fuse_mlir.cpp 22.5 KB
Newer Older
Paul Fultz II's avatar
Paul Fultz II committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
#include <migraphx/gpu/fuse_mlir.hpp>
#include <migraphx/gpu/mlir.hpp>
#include <migraphx/matcher.hpp>
#include <migraphx/pass_manager.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/register_op.hpp>
30
#include <migraphx/env.hpp>
Paul Fultz II's avatar
Paul Fultz II committed
31
32
33
34
35
36
37
38

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

struct module;

namespace gpu {

39
40
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_ENABLE_EXTRA_MLIR);
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_DISABLE_MLIR);
41

42
43
44
bool mlir_enabled()
{
#ifdef MIGRAPHX_MLIR
45
46
    const bool mlir_disabled = enabled(MIGRAPHX_DISABLE_MLIR{});
    return not mlir_disabled;
47
48
49
50
51
#else
    return false;
#endif
}

Paul Fultz II's avatar
Paul Fultz II committed
52
#ifdef MIGRAPHX_MLIR
53
54

struct mlir_op
Paul Fultz II's avatar
Paul Fultz II committed
55
{
56
    std::string name() const { return "gpu::mlir_op"; }
Paul Fultz II's avatar
Paul Fultz II committed
57
58
59
60
61
62
63
64
65
66
    operation op = make_op("convolution");

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return pack(f(self.op, "op"));
    }

    shape compute_shape(std::vector<shape> inputs, const std::vector<module_ref>& mods) const
    {
67
        check_shapes{inputs, *this}.packed_or_broadcasted();
Paul Fultz II's avatar
Paul Fultz II committed
68
69
70
71
        if(mods.size() != 1)
            MIGRAPHX_THROW("should have one submodule.");
        if(inputs.size() < 2)
            MIGRAPHX_THROW("should have at least two inputs.");
72
73
74
75
76
77

        module_ref mod = mods[0];
        auto type      = mod->get_output_shapes().front().type();
        std::unordered_map<instruction_ref, shape> ins_shapes;
        for(auto ins : iterator_for(*mod))
        {
78
            if(ins->name() == "@literal" or ins->name() == "@param")
79
80
81
82
83
84
            {
                ins_shapes[ins] = ins->get_shape();
                continue;
            }
            if(ins->name() == "@return")
            {
85
86
87
88
                auto s = ins_shapes[ins->inputs().at(0)].with_type(type);
                if(not s.standard())
                    MIGRAPHX_THROW("MLIR doesnt support non-standard output");
                return s;
89
90
91
92
93
94
95
96
97
98
            }
            std::vector<shape> input_shapes;
            input_shapes.resize(ins->inputs().size());
            std::transform(ins->inputs().begin(),
                           ins->inputs().end(),
                           input_shapes.begin(),
                           [&](auto in) { return ins_shapes[in]; });
            ins_shapes[ins] = ins->get_operator().compute_shape(input_shapes);
        }
        MIGRAPHX_THROW("No return found in the submodule");
Paul Fultz II's avatar
Paul Fultz II committed
99
100
    }
};
101
MIGRAPHX_REGISTER_OP(mlir_op);
Paul Fultz II's avatar
Paul Fultz II committed
102
103

namespace {
104
105
106
107
108
109
110
111
112
std::tuple<instruction_ref, std::vector<instruction_ref>>
fuse_input_ops_and_gemm_based_op(module_ref mm, instruction_ref gemm_based_op)
{
    std::vector<instruction_ref> top_inputs;
    std::vector<instruction_ref> imm_inputs;
    size_t input_cnt = 0;
    for(instruction_ref input : gemm_based_op->inputs())
    {
        std::vector<operation> op_stream;
113
114
115
        while(contains(
            {"slice", "transpose", "contiguous", "reshape", "squeeze", "flatten", "unsqueeze"},
            input->name()))
116
        {
117
118
119
120
121
122
            operation op = input->get_operator();
            if(contains({"squeeze", "flatten", "unsqueeze"}, input->name()))
            {
                op = migraphx::make_op("reshape", {{"dims", input->get_shape().lens()}});
            }
            op_stream.push_back(op);
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
            input = input->inputs().at(0);
        }
        top_inputs.push_back(input);
        instruction_ref prev_input =
            mm->add_parameter("y" + std::to_string(input_cnt++), input->get_shape());
        for(const auto& op : reverse(op_stream))
        {
            prev_input = mm->add_instruction(op, {prev_input});
        }
        imm_inputs.push_back(prev_input);
    }
    instruction_ref new_gemm_based_op =
        mm->add_instruction(gemm_based_op->get_operator(), imm_inputs);
    return {new_gemm_based_op, top_inputs};
}
138

139
enum class mlir_mode
140
{
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
    all,
    fast,
    int8,
    none
};

auto is_mlir_dot(mlir_mode mode)
{
    return match::make_basic_pred_matcher([=](instruction_ref ins) {
        if(mode == mlir_mode::none)
            return false;
        if(ins->name() != "dot" and ins->name() != "quant_dot")
            return false;
        if(mode != mlir_mode::fast)
            return true;
        auto a = ins->inputs().front()->get_shape();
        auto b = ins->inputs().back()->get_shape();
        // auto m = a.lens()[a.lens().size() - 2];
        // auto n = b.lens().back();
        auto k = a.lens().back();
        // Skipping GEMMs with a K dimension greater than 2048 is a course-grained strategy
        // to avoid poor-performing GEMM kernels from MLIR
        // To-do: Investigate a more precise strategy
        return k <= 2048;
    });
}

auto is_mlir_conv(mlir_mode mode)
{
    return match::make_basic_pred_matcher([=](instruction_ref ins) {
        if(mode == mlir_mode::none)
            return false;
        if(ins->name() != "convolution" and ins->name() != "quant_convolution")
            return false;
        value v    = ins->get_operator().to_value();
        auto group = v.at("group").to<int>();
        if(group != 1)
            return false;
        // Avoid MLIR assertion: Index < Length && "Invalid index!"
        if(ins->get_shape().lens().size() != 4)
            return false;
        if(ins->get_shape().type() == shape::int8_type)
            return true;
        if(mode == mlir_mode::int8)
            return false;
        if(mode == mlir_mode::all)
            return true;
        auto w = ins->inputs().at(1)->get_shape();
        if(w.lens().size() != 4)
            return true;
        if(w.lens()[2] != w.lens()[3])
            return true;
        return (w.lens()[3] % 3) != 0;
    });
195
196
}

197
std::unordered_map<instruction_ref, instruction_ref>
Manupa Karunaratne's avatar
Manupa Karunaratne committed
198
199
200
201
create_param_map_with_literals(module_ref mm, const module* pm, const shape& shape)
{
    std::unordered_map<instruction_ref, instruction_ref> ins_map;
    for(auto ins : iterator_for(*pm))
202
    {
Manupa Karunaratne's avatar
Manupa Karunaratne committed
203
        if(ins->name() != "@literal")
204
        {
Manupa Karunaratne's avatar
Manupa Karunaratne committed
205
            continue;
206
        }
Manupa Karunaratne's avatar
Manupa Karunaratne committed
207
208
209
210
211
        literal r               = ins->get_literal();
        instruction_ref literal = mm->add_literal(r);
        instruction_ref mbcast =
            mm->add_instruction(make_op("multibroadcast", {{"out_lens", shape.lens()}}), literal);
        ins_map[ins] = mbcast;
212
    }
Manupa Karunaratne's avatar
Manupa Karunaratne committed
213
214
    return ins_map;
}
215

Manupa Karunaratne's avatar
Manupa Karunaratne committed
216
217
218
219
220
221
222
std::vector<instruction_ref>
fold_pointwise_mod(instruction_ref pm_ins,
                   module_ref parent_mod,
                   const std::unordered_map<instruction_ref, instruction_ref>& ins_map)
{
    auto* pm   = pm_ins->module_inputs().front();
    auto names = pm->get_parameter_names();
223
224
    std::sort(names.begin(), names.end());
    std::unordered_map<instruction_ref, instruction_ref> param_map =
Manupa Karunaratne's avatar
Manupa Karunaratne committed
225
226
227
228
229
230
231
232
233
234
235
        create_param_map_with_literals(parent_mod, pm, pm_ins->get_shape());
    std::transform(names.begin(),
                   names.end(),
                   pm_ins->inputs().begin(),
                   std::inserter(param_map, param_map.end()),
                   [&](auto name, auto input) {
                       if(ins_map.count(input))
                           return std::make_pair(pm->get_parameter(name), ins_map.at(input));
                       return std::make_pair(pm->get_parameter(name),
                                             parent_mod->add_parameter(name, input->get_shape()));
                   });
236
237
238
    return parent_mod->insert_instructions(parent_mod->end(), pm, param_map);
}

239
240
241
242
243
244
245
246
247
// Whitelist supported fusion options, including imposing type constraints
// for cases where MLIR only supports an operation (usually a pointwise function)
// on particular types.
bool is_pointwise_op_supported_by_mlir(const instruction& i)
{
    using type_t                                      = shape::type_t;
    const auto& name                                  = i.name();
    const auto result_type                            = i.get_shape().type();
    const std::initializer_list<type_t> allowed_types = {type_t::float_type,
Manupa Karunaratne's avatar
Manupa Karunaratne committed
248
249
250
251
                                                         type_t::half_type,
                                                         type_t::int8_type,
                                                         type_t::int32_type,
                                                         type_t::bool_type};
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
    // Preliminary type check.
    if(not contains(allowed_types, result_type))
    {
        return false;
    }
    const std::initializer_list<std::string> any_type_ops = {"@literal", "@param", "@return"};
    const std::initializer_list<std::string> no_bool_ops  = {
        "convolution",
        "quant_convolution",
        "dot",
        "quant_dot",
        "add",
        "clip",
        "relu",
        "sub",
        "mul",
        "div",
        "pow",
        "where",
        "quantizelinear",
        "dequantizelinear",
        "abs",
        "neg",
    };
    const std::initializer_list<std::string> fp_only_ops = {
        "ceil",
        "erf",
        "exp",
        "floor",
        "log",
        "recip",
        "rsqrt",
        "sigmoid",
        "softmax",
        "tanh",
    };
    bool is_float = contains({type_t::float_type, type_t::half_type}, result_type);
    if(contains(any_type_ops, name))
        return true;
    if(result_type != type_t::bool_type and contains(no_bool_ops, name))
        return true;
    if(is_float and contains(fp_only_ops, name))
        return true;
    // Only conversions between floating types are known to be unambigiously
    // supported.
    if(is_float and name == "convert")
    {
        return std::all_of(i.inputs().begin(), i.inputs().end(), [](const auto& arg) {
            return contains({type_t::float_type, type_t::half_type}, arg->get_shape().type());
        });
    }
    return false;
}

306
307
struct find_mlir_fused_ops
{
308
309
    mlir_mode conv_mode = mlir_mode::none;
    mlir_mode dot_mode  = mlir_mode::none;
310
311
312
    auto matcher() const
    {
        auto dot_or_conv = match::skip(match::name("contiguous"))(
313
            match::any_of(is_mlir_dot(dot_mode), is_mlir_conv(conv_mode)).bind("gemm_based_op"));
314
315
316
317
        return match::name("pointwise")(match::any_of[match::inputs()](dot_or_conv.bind("x")));
    }

    void rewrite(module_pass_manager& mpm, const match::matcher_result& r) const
Paul Fultz II's avatar
Paul Fultz II committed
318
    {
319
320
321
322
323
        auto ins           = r.result;
        auto gemm_based_op = r.instructions["gemm_based_op"];
        auto x_ins         = r.instructions["x"]; // input after contiguous
        auto* pm           = ins->module_inputs().front();
        auto names         = pm->get_parameter_names();
324
325
326
        // Whitelist pointwise operators.
        if(std::any_of(pm->begin(), pm->end(), [&](const auto& i) {
               return not is_pointwise_op_supported_by_mlir(i);
Paul Fultz II's avatar
Paul Fultz II committed
327
328
           }))
            return;
329

Paul Fultz II's avatar
Paul Fultz II committed
330
331
332
        std::sort(names.begin(), names.end());
        module_ref mm = mpm.create_module("mlir_" + pm->name());
        mm->set_bypass();
333
        auto [anchor_op, top_inputs] = fuse_input_ops_and_gemm_based_op(mm, gemm_based_op);
334
        mm->add_return(fold_pointwise_mod(ins, mm, {{x_ins, anchor_op}}));
Paul Fultz II's avatar
Paul Fultz II committed
335
336
337
338
339

        std::vector<instruction_ref> inputs;
        std::copy_if(ins->inputs().begin(),
                     ins->inputs().end(),
                     std::back_inserter(inputs),
340
                     [&](auto input) { return input != gemm_based_op; });
341
        inputs.insert(inputs.end(), top_inputs.begin(), top_inputs.end());
Paul Fultz II's avatar
Paul Fultz II committed
342
        mpm.get_module().replace_instruction(
343
            ins, mlir_op{gemm_based_op->get_operator()}, inputs, {mm});
Paul Fultz II's avatar
Paul Fultz II committed
344
    }
345
346
347

    void apply(module_pass_manager& mpm, const match::matcher_result& r) const
    {
Manupa Karunaratne's avatar
Manupa Karunaratne committed
348
349
        auto ins = r.result;
        auto* pm = ins->module_inputs().front();
350
351
352
353
354
355
356
357
358
        // Whitelist pointwise operators.
        if(std::any_of(pm->begin(), pm->end(), [&](const auto& i) {
               return not is_pointwise_op_supported_by_mlir(i);
           }))
            return;
        rewrite(mpm, r);
    }
};

359
template <auto Matcher>
360
struct find_mlir_standalone_op
361
{
362
363
    mlir_mode mode = mlir_mode::none;
    auto matcher() const { return Matcher(mode); }
364

365
366
    void rewrite(module_pass_manager& mpm, instruction_ref top_ins) const
    {
Manupa Karunaratne's avatar
Manupa Karunaratne committed
367
        static size_t counter = 0;
368
        module_ref mm = mpm.create_module("mlir_" + top_ins->name() + std::to_string(counter++));
Manupa Karunaratne's avatar
Manupa Karunaratne committed
369
370
371
372
373
        mm->set_bypass();
        auto [anchor_op, top_inputs] = fuse_input_ops_and_gemm_based_op(mm, top_ins);
        mm->add_return({anchor_op});
        mpm.get_module().replace_instruction(
            top_ins, mlir_op{top_ins->get_operator()}, top_inputs, {mm});
374
375
    }

376
377
378
    void apply(module_pass_manager& mpm, const match::matcher_result& r) const
    {
        auto conv_based_op = r.result;
379
        //
380
381
382
383
384
385
386
        // enable only for fp32/fp16/i8 types
        if(std::any_of(conv_based_op->inputs().begin(), conv_based_op->inputs().end(), [&](auto i) {
               return not contains(
                   {shape::type_t::float_type, shape::type_t::half_type, shape::type_t::int8_type},
                   i->get_shape().type());
           }))
            return;
387
        rewrite(mpm, conv_based_op);
388
389
390
    }
};

391
392
using find_mlir_standalone_convolution_op = find_mlir_standalone_op<&is_mlir_conv>;
using find_mlir_standalone_dot_op         = find_mlir_standalone_op<&is_mlir_dot>;
393

394
struct find_mlir_standalone_attention_op
395
{
396
    mlir_mode mode = mlir_mode::none;
397
398
    void rewrite(module_pass_manager& mpm, const match::matcher_result& r) const
    {
Manupa Karunaratne's avatar
Manupa Karunaratne committed
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
        static size_t counter = 0;
        module_ref mm         = mpm.create_module("mlir_" + std::to_string(counter++));
        std::vector<instruction_ref> inputs;
        mm->set_bypass();

        std::unordered_map<instruction_ref, instruction_ref> ins_map;
        auto top_ins                   = r.instructions["gemm0"];
        auto [new_top_ins, top_inputs] = fuse_input_ops_and_gemm_based_op(mm, top_ins);
        inputs.insert(inputs.begin(), top_inputs.begin(), top_inputs.end());
        ins_map[top_ins] = new_top_ins;
        if(r.instructions.find("scale") != r.instructions.end())
        {
            auto scale_ins = r.instructions["scale"];
            new_top_ins    = fold_pointwise_mod(scale_ins, mm, ins_map)[0];
            std::copy_if(scale_ins->inputs().begin(),
                         scale_ins->inputs().end(),
                         std::back_inserter(inputs),
                         [&](auto input) { return input != top_ins; });
        }
        auto softmax = mm->add_instruction(r.instructions["softmax"]->get_operator(), new_top_ins);
        std::transform(r.instructions["gemm1"]->inputs().begin(),
                       r.instructions["gemm1"]->inputs().end(),
                       std::inserter(ins_map, ins_map.end()),
                       [&](auto old_ins) {
                           if(old_ins == r.instructions["softmax"])
                           {
                               return std::make_pair(old_ins, softmax);
                           }
                           inputs.push_back(old_ins);
                           return std::make_pair(old_ins,
                                                 mm->add_parameter("v", old_ins->get_shape()));
                       });
        auto gemm1_a                     = ins_map[r.instructions["gemm1"]->inputs().front()];
        auto gemm1_b                     = ins_map[r.instructions["gemm1"]->inputs().back()];
        auto new_gemm1                   = mm->add_instruction(make_op("dot"), {gemm1_a, gemm1_b});
        ins_map[r.instructions["gemm1"]] = new_gemm1;
        auto ins_to_replace              = new_gemm1;
        auto ins_to_be_replaced          = r.instructions["gemm1"];
        if(r.instructions.find("trailing_pm") != r.instructions.end())
        {
            ins_to_replace = fold_pointwise_mod(r.instructions["trailing_pm"], mm, ins_map)[0];
            std::copy_if(r.instructions["trailing_pm"]->inputs().begin(),
                         r.instructions["trailing_pm"]->inputs().end(),
                         std::back_inserter(inputs),
                         [&](auto input) { return input != r.instructions["gemm1"]; });
            ins_to_be_replaced = r.instructions["trailing_pm"];
        }
        mm->add_return({ins_to_replace});
        mpm.get_module().replace_instruction(
            ins_to_be_replaced, mlir_op{new_gemm1->get_operator()}, inputs, {mm});
449
450
    }

Manupa Karunaratne's avatar
Manupa Karunaratne committed
451
452
453
454
455
456
457
458
459
460
461
    auto matcher() const
    {
        auto match_softmax_input = match::any_of[match::inputs()](
            match::name("dot").bind("gemm0"),
            match::name("pointwise")(
                match::any_of[match::inputs()](match::name("dot").bind("gemm0")))
                .bind("scale"));
        auto is_mlir_attention =
            match::name("dot")(match::any_of[match::inputs()](
                                   match::name("softmax")(match_softmax_input).bind("softmax")))
                .bind("gemm1");
462
463
464
        return is_mlir_attention;
    }

Manupa Karunaratne's avatar
Manupa Karunaratne committed
465
466
    bool check(const match::matcher_result& r) const
    {
467
468
        // We are only enabling attention
        // in the highest enablement mode for now
Manupa Karunaratne's avatar
Manupa Karunaratne committed
469
470
        if(mode != mlir_mode::all)
        {
471
472
            return false;
        }
Manupa Karunaratne's avatar
Manupa Karunaratne committed
473
        auto gemm0 = r.instructions["gemm0"];
474
        // Check the pointwise mod only contains a single mul
Manupa Karunaratne's avatar
Manupa Karunaratne committed
475
476
477
        if(r.instructions.find("scale") != r.instructions.end())
        {
            auto scale_pm  = r.instructions["scale"];
478
            bool found_mul = false;
Manupa Karunaratne's avatar
Manupa Karunaratne committed
479
480
481
482
            for(const auto& scale_ins : *scale_pm->module_inputs().front())
            {
                if(contains({"@param", "@literal", "@return"}, scale_ins.name()))
                {
483
484
                    continue;
                }
Manupa Karunaratne's avatar
Manupa Karunaratne committed
485
                if(scale_ins.name() == "mul" && not found_mul)
Manupa Karunaratne's avatar
Manupa Karunaratne committed
486
                {
487
488
489
                    found_mul = true;
                    continue;
                }
490
                return false;
491
492
493
            }
        }
        // enable only for fp32/fp16/i8 types
Manupa Karunaratne's avatar
Manupa Karunaratne committed
494
        if(std::any_of(gemm0->inputs().begin(), gemm0->inputs().end(), [&](auto i) {
495
496
497
               return not contains(
                   {shape::type_t::float_type, shape::type_t::half_type, shape::type_t::int8_type},
                   i->get_shape().type());
Manupa Karunaratne's avatar
Manupa Karunaratne committed
498
499
           }))
        {
500
501
502
503
504
505
506
            return false;
        }
        return true;
    }

    void apply(module_pass_manager& mpm, const match::matcher_result& r) const
    {
Manupa Karunaratne's avatar
Manupa Karunaratne committed
507
        if(not check(r))
Manupa Karunaratne's avatar
Manupa Karunaratne committed
508
        {
509
510
511
512
513
514
515
516
            return;
        }
        rewrite(mpm, r);
    }
};

struct find_mlir_attention_fused_ops : public find_mlir_standalone_attention_op
{
Manupa Karunaratne's avatar
Manupa Karunaratne committed
517
518
    auto matcher() const
    {
519
        auto standalone_matcher = find_mlir_standalone_attention_op::matcher();
Manupa Karunaratne's avatar
Manupa Karunaratne committed
520
521
522
        return match::name("pointwise")(
            match::any_of[match::inputs()](standalone_matcher).bind("trailing_pm"));
        ;
523
524
    }

Manupa Karunaratne's avatar
Manupa Karunaratne committed
525
526
    bool check(const match::matcher_result& r) const
    {
Manupa Karunaratne's avatar
Manupa Karunaratne committed
527
        if(not find_mlir_standalone_attention_op::check(r))
Manupa Karunaratne's avatar
Manupa Karunaratne committed
528
        {
529
530
531
            return false;
        }
        auto trailing_pm_ins = r.instructions["trailing_pm"]; // input after contiguous
Manupa Karunaratne's avatar
Manupa Karunaratne committed
532
        auto* trailing_pm    = trailing_pm_ins->module_inputs().front();
533
        // Whitelist pointwise operators.
Manupa Karunaratne's avatar
Manupa Karunaratne committed
534
535
536
        return not(std::any_of(trailing_pm->begin(), trailing_pm->end(), [&](const auto& i) {
            return not is_pointwise_op_supported_by_mlir(i);
        }));
537
538
539
540
    }

    void apply(module_pass_manager& mpm, const match::matcher_result& r) const
    {
Manupa Karunaratne's avatar
Manupa Karunaratne committed
541
        if(not check(r))
Manupa Karunaratne's avatar
Manupa Karunaratne committed
542
        {
543
544
545
546
547
548
            return;
        }
        rewrite(mpm, r);
    }
};

549
550
551
552
553
554
555
/**
 * @brief Declares a new MIGraphX environment variable which forces to generate
 * only specific MLIR operations.
 *
 * The variable, if defined, forces MIGraphX to use only specific operations
 * with MLIR regardless of the underlying GPU architecture. The variable accepts
 * a list of operations separated by comma. The variable recognizes the following
556
 * operations: "fused", "convolution", "dot". If the variable is not defined MIGraphX
557
558
559
560
561
 * will decide by itself which operations to delegate to MLIR. The variable is
 * intended to be primarily used by rocMLIR developers.
 */
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_MLIR_USE_SPECIFIC_OPS);

562
bool is_requested(std::string_view option, bool fallback = false)
563
{
Manupa Karunaratne's avatar
Manupa Karunaratne committed
564
    auto string_value = string_value_of(MIGRAPHX_MLIR_USE_SPECIFIC_OPS{}, "");
565
566
    if(string_value.empty())
        return fallback;
567
568
569
    const auto options = split_string(string_value, ',');
    return contains(options, option);
}
Paul Fultz II's avatar
Paul Fultz II committed
570
571
} // namespace

572
#endif // MIGRAPHX_MLIR
Paul Fultz II's avatar
Paul Fultz II committed
573
574
575
576

void fuse_mlir::apply(module_pass_manager& mpm) const
{
#ifdef MIGRAPHX_MLIR
577
578
    const auto& device_name = ctx == nullptr ? "" : ctx->get_current_device().get_gfx_name();
    const bool is_navi      = starts_with(device_name, "gfx110");
579

580
581
582
583
584
585
586
    auto get_mode = [&](std::string_view option, mlir_mode m1, mlir_mode m2 = mlir_mode::fast) {
        if(is_requested(option))
            return mlir_mode::all;
        if(is_navi)
            return mlir_mode::all;
        return std::max(m1, m2);
    };
587

588
589
    mlir_mode mode =
        (enabled(MIGRAPHX_ENABLE_EXTRA_MLIR{}) or enable_extra) ? mlir_mode::fast : mlir_mode::none;
590

591
    // Attention offloads; default disabled
Manupa Karunaratne's avatar
Manupa Karunaratne committed
592
    match::find_matches(mpm, find_mlir_attention_fused_ops{get_mode("attention", mlir_mode::none)});
593
594
595
    match::find_matches(mpm,
                        find_mlir_standalone_attention_op{get_mode("attention", mlir_mode::none)});

596
597
598
599
600
601
602
603
    match::find_matches(mpm,
                        find_mlir_fused_ops{.conv_mode = get_mode("fused", mlir_mode::fast),
                                            .dot_mode  = get_mode("fused", mode)});

    match::find_matches(
        mpm,
        find_mlir_standalone_convolution_op{get_mode("convolution", mlir_mode::int8)},
        find_mlir_standalone_dot_op{get_mode("dot", mlir_mode::none)});
Paul Fultz II's avatar
Paul Fultz II committed
604
605
606
607
608
609
610
611
#else
    (void)mpm;
#endif
}

} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx