fuse_mlir.cpp 22.9 KB
Newer Older
Paul Fultz II's avatar
Paul Fultz II committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
#include <migraphx/gpu/fuse_mlir.hpp>
#include <migraphx/gpu/mlir.hpp>
#include <migraphx/matcher.hpp>
#include <migraphx/pass_manager.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/register_op.hpp>
30
#include <migraphx/env.hpp>
Paul Fultz II's avatar
Paul Fultz II committed
31
32
33
34
35
36
37
38

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

struct module;

namespace gpu {

39
40
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_ENABLE_EXTRA_MLIR);
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_DISABLE_MLIR);
41

42
43
44
bool mlir_enabled()
{
#ifdef MIGRAPHX_MLIR
45
46
    const bool mlir_disabled = enabled(MIGRAPHX_DISABLE_MLIR{});
    return not mlir_disabled;
47
48
49
50
51
#else
    return false;
#endif
}

Paul Fultz II's avatar
Paul Fultz II committed
52
#ifdef MIGRAPHX_MLIR
53
54

struct mlir_op
Paul Fultz II's avatar
Paul Fultz II committed
55
{
56
    std::string name() const { return "gpu::mlir_op"; }
Paul Fultz II's avatar
Paul Fultz II committed
57
58
59
60
61
62
63
64
65
66
    operation op = make_op("convolution");

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return pack(f(self.op, "op"));
    }

    shape compute_shape(std::vector<shape> inputs, const std::vector<module_ref>& mods) const
    {
67
        check_shapes{inputs, *this}.packed_or_broadcasted();
Paul Fultz II's avatar
Paul Fultz II committed
68
69
70
71
        if(mods.size() != 1)
            MIGRAPHX_THROW("should have one submodule.");
        if(inputs.size() < 2)
            MIGRAPHX_THROW("should have at least two inputs.");
72
73
74
75
76
77
78

        module_ref mod = mods[0];
        auto type      = mod->get_output_shapes().front().type();
        std::unordered_map<instruction_ref, shape> ins_shapes;
        size_t param_cnt               = 0;
        std::vector<std::string> names = mod->get_parameter_names();
        std::sort(names.begin(), names.end());
79
        for(const std::string& param_name : names)
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
        {
            ins_shapes[mod->get_parameter(param_name)] = inputs[param_cnt++];
        }
        for(auto ins : iterator_for(*mod))
        {
            if(ins->name() == "@param")
            {
                continue;
            }
            if(ins->name() == "@literal")
            {
                ins_shapes[ins] = ins->get_shape();
                continue;
            }
            if(ins->name() == "@return")
            {
96
97
98
99
                auto s = ins_shapes[ins->inputs().at(0)].with_type(type);
                if(not s.standard())
                    MIGRAPHX_THROW("MLIR doesnt support non-standard output");
                return s;
100
101
102
103
104
105
106
107
108
109
            }
            std::vector<shape> input_shapes;
            input_shapes.resize(ins->inputs().size());
            std::transform(ins->inputs().begin(),
                           ins->inputs().end(),
                           input_shapes.begin(),
                           [&](auto in) { return ins_shapes[in]; });
            ins_shapes[ins] = ins->get_operator().compute_shape(input_shapes);
        }
        MIGRAPHX_THROW("No return found in the submodule");
Paul Fultz II's avatar
Paul Fultz II committed
110
111
    }
};
112
MIGRAPHX_REGISTER_OP(mlir_op);
Paul Fultz II's avatar
Paul Fultz II committed
113
114

namespace {
115
116
117
118
119
120
121
122
123
std::tuple<instruction_ref, std::vector<instruction_ref>>
fuse_input_ops_and_gemm_based_op(module_ref mm, instruction_ref gemm_based_op)
{
    std::vector<instruction_ref> top_inputs;
    std::vector<instruction_ref> imm_inputs;
    size_t input_cnt = 0;
    for(instruction_ref input : gemm_based_op->inputs())
    {
        std::vector<operation> op_stream;
124
125
126
        while(contains(
            {"slice", "transpose", "contiguous", "reshape", "squeeze", "flatten", "unsqueeze"},
            input->name()))
127
        {
128
129
130
131
132
133
            operation op = input->get_operator();
            if(contains({"squeeze", "flatten", "unsqueeze"}, input->name()))
            {
                op = migraphx::make_op("reshape", {{"dims", input->get_shape().lens()}});
            }
            op_stream.push_back(op);
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
            input = input->inputs().at(0);
        }
        top_inputs.push_back(input);
        instruction_ref prev_input =
            mm->add_parameter("y" + std::to_string(input_cnt++), input->get_shape());
        for(const auto& op : reverse(op_stream))
        {
            prev_input = mm->add_instruction(op, {prev_input});
        }
        imm_inputs.push_back(prev_input);
    }
    instruction_ref new_gemm_based_op =
        mm->add_instruction(gemm_based_op->get_operator(), imm_inputs);
    return {new_gemm_based_op, top_inputs};
}
149

150
enum class mlir_mode
151
{
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
    all,
    fast,
    int8,
    none
};

auto is_mlir_dot(mlir_mode mode)
{
    return match::make_basic_pred_matcher([=](instruction_ref ins) {
        if(mode == mlir_mode::none)
            return false;
        if(ins->name() != "dot" and ins->name() != "quant_dot")
            return false;
        if(mode != mlir_mode::fast)
            return true;
        auto a = ins->inputs().front()->get_shape();
        auto b = ins->inputs().back()->get_shape();
        // auto m = a.lens()[a.lens().size() - 2];
        // auto n = b.lens().back();
        auto k = a.lens().back();
        // Skipping GEMMs with a K dimension greater than 2048 is a course-grained strategy
        // to avoid poor-performing GEMM kernels from MLIR
        // To-do: Investigate a more precise strategy
        return k <= 2048;
    });
}

auto is_mlir_conv(mlir_mode mode)
{
    return match::make_basic_pred_matcher([=](instruction_ref ins) {
        if(mode == mlir_mode::none)
            return false;
        if(ins->name() != "convolution" and ins->name() != "quant_convolution")
            return false;
        value v    = ins->get_operator().to_value();
        auto group = v.at("group").to<int>();
        if(group != 1)
            return false;
        // Avoid MLIR assertion: Index < Length && "Invalid index!"
        if(ins->get_shape().lens().size() != 4)
            return false;
        if(ins->get_shape().type() == shape::int8_type)
            return true;
        if(mode == mlir_mode::int8)
            return false;
        if(mode == mlir_mode::all)
            return true;
        auto w = ins->inputs().at(1)->get_shape();
        if(w.lens().size() != 4)
            return true;
        if(w.lens()[2] != w.lens()[3])
            return true;
        return (w.lens()[3] % 3) != 0;
    });
206
207
}

208
std::unordered_map<instruction_ref, instruction_ref>
Manupa Karunaratne's avatar
Manupa Karunaratne committed
209
210
211
212
create_param_map_with_literals(module_ref mm, const module* pm, const shape& shape)
{
    std::unordered_map<instruction_ref, instruction_ref> ins_map;
    for(auto ins : iterator_for(*pm))
213
    {
Manupa Karunaratne's avatar
Manupa Karunaratne committed
214
        if(ins->name() != "@literal")
215
        {
Manupa Karunaratne's avatar
Manupa Karunaratne committed
216
            continue;
217
        }
Manupa Karunaratne's avatar
Manupa Karunaratne committed
218
219
220
221
222
        literal r               = ins->get_literal();
        instruction_ref literal = mm->add_literal(r);
        instruction_ref mbcast =
            mm->add_instruction(make_op("multibroadcast", {{"out_lens", shape.lens()}}), literal);
        ins_map[ins] = mbcast;
223
    }
Manupa Karunaratne's avatar
Manupa Karunaratne committed
224
225
    return ins_map;
}
226

Manupa Karunaratne's avatar
Manupa Karunaratne committed
227
228
229
230
231
232
233
std::vector<instruction_ref>
fold_pointwise_mod(instruction_ref pm_ins,
                   module_ref parent_mod,
                   const std::unordered_map<instruction_ref, instruction_ref>& ins_map)
{
    auto* pm   = pm_ins->module_inputs().front();
    auto names = pm->get_parameter_names();
234
235
    std::sort(names.begin(), names.end());
    std::unordered_map<instruction_ref, instruction_ref> param_map =
Manupa Karunaratne's avatar
Manupa Karunaratne committed
236
237
238
239
240
241
242
243
244
245
246
        create_param_map_with_literals(parent_mod, pm, pm_ins->get_shape());
    std::transform(names.begin(),
                   names.end(),
                   pm_ins->inputs().begin(),
                   std::inserter(param_map, param_map.end()),
                   [&](auto name, auto input) {
                       if(ins_map.count(input))
                           return std::make_pair(pm->get_parameter(name), ins_map.at(input));
                       return std::make_pair(pm->get_parameter(name),
                                             parent_mod->add_parameter(name, input->get_shape()));
                   });
247
248
249
    return parent_mod->insert_instructions(parent_mod->end(), pm, param_map);
}

250
251
252
253
254
255
256
257
258
// Whitelist supported fusion options, including imposing type constraints
// for cases where MLIR only supports an operation (usually a pointwise function)
// on particular types.
bool is_pointwise_op_supported_by_mlir(const instruction& i)
{
    using type_t                                      = shape::type_t;
    const auto& name                                  = i.name();
    const auto result_type                            = i.get_shape().type();
    const std::initializer_list<type_t> allowed_types = {type_t::float_type,
Manupa Karunaratne's avatar
Manupa Karunaratne committed
259
260
261
262
                                                         type_t::half_type,
                                                         type_t::int8_type,
                                                         type_t::int32_type,
                                                         type_t::bool_type};
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
    // Preliminary type check.
    if(not contains(allowed_types, result_type))
    {
        return false;
    }
    const std::initializer_list<std::string> any_type_ops = {"@literal", "@param", "@return"};
    const std::initializer_list<std::string> no_bool_ops  = {
        "convolution",
        "quant_convolution",
        "dot",
        "quant_dot",
        "add",
        "clip",
        "relu",
        "sub",
        "mul",
        "div",
        "pow",
        "where",
        "quantizelinear",
        "dequantizelinear",
        "abs",
        "neg",
    };
    const std::initializer_list<std::string> fp_only_ops = {
        "ceil",
        "erf",
        "exp",
        "floor",
        "log",
        "recip",
        "rsqrt",
        "sigmoid",
        "softmax",
        "tanh",
    };
    bool is_float = contains({type_t::float_type, type_t::half_type}, result_type);
    if(contains(any_type_ops, name))
        return true;
    if(result_type != type_t::bool_type and contains(no_bool_ops, name))
        return true;
    if(is_float and contains(fp_only_ops, name))
        return true;
    // Only conversions between floating types are known to be unambigiously
    // supported.
    if(is_float and name == "convert")
    {
        return std::all_of(i.inputs().begin(), i.inputs().end(), [](const auto& arg) {
            return contains({type_t::float_type, type_t::half_type}, arg->get_shape().type());
        });
    }
    return false;
}

317
318
struct find_mlir_fused_ops
{
319
320
    mlir_mode conv_mode = mlir_mode::none;
    mlir_mode dot_mode  = mlir_mode::none;
321
322
323
    auto matcher() const
    {
        auto dot_or_conv = match::skip(match::name("contiguous"))(
324
            match::any_of(is_mlir_dot(dot_mode), is_mlir_conv(conv_mode)).bind("gemm_based_op"));
325
326
327
328
        return match::name("pointwise")(match::any_of[match::inputs()](dot_or_conv.bind("x")));
    }

    void rewrite(module_pass_manager& mpm, const match::matcher_result& r) const
Paul Fultz II's avatar
Paul Fultz II committed
329
    {
330
331
332
333
334
        auto ins           = r.result;
        auto gemm_based_op = r.instructions["gemm_based_op"];
        auto x_ins         = r.instructions["x"]; // input after contiguous
        auto* pm           = ins->module_inputs().front();
        auto names         = pm->get_parameter_names();
335
336
337
        // Whitelist pointwise operators.
        if(std::any_of(pm->begin(), pm->end(), [&](const auto& i) {
               return not is_pointwise_op_supported_by_mlir(i);
Paul Fultz II's avatar
Paul Fultz II committed
338
339
           }))
            return;
340

Paul Fultz II's avatar
Paul Fultz II committed
341
342
343
        std::sort(names.begin(), names.end());
        module_ref mm = mpm.create_module("mlir_" + pm->name());
        mm->set_bypass();
344
        auto [anchor_op, top_inputs] = fuse_input_ops_and_gemm_based_op(mm, gemm_based_op);
345
        mm->add_return(fold_pointwise_mod(ins, mm, {{x_ins, anchor_op}}));
Paul Fultz II's avatar
Paul Fultz II committed
346
347
348
349
350

        std::vector<instruction_ref> inputs;
        std::copy_if(ins->inputs().begin(),
                     ins->inputs().end(),
                     std::back_inserter(inputs),
351
                     [&](auto input) { return input != gemm_based_op; });
352
        inputs.insert(inputs.end(), top_inputs.begin(), top_inputs.end());
Paul Fultz II's avatar
Paul Fultz II committed
353
        mpm.get_module().replace_instruction(
354
            ins, mlir_op{gemm_based_op->get_operator()}, inputs, {mm});
Paul Fultz II's avatar
Paul Fultz II committed
355
    }
356
357
358

    void apply(module_pass_manager& mpm, const match::matcher_result& r) const
    {
Manupa Karunaratne's avatar
Manupa Karunaratne committed
359
360
        auto ins = r.result;
        auto* pm = ins->module_inputs().front();
361
362
363
364
365
366
367
368
369
        // Whitelist pointwise operators.
        if(std::any_of(pm->begin(), pm->end(), [&](const auto& i) {
               return not is_pointwise_op_supported_by_mlir(i);
           }))
            return;
        rewrite(mpm, r);
    }
};

370
template <auto Matcher>
371
struct find_mlir_standalone_op
372
{
373
374
    mlir_mode mode = mlir_mode::none;
    auto matcher() const { return Matcher(mode); }
375

376
377
    void rewrite(module_pass_manager& mpm, instruction_ref top_ins) const
    {
Manupa Karunaratne's avatar
Manupa Karunaratne committed
378
379
380
381
382
383
384
        static size_t counter = 0;
        module_ref mm         = mpm.create_module("mlir_" + std::to_string(counter++));
        mm->set_bypass();
        auto [anchor_op, top_inputs] = fuse_input_ops_and_gemm_based_op(mm, top_ins);
        mm->add_return({anchor_op});
        mpm.get_module().replace_instruction(
            top_ins, mlir_op{top_ins->get_operator()}, top_inputs, {mm});
385
386
    }

387
388
389
    void apply(module_pass_manager& mpm, const match::matcher_result& r) const
    {
        auto conv_based_op = r.result;
390
        //
391
392
393
394
395
396
397
        // enable only for fp32/fp16/i8 types
        if(std::any_of(conv_based_op->inputs().begin(), conv_based_op->inputs().end(), [&](auto i) {
               return not contains(
                   {shape::type_t::float_type, shape::type_t::half_type, shape::type_t::int8_type},
                   i->get_shape().type());
           }))
            return;
398
        rewrite(mpm, conv_based_op);
399
400
401
    }
};

402
403
using find_mlir_standalone_convolution_op = find_mlir_standalone_op<&is_mlir_conv>;
using find_mlir_standalone_dot_op         = find_mlir_standalone_op<&is_mlir_dot>;
404

405
struct find_mlir_standalone_attention_op
406
{
407
    mlir_mode mode = mlir_mode::none;
408
409
    void rewrite(module_pass_manager& mpm, const match::matcher_result& r) const
    {
Manupa Karunaratne's avatar
Manupa Karunaratne committed
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
        static size_t counter = 0;
        module_ref mm         = mpm.create_module("mlir_" + std::to_string(counter++));
        std::vector<instruction_ref> inputs;
        mm->set_bypass();

        std::unordered_map<instruction_ref, instruction_ref> ins_map;
        auto top_ins                   = r.instructions["gemm0"];
        auto [new_top_ins, top_inputs] = fuse_input_ops_and_gemm_based_op(mm, top_ins);
        inputs.insert(inputs.begin(), top_inputs.begin(), top_inputs.end());
        ins_map[top_ins] = new_top_ins;
        if(r.instructions.find("scale") != r.instructions.end())
        {
            auto scale_ins = r.instructions["scale"];
            new_top_ins    = fold_pointwise_mod(scale_ins, mm, ins_map)[0];
            std::copy_if(scale_ins->inputs().begin(),
                         scale_ins->inputs().end(),
                         std::back_inserter(inputs),
                         [&](auto input) { return input != top_ins; });
        }
        auto softmax = mm->add_instruction(r.instructions["softmax"]->get_operator(), new_top_ins);
        std::transform(r.instructions["gemm1"]->inputs().begin(),
                       r.instructions["gemm1"]->inputs().end(),
                       std::inserter(ins_map, ins_map.end()),
                       [&](auto old_ins) {
                           if(old_ins == r.instructions["softmax"])
                           {
                               return std::make_pair(old_ins, softmax);
                           }
                           inputs.push_back(old_ins);
                           return std::make_pair(old_ins,
                                                 mm->add_parameter("v", old_ins->get_shape()));
                       });
        auto gemm1_a                     = ins_map[r.instructions["gemm1"]->inputs().front()];
        auto gemm1_b                     = ins_map[r.instructions["gemm1"]->inputs().back()];
        auto new_gemm1                   = mm->add_instruction(make_op("dot"), {gemm1_a, gemm1_b});
        ins_map[r.instructions["gemm1"]] = new_gemm1;
        auto ins_to_replace              = new_gemm1;
        auto ins_to_be_replaced          = r.instructions["gemm1"];
        if(r.instructions.find("trailing_pm") != r.instructions.end())
        {
            ins_to_replace = fold_pointwise_mod(r.instructions["trailing_pm"], mm, ins_map)[0];
            std::copy_if(r.instructions["trailing_pm"]->inputs().begin(),
                         r.instructions["trailing_pm"]->inputs().end(),
                         std::back_inserter(inputs),
                         [&](auto input) { return input != r.instructions["gemm1"]; });
            ins_to_be_replaced = r.instructions["trailing_pm"];
        }
        mm->add_return({ins_to_replace});
        mpm.get_module().replace_instruction(
            ins_to_be_replaced, mlir_op{new_gemm1->get_operator()}, inputs, {mm});
460
461
    }

Manupa Karunaratne's avatar
Manupa Karunaratne committed
462
463
464
465
466
467
468
469
470
471
472
    auto matcher() const
    {
        auto match_softmax_input = match::any_of[match::inputs()](
            match::name("dot").bind("gemm0"),
            match::name("pointwise")(
                match::any_of[match::inputs()](match::name("dot").bind("gemm0")))
                .bind("scale"));
        auto is_mlir_attention =
            match::name("dot")(match::any_of[match::inputs()](
                                   match::name("softmax")(match_softmax_input).bind("softmax")))
                .bind("gemm1");
473
474
475
        return is_mlir_attention;
    }

Manupa Karunaratne's avatar
Manupa Karunaratne committed
476
477
    bool check(const match::matcher_result& r) const
    {
478
479
        // We are only enabling attention
        // in the highest enablement mode for now
Manupa Karunaratne's avatar
Manupa Karunaratne committed
480
481
        if(mode != mlir_mode::all)
        {
482
483
            return false;
        }
Manupa Karunaratne's avatar
Manupa Karunaratne committed
484
        auto gemm0 = r.instructions["gemm0"];
485
        // Check the pointwise mod only contains a single mul
Manupa Karunaratne's avatar
Manupa Karunaratne committed
486
487
488
        if(r.instructions.find("scale") != r.instructions.end())
        {
            auto scale_pm  = r.instructions["scale"];
489
            bool found_mul = false;
Manupa Karunaratne's avatar
Manupa Karunaratne committed
490
491
492
493
            for(const auto& scale_ins : *scale_pm->module_inputs().front())
            {
                if(contains({"@param", "@literal", "@return"}, scale_ins.name()))
                {
494
495
                    continue;
                }
Manupa Karunaratne's avatar
Manupa Karunaratne committed
496
497
                if(scale_ins.name() == "mul" && !found_mul)
                {
498
499
500
                    found_mul = true;
                    continue;
                }
501
                return false;
502
503
504
            }
        }
        // enable only for fp32/fp16/i8 types
Manupa Karunaratne's avatar
Manupa Karunaratne committed
505
        if(std::any_of(gemm0->inputs().begin(), gemm0->inputs().end(), [&](auto i) {
506
507
508
               return not contains(
                   {shape::type_t::float_type, shape::type_t::half_type, shape::type_t::int8_type},
                   i->get_shape().type());
Manupa Karunaratne's avatar
Manupa Karunaratne committed
509
510
           }))
        {
511
512
513
514
515
516
517
            return false;
        }
        return true;
    }

    void apply(module_pass_manager& mpm, const match::matcher_result& r) const
    {
Manupa Karunaratne's avatar
Manupa Karunaratne committed
518
519
        if(!check(r))
        {
520
521
522
523
524
525
526
527
            return;
        }
        rewrite(mpm, r);
    }
};

struct find_mlir_attention_fused_ops : public find_mlir_standalone_attention_op
{
Manupa Karunaratne's avatar
Manupa Karunaratne committed
528
529
    auto matcher() const
    {
530
        auto standalone_matcher = find_mlir_standalone_attention_op::matcher();
Manupa Karunaratne's avatar
Manupa Karunaratne committed
531
532
533
        return match::name("pointwise")(
            match::any_of[match::inputs()](standalone_matcher).bind("trailing_pm"));
        ;
534
535
    }

Manupa Karunaratne's avatar
Manupa Karunaratne committed
536
537
538
539
    bool check(const match::matcher_result& r) const
    {
        if(!find_mlir_standalone_attention_op::check(r))
        {
540
541
542
            return false;
        }
        auto trailing_pm_ins = r.instructions["trailing_pm"]; // input after contiguous
Manupa Karunaratne's avatar
Manupa Karunaratne committed
543
        auto* trailing_pm    = trailing_pm_ins->module_inputs().front();
544
545
546
547
548
549
550
551
552
553
        // Whitelist pointwise operators.
        if(std::any_of(trailing_pm->begin(), trailing_pm->end(), [&](const auto& i) {
               return not is_pointwise_op_supported_by_mlir(i);
           }))
            return false;
        return true;
    }

    void apply(module_pass_manager& mpm, const match::matcher_result& r) const
    {
Manupa Karunaratne's avatar
Manupa Karunaratne committed
554
555
        if(!check(r))
        {
556
557
558
559
560
561
            return;
        }
        rewrite(mpm, r);
    }
};

562
563
564
565
566
567
568
/**
 * @brief Declares a new MIGraphX environment variable which forces to generate
 * only specific MLIR operations.
 *
 * The variable, if defined, forces MIGraphX to use only specific operations
 * with MLIR regardless of the underlying GPU architecture. The variable accepts
 * a list of operations separated by comma. The variable recognizes the following
569
 * operations: "fused", "convolution", "dot". If the variable is not defined MIGraphX
570
571
572
573
574
 * will decide by itself which operations to delegate to MLIR. The variable is
 * intended to be primarily used by rocMLIR developers.
 */
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_MLIR_USE_SPECIFIC_OPS);

575
bool is_requested(std::string_view option, bool fallback = false)
576
{
Manupa Karunaratne's avatar
Manupa Karunaratne committed
577
    auto string_value = string_value_of(MIGRAPHX_MLIR_USE_SPECIFIC_OPS{}, "");
578
579
    if(string_value.empty())
        return fallback;
580
581
582
    const auto options = split_string(string_value, ',');
    return contains(options, option);
}
Paul Fultz II's avatar
Paul Fultz II committed
583
584
} // namespace

585
#endif // MIGRAPHX_MLIR
Paul Fultz II's avatar
Paul Fultz II committed
586
587
588
589

void fuse_mlir::apply(module_pass_manager& mpm) const
{
#ifdef MIGRAPHX_MLIR
590
591
    const auto& device_name = ctx == nullptr ? "" : ctx->get_current_device().get_gfx_name();
    const bool is_navi      = starts_with(device_name, "gfx110");
592

593
594
595
596
597
598
599
    auto get_mode = [&](std::string_view option, mlir_mode m1, mlir_mode m2 = mlir_mode::fast) {
        if(is_requested(option))
            return mlir_mode::all;
        if(is_navi)
            return mlir_mode::all;
        return std::max(m1, m2);
    };
600

601
602
    mlir_mode mode =
        (enabled(MIGRAPHX_ENABLE_EXTRA_MLIR{}) or enable_extra) ? mlir_mode::fast : mlir_mode::none;
603

604
    // Attention offloads; default disabled
Manupa Karunaratne's avatar
Manupa Karunaratne committed
605
    match::find_matches(mpm, find_mlir_attention_fused_ops{get_mode("attention", mlir_mode::none)});
606
607
608
    match::find_matches(mpm,
                        find_mlir_standalone_attention_op{get_mode("attention", mlir_mode::none)});

609
610
611
612
613
614
615
616
    match::find_matches(mpm,
                        find_mlir_fused_ops{.conv_mode = get_mode("fused", mlir_mode::fast),
                                            .dot_mode  = get_mode("fused", mode)});

    match::find_matches(
        mpm,
        find_mlir_standalone_convolution_op{get_mode("convolution", mlir_mode::int8)},
        find_mlir_standalone_dot_op{get_mode("dot", mlir_mode::none)});
Paul Fultz II's avatar
Paul Fultz II committed
617
618
619
620
621
622
623
624
#else
    (void)mpm;
#endif
}

} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx