fuse_mlir.cpp 22.1 KB
Newer Older
Paul Fultz II's avatar
Paul Fultz II committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
#include <migraphx/gpu/fuse_mlir.hpp>
#include <migraphx/gpu/mlir.hpp>
#include <migraphx/matcher.hpp>
#include <migraphx/pass_manager.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/register_op.hpp>
30
#include <migraphx/env.hpp>
Paul Fultz II's avatar
Paul Fultz II committed
31
32
33
34
35
36
37
38

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

struct module;

namespace gpu {

39
40
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_ENABLE_EXTRA_MLIR);
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_DISABLE_MLIR);
41

42
43
44
bool mlir_enabled()
{
#ifdef MIGRAPHX_MLIR
45
46
    const bool mlir_disabled = enabled(MIGRAPHX_DISABLE_MLIR{});
    return not mlir_disabled;
47
48
49
50
51
#else
    return false;
#endif
}

Paul Fultz II's avatar
Paul Fultz II committed
52
#ifdef MIGRAPHX_MLIR
53
54

struct mlir_op
Paul Fultz II's avatar
Paul Fultz II committed
55
{
56
    std::string name() const { return "gpu::mlir_op"; }
Paul Fultz II's avatar
Paul Fultz II committed
57
58
59
60
61
62
63
64
65
66
    operation op = make_op("convolution");

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return pack(f(self.op, "op"));
    }

    shape compute_shape(std::vector<shape> inputs, const std::vector<module_ref>& mods) const
    {
67
        check_shapes{inputs, *this}.packed_or_broadcasted();
Paul Fultz II's avatar
Paul Fultz II committed
68
69
70
71
        if(mods.size() != 1)
            MIGRAPHX_THROW("should have one submodule.");
        if(inputs.size() < 2)
            MIGRAPHX_THROW("should have at least two inputs.");
72
73
74
75
76
77
78

        module_ref mod = mods[0];
        auto type      = mod->get_output_shapes().front().type();
        std::unordered_map<instruction_ref, shape> ins_shapes;
        size_t param_cnt               = 0;
        std::vector<std::string> names = mod->get_parameter_names();
        std::sort(names.begin(), names.end());
79
        for(const std::string& param_name : names)
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
        {
            ins_shapes[mod->get_parameter(param_name)] = inputs[param_cnt++];
        }
        for(auto ins : iterator_for(*mod))
        {
            if(ins->name() == "@param")
            {
                continue;
            }
            if(ins->name() == "@literal")
            {
                ins_shapes[ins] = ins->get_shape();
                continue;
            }
            if(ins->name() == "@return")
            {
96
97
98
99
                auto s = ins_shapes[ins->inputs().at(0)].with_type(type);
                if(not s.standard())
                    MIGRAPHX_THROW("MLIR doesnt support non-standard output");
                return s;
100
101
102
103
104
105
106
107
108
109
            }
            std::vector<shape> input_shapes;
            input_shapes.resize(ins->inputs().size());
            std::transform(ins->inputs().begin(),
                           ins->inputs().end(),
                           input_shapes.begin(),
                           [&](auto in) { return ins_shapes[in]; });
            ins_shapes[ins] = ins->get_operator().compute_shape(input_shapes);
        }
        MIGRAPHX_THROW("No return found in the submodule");
Paul Fultz II's avatar
Paul Fultz II committed
110
111
    }
};
112
MIGRAPHX_REGISTER_OP(mlir_op);
Paul Fultz II's avatar
Paul Fultz II committed
113
114

namespace {
115
116
117
118
119
120
121
122
123
std::tuple<instruction_ref, std::vector<instruction_ref>>
fuse_input_ops_and_gemm_based_op(module_ref mm, instruction_ref gemm_based_op)
{
    std::vector<instruction_ref> top_inputs;
    std::vector<instruction_ref> imm_inputs;
    size_t input_cnt = 0;
    for(instruction_ref input : gemm_based_op->inputs())
    {
        std::vector<operation> op_stream;
124
125
126
        while(contains(
            {"slice", "transpose", "contiguous", "reshape", "squeeze", "flatten", "unsqueeze"},
            input->name()))
127
        {
128
129
130
131
132
133
            operation op = input->get_operator();
            if(contains({"squeeze", "flatten", "unsqueeze"}, input->name()))
            {
                op = migraphx::make_op("reshape", {{"dims", input->get_shape().lens()}});
            }
            op_stream.push_back(op);
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
            input = input->inputs().at(0);
        }
        top_inputs.push_back(input);
        instruction_ref prev_input =
            mm->add_parameter("y" + std::to_string(input_cnt++), input->get_shape());
        for(const auto& op : reverse(op_stream))
        {
            prev_input = mm->add_instruction(op, {prev_input});
        }
        imm_inputs.push_back(prev_input);
    }
    instruction_ref new_gemm_based_op =
        mm->add_instruction(gemm_based_op->get_operator(), imm_inputs);
    return {new_gemm_based_op, top_inputs};
}
149

150
enum class mlir_mode
151
{
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
    all,
    fast,
    int8,
    none
};

auto is_mlir_dot(mlir_mode mode)
{
    return match::make_basic_pred_matcher([=](instruction_ref ins) {
        if(mode == mlir_mode::none)
            return false;
        if(ins->name() != "dot" and ins->name() != "quant_dot")
            return false;
        if(mode != mlir_mode::fast)
            return true;
        auto a = ins->inputs().front()->get_shape();
        auto b = ins->inputs().back()->get_shape();
        // auto m = a.lens()[a.lens().size() - 2];
        // auto n = b.lens().back();
        auto k = a.lens().back();
        // Skipping GEMMs with a K dimension greater than 2048 is a course-grained strategy
        // to avoid poor-performing GEMM kernels from MLIR
        // To-do: Investigate a more precise strategy
        return k <= 2048;
    });
}

auto is_mlir_conv(mlir_mode mode)
{
    return match::make_basic_pred_matcher([=](instruction_ref ins) {
        if(mode == mlir_mode::none)
            return false;
        if(ins->name() != "convolution" and ins->name() != "quant_convolution")
            return false;
        value v    = ins->get_operator().to_value();
        auto group = v.at("group").to<int>();
        if(group != 1)
            return false;
        // Avoid MLIR assertion: Index < Length && "Invalid index!"
        if(ins->get_shape().lens().size() != 4)
            return false;
        if(ins->get_shape().type() == shape::int8_type)
            return true;
        if(mode == mlir_mode::int8)
            return false;
        if(mode == mlir_mode::all)
            return true;
        auto w = ins->inputs().at(1)->get_shape();
        if(w.lens().size() != 4)
            return true;
        if(w.lens()[2] != w.lens()[3])
            return true;
        return (w.lens()[3] % 3) != 0;
    });
206
207
}

208
209
std::unordered_map<instruction_ref, instruction_ref>
    create_param_map_with_literals(module_ref mm, const module* pm, const shape& shape)
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
    {
        std::unordered_map<instruction_ref, instruction_ref> ins_map;
        for(auto ins : iterator_for(*pm))
        {
            if(ins->name() != "@literal")
            {
                continue;
            }
            literal r               = ins->get_literal();
            instruction_ref literal = mm->add_literal(r);
            instruction_ref mbcast  = mm->add_instruction(
                make_op("multibroadcast", {{"out_lens", shape.lens()}}), literal);
            ins_map[ins] = mbcast;
        }
        return ins_map;
    }

227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
std::vector<instruction_ref> fold_pointwise_mod(instruction_ref pm_ins, module_ref parent_mod, const std::unordered_map<instruction_ref, instruction_ref>& ins_map){
    auto* pm           = pm_ins->module_inputs().front();
    auto names         = pm->get_parameter_names();
    std::sort(names.begin(), names.end());
    std::unordered_map<instruction_ref, instruction_ref> param_map =
            create_param_map_with_literals(parent_mod, pm, pm_ins->get_shape());
    std::transform( names.begin(),
                    names.end(),
                    pm_ins->inputs().begin(),
                    std::inserter(param_map, param_map.end()),
                    [&](auto name, auto input) {
                        if(ins_map.count(input))
                            return std::make_pair(pm->get_parameter(name), ins_map.at(input));
                        return std::make_pair(pm->get_parameter(name),
                                                parent_mod->add_parameter(name, input->get_shape()));
                    });
    return parent_mod->insert_instructions(parent_mod->end(), pm, param_map);
}

246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
// Whitelist supported fusion options, including imposing type constraints
// for cases where MLIR only supports an operation (usually a pointwise function)
// on particular types.
bool is_pointwise_op_supported_by_mlir(const instruction& i)
{
    using type_t                                      = shape::type_t;
    const auto& name                                  = i.name();
    const auto result_type                            = i.get_shape().type();
    const std::initializer_list<type_t> allowed_types = {type_t::float_type,
                                                            type_t::half_type,
                                                            type_t::int8_type,
                                                            type_t::int32_type,
                                                            type_t::bool_type};
    // Preliminary type check.
    if(not contains(allowed_types, result_type))
    {
        return false;
    }
    const std::initializer_list<std::string> any_type_ops = {"@literal", "@param", "@return"};
    const std::initializer_list<std::string> no_bool_ops  = {
        "convolution",
        "quant_convolution",
        "dot",
        "quant_dot",
        "add",
        "clip",
        "relu",
        "sub",
        "mul",
        "div",
        "pow",
        "where",
        "quantizelinear",
        "dequantizelinear",
        "abs",
        "neg",
    };
    const std::initializer_list<std::string> fp_only_ops = {
        "ceil",
        "erf",
        "exp",
        "floor",
        "log",
        "recip",
        "rsqrt",
        "sigmoid",
        "softmax",
        "tanh",
    };
    bool is_float = contains({type_t::float_type, type_t::half_type}, result_type);
    if(contains(any_type_ops, name))
        return true;
    if(result_type != type_t::bool_type and contains(no_bool_ops, name))
        return true;
    if(is_float and contains(fp_only_ops, name))
        return true;
    // Only conversions between floating types are known to be unambigiously
    // supported.
    if(is_float and name == "convert")
    {
        return std::all_of(i.inputs().begin(), i.inputs().end(), [](const auto& arg) {
            return contains({type_t::float_type, type_t::half_type}, arg->get_shape().type());
        });
    }
    return false;
}

313
314
315
316


struct find_mlir_fused_ops
{
317
318
    mlir_mode conv_mode = mlir_mode::none;
    mlir_mode dot_mode  = mlir_mode::none;
319
320
321
    auto matcher() const
    {
        auto dot_or_conv = match::skip(match::name("contiguous"))(
322
            match::any_of(is_mlir_dot(dot_mode), is_mlir_conv(conv_mode)).bind("gemm_based_op"));
323
324
325
326
        return match::name("pointwise")(match::any_of[match::inputs()](dot_or_conv.bind("x")));
    }

    void rewrite(module_pass_manager& mpm, const match::matcher_result& r) const
Paul Fultz II's avatar
Paul Fultz II committed
327
    {
328
329
330
331
332
        auto ins           = r.result;
        auto gemm_based_op = r.instructions["gemm_based_op"];
        auto x_ins         = r.instructions["x"]; // input after contiguous
        auto* pm           = ins->module_inputs().front();
        auto names         = pm->get_parameter_names();
333
334
335
        // Whitelist pointwise operators.
        if(std::any_of(pm->begin(), pm->end(), [&](const auto& i) {
               return not is_pointwise_op_supported_by_mlir(i);
Paul Fultz II's avatar
Paul Fultz II committed
336
337
           }))
            return;
338

Paul Fultz II's avatar
Paul Fultz II committed
339
340
341
        std::sort(names.begin(), names.end());
        module_ref mm = mpm.create_module("mlir_" + pm->name());
        mm->set_bypass();
342
        auto [anchor_op, top_inputs] = fuse_input_ops_and_gemm_based_op(mm, gemm_based_op);
343
        mm->add_return(fold_pointwise_mod(ins, mm, {{x_ins, anchor_op}}));
Paul Fultz II's avatar
Paul Fultz II committed
344
345
346
347
348

        std::vector<instruction_ref> inputs;
        std::copy_if(ins->inputs().begin(),
                     ins->inputs().end(),
                     std::back_inserter(inputs),
349
                     [&](auto input) { return input != gemm_based_op; });
350
        inputs.insert(inputs.end(), top_inputs.begin(), top_inputs.end());
Paul Fultz II's avatar
Paul Fultz II committed
351
        mpm.get_module().replace_instruction(
352
            ins, mlir_op{gemm_based_op->get_operator()}, inputs, {mm});
Paul Fultz II's avatar
Paul Fultz II committed
353
    }
354
355
356
357
358
359
360
361
362
363
364
365
366
367

    void apply(module_pass_manager& mpm, const match::matcher_result& r) const
    {
        auto ins           = r.result;
        auto* pm           = ins->module_inputs().front();
        // Whitelist pointwise operators.
        if(std::any_of(pm->begin(), pm->end(), [&](const auto& i) {
               return not is_pointwise_op_supported_by_mlir(i);
           }))
            return;
        rewrite(mpm, r);
    }
};

368
template <auto Matcher>
369
struct find_mlir_standalone_op
370
{
371
372
    mlir_mode mode = mlir_mode::none;
    auto matcher() const { return Matcher(mode); }
373

374
375
376
377
378
379
380
381
382
383
384
    void rewrite(module_pass_manager& mpm, instruction_ref top_ins) const
    {
      static size_t counter = 0;
      module_ref mm         = mpm.create_module("mlir_" + std::to_string(counter++));
      mm->set_bypass();
      auto [anchor_op, top_inputs] = fuse_input_ops_and_gemm_based_op(mm, top_ins);
      mm->add_return({anchor_op});
      mpm.get_module().replace_instruction(
      top_ins, mlir_op{top_ins->get_operator()}, top_inputs, {mm});
    }

385
386
387
    void apply(module_pass_manager& mpm, const match::matcher_result& r) const
    {
        auto conv_based_op = r.result;
388
        //
389
390
391
392
393
394
395
        // enable only for fp32/fp16/i8 types
        if(std::any_of(conv_based_op->inputs().begin(), conv_based_op->inputs().end(), [&](auto i) {
               return not contains(
                   {shape::type_t::float_type, shape::type_t::half_type, shape::type_t::int8_type},
                   i->get_shape().type());
           }))
            return;
396
        rewrite(mpm, conv_based_op);
397
398
399
    }
};

400
401
using find_mlir_standalone_convolution_op = find_mlir_standalone_op<&is_mlir_conv>;
using find_mlir_standalone_dot_op         = find_mlir_standalone_op<&is_mlir_dot>;
402

403
struct find_mlir_standalone_attention_op
404
{
405
    mlir_mode mode = mlir_mode::none;
406
407
408
409
410
411
412
413
414
415
    void rewrite(module_pass_manager& mpm, const match::matcher_result& r) const
    {
      static size_t counter = 0;
      module_ref mm         = mpm.create_module("mlir_" + std::to_string(counter++));
      std::vector<instruction_ref> inputs;
      mm->set_bypass();

      std::unordered_map<instruction_ref, instruction_ref> ins_map;
      auto top_ins = r.instructions["top_dot"];
      auto [new_top_ins, top_inputs] = fuse_input_ops_and_gemm_based_op(mm, top_ins);
416
      inputs.insert(inputs.begin(), top_inputs.begin(), top_inputs.end());
417
      ins_map[top_ins] = new_top_ins;
418
419
420
421
422
423
424
425
426
      if(r.instructions.find("scale") != r.instructions.end()){
        auto scale_ins = r.instructions["scale"];
        new_top_ins = fold_pointwise_mod(scale_ins, mm, ins_map)[0];
        std::copy_if(scale_ins->inputs().begin(),
                     scale_ins->inputs().end(),
                     std::back_inserter(inputs),
                     [&](auto input) { return input != top_ins; });
      }
      auto softmax = mm->add_instruction(r.instructions["softmax"]->get_operator(), new_top_ins);
427
428
429
430
431
432
433
434
435
436
437
      std::transform(r.instructions["bottom_dot"]->inputs().begin(),
                     r.instructions["bottom_dot"]->inputs().end(),
                     std::inserter(ins_map, ins_map.end()),
                     [&](auto old_ins) {
                        if(old_ins == r.instructions["softmax"]){
                            return std::make_pair(old_ins, softmax);
                        }
                        inputs.push_back(old_ins);
                        return std::make_pair(old_ins,
                                              mm->add_parameter("bdot_non_smax_in", old_ins->get_shape()));
                     });
438
439
      auto bottom_dot_a = ins_map[r.instructions["bottom_dot"]->inputs().front()];
      auto bottom_dot_b = ins_map[r.instructions["bottom_dot"]->inputs().back()];
440
      auto new_bottom_dot = mm->add_instruction(make_op("dot"), {bottom_dot_a, bottom_dot_b});
441
442
443
      if(r.instructions.find("trailing_pm") != r.instructions.end()){
        new_bottom_dot = fold_pointwise_mod(r.instructions["trailing_pm"], mm, ins_map)[0];
      }
444
445
      mm->add_return({new_bottom_dot});
      mpm.get_module().replace_instruction(
446
      r.instructions["bottom_dot"], mlir_op{new_bottom_dot->get_operator()}, inputs, {mm});
447
448
449
450
    }

    auto matcher() const {
        auto match_softmax_input =  match::any_of[match::inputs()](match::name("dot").bind("top_dot"), match::name("pointwise")(match::any_of[match::inputs()](match::name("dot").bind("top_dot"))).bind("scale"));
451
        auto is_mlir_attention = match::name("dot")(match::any_of[match::inputs()](match::name("softmax")(match_softmax_input).bind("softmax"))).bind("bottom_dot");
452
453
454
        return is_mlir_attention;
    }

455
    bool check(const match::matcher_result& r) const {
456
457
458
459
460
        // We are only enabling attention
        // in the highest enablement mode for now
        if(mode != mlir_mode::all){
            return false;
        }
461
462
463
464
465
466
467
468
469
470
471
472
473
        auto top_dot = r.instructions["top_dot"];
        // Check the pointwise mod only contains a single mul
        if(r.instructions.find("scale") != r.instructions.end()){
            auto scale_pm = r.instructions["scale"];
            bool found_mul = false;
            for(const auto& scale_ins : *scale_pm->module_inputs().front()){
                if(contains({"@param", "@literal", "@return"}, scale_ins.name())){
                    continue;
                }
                if(scale_ins.name() == "mul" && !found_mul){
                    found_mul = true;
                    continue;
                }
474
                return false;
475
476
477
478
479
480
481
482
            }
        }
        // enable only for fp32/fp16/i8 types
        if(std::any_of(top_dot->inputs().begin(), top_dot->inputs().end(), [&](auto i) {
               return not contains(
                   {shape::type_t::float_type, shape::type_t::half_type, shape::type_t::int8_type},
                   i->get_shape().type());
           })){
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
            return false;
        }
        return true;
    }

    void apply(module_pass_manager& mpm, const match::matcher_result& r) const
    {
        if(!check(r)){
            return;
        }
        rewrite(mpm, r);
    }
};

struct find_mlir_attention_fused_ops : public find_mlir_standalone_attention_op
{
    auto matcher() const {
        auto standalone_matcher = find_mlir_standalone_attention_op::matcher();
        return match::name("pointwise")(match::any_of[match::inputs()](standalone_matcher).bind("trailing_pm"));;
    }

    bool check(const match::matcher_result& r) const {
        if(!find_mlir_standalone_attention_op::check(r)){
            return false;
        }
        auto trailing_pm_ins = r.instructions["trailing_pm"]; // input after contiguous
        auto* trailing_pm = trailing_pm_ins->module_inputs().front();
        // Whitelist pointwise operators.
        if(std::any_of(trailing_pm->begin(), trailing_pm->end(), [&](const auto& i) {
               return not is_pointwise_op_supported_by_mlir(i);
           }))
            return false;
        return true;
    }

    void apply(module_pass_manager& mpm, const match::matcher_result& r) const
    {
        if(!check(r)){
521
522
523
524
525
526
            return;
        }
        rewrite(mpm, r);
    }
};

527
528
529
530
531
532
533
/**
 * @brief Declares a new MIGraphX environment variable which forces to generate
 * only specific MLIR operations.
 *
 * The variable, if defined, forces MIGraphX to use only specific operations
 * with MLIR regardless of the underlying GPU architecture. The variable accepts
 * a list of operations separated by comma. The variable recognizes the following
534
 * operations: "fused", "convolution", "dot". If the variable is not defined MIGraphX
535
536
537
538
539
 * will decide by itself which operations to delegate to MLIR. The variable is
 * intended to be primarily used by rocMLIR developers.
 */
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_MLIR_USE_SPECIFIC_OPS);

540
bool is_requested(std::string_view option, bool fallback = false)
541
542
{
    auto string_value  = string_value_of(MIGRAPHX_MLIR_USE_SPECIFIC_OPS{}, "");
543
544
    if(string_value.empty())
        return fallback;
545
546
547
    const auto options = split_string(string_value, ',');
    return contains(options, option);
}
Paul Fultz II's avatar
Paul Fultz II committed
548
549
} // namespace

550
#endif // MIGRAPHX_MLIR
Paul Fultz II's avatar
Paul Fultz II committed
551
552
553
554

void fuse_mlir::apply(module_pass_manager& mpm) const
{
#ifdef MIGRAPHX_MLIR
555
556
    const auto& device_name = ctx == nullptr ? "" : ctx->get_current_device().get_gfx_name();
    const bool is_navi      = starts_with(device_name, "gfx110");
557

558
559
560
561
562
563
564
    auto get_mode = [&](std::string_view option, mlir_mode m1, mlir_mode m2 = mlir_mode::fast) {
        if(is_requested(option))
            return mlir_mode::all;
        if(is_navi)
            return mlir_mode::all;
        return std::max(m1, m2);
    };
565

566
567
    mlir_mode mode =
        (enabled(MIGRAPHX_ENABLE_EXTRA_MLIR{}) or enable_extra) ? mlir_mode::fast : mlir_mode::none;
568

569
570
571
572
573
574
    // Attention offloads; default disabled
    match::find_matches(mpm,
                        find_mlir_attention_fused_ops{get_mode("attention", mlir_mode::none)});
    match::find_matches(mpm,
                        find_mlir_standalone_attention_op{get_mode("attention", mlir_mode::none)});

575
576
577
578
579
580
581
582
    match::find_matches(mpm,
                        find_mlir_fused_ops{.conv_mode = get_mode("fused", mlir_mode::fast),
                                            .dot_mode  = get_mode("fused", mode)});

    match::find_matches(
        mpm,
        find_mlir_standalone_convolution_op{get_mode("convolution", mlir_mode::int8)},
        find_mlir_standalone_dot_op{get_mode("dot", mlir_mode::none)});
Paul Fultz II's avatar
Paul Fultz II committed
583
584
585
586
587
588
589
590
#else
    (void)mpm;
#endif
}

} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx