shucai Xiao committed
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538

    // replace the loop operator with gpu_loop operator
    void add_loop_op()
    {
        apply_map.emplace("loop", [=](instruction_ref ins) {
            std::vector<instruction_ref> inputs = ins->inputs();
            // copy max_iter from gpu to cpu
            auto cpu_max_iter =
                mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), inputs.at(0));
            auto cpu_cond =
                mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), inputs.at(1));
            auto synced_max_iter =
                mod->insert_instruction(ins, make_op("hip::sync_stream"), cpu_max_iter, cpu_cond);
            inputs.at(0)     = synced_max_iter;
            inputs.at(1)     = cpu_cond;
            auto copy_inputs = inputs;
            std::transform(
                copy_inputs.begin(), copy_inputs.end(), std::back_inserter(inputs), [&](auto in) {
                    return mod->insert_instruction(
                        ins, make_op("hip::allocate", {{"shape", to_value(in->get_shape())}}));
                });

            auto mod_args = ins->module_inputs();
            auto output   = insert_allocation(ins, ins->get_shape());

            const auto* sub_mod = mod_args.front();
            auto cond_out       = mod->insert_instruction(
                ins,
                make_op("hip::allocate",
                        {{"shape", to_value(sub_mod->get_output_shapes().front())}}));
            // add cond and mod outputs to the argument list
            inputs.push_back(cond_out);
            inputs.push_back(output);

            return mod->replace_instruction(
                ins, make_op("gpu::loop", ins->get_operator().to_value()), inputs, mod_args);
        });
    }
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558

    void add_nms_op()
    {
        apply_map.emplace("nonmaxsuppression", [=](instruction_ref ins) {
            auto s      = ins->get_shape();
            auto output = insert_allocation(ins, s);
            std::vector<instruction_ref> cpu_inputs;
            auto inputs = ins->inputs();
            std::transform(
                inputs.begin(), inputs.end(), std::back_inserter(cpu_inputs), [&](auto in) {
                    return mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), in);
                });
            cpu_inputs.front() =
                mod->insert_instruction(ins, make_op("hip::sync_stream"), cpu_inputs);
            auto cpu_out = mod->insert_instruction(ins, ins->get_operator(), cpu_inputs);
            auto gpu_out =
                mod->insert_instruction(ins, make_op("hip::copy_to_gpu"), cpu_out, output);
            return mod->replace_instruction(ins, gpu_out);
        });
    }
Paul's avatar
Paul committed
559
560
};

Shucai Xiao's avatar
Shucai Xiao committed
561
void lowering::apply(module& m) const { miopen_apply{&m, this}.apply(); }
Shucai Xiao's avatar
Shucai Xiao committed
562

Paul's avatar
Paul committed
563
} // namespace gpu
Paul's avatar
Paul committed
564
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
565
} // namespace migraphx