fuse_mlir.cpp 20.4 KB
Newer Older
Paul Fultz II's avatar
Paul Fultz II committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
#include <migraphx/gpu/fuse_mlir.hpp>
#include <migraphx/gpu/mlir.hpp>
#include <migraphx/matcher.hpp>
#include <migraphx/pass_manager.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/register_op.hpp>
30
#include <migraphx/env.hpp>
Paul Fultz II's avatar
Paul Fultz II committed
31
32
33
34
35
36
37
38

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

struct module;

namespace gpu {

39
40
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_ENABLE_MLIR);

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
bool mlir_enabled()
{
#ifdef MIGRAPHX_MLIR
    const bool mlir_enabled = enabled(MIGRAPHX_ENABLE_MLIR{});
    if(mlir_enabled)
    {
        return true;
    }
    else
    {

        std::cerr << "WARNING: MIGraphX built with MLIR but it is not enabled. Please set the env "
                     "var MIGRAPHX_ENABLE_MLIR to use MLIR kernel generator."
                  << std::endl;
        return false;
    }
#else
    return false;
#endif
}

Paul Fultz II's avatar
Paul Fultz II committed
62
#ifdef MIGRAPHX_MLIR
63
64

struct mlir_op
Paul Fultz II's avatar
Paul Fultz II committed
65
{
66
    std::string name() const { return "gpu::mlir_op"; }
Paul Fultz II's avatar
Paul Fultz II committed
67
68
69
70
71
72
73
74
75
76
    operation op = make_op("convolution");

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return pack(f(self.op, "op"));
    }

    shape compute_shape(std::vector<shape> inputs, const std::vector<module_ref>& mods) const
    {
77
        check_shapes{inputs, *this}.packed_or_broadcasted();
Paul Fultz II's avatar
Paul Fultz II committed
78
79
80
81
        if(mods.size() != 1)
            MIGRAPHX_THROW("should have one submodule.");
        if(inputs.size() < 2)
            MIGRAPHX_THROW("should have at least two inputs.");
82
83
84
85
86
87
88

        module_ref mod = mods[0];
        auto type      = mod->get_output_shapes().front().type();
        std::unordered_map<instruction_ref, shape> ins_shapes;
        size_t param_cnt               = 0;
        std::vector<std::string> names = mod->get_parameter_names();
        std::sort(names.begin(), names.end());
89
        for(const std::string& param_name : names)
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
        {
            ins_shapes[mod->get_parameter(param_name)] = inputs[param_cnt++];
        }
        for(auto ins : iterator_for(*mod))
        {
            if(ins->name() == "@param")
            {
                continue;
            }
            if(ins->name() == "@literal")
            {
                ins_shapes[ins] = ins->get_shape();
                continue;
            }
            if(ins->name() == "@return")
            {
106
107
108
109
                auto s = ins_shapes[ins->inputs().at(0)].with_type(type);
                if(not s.standard())
                    MIGRAPHX_THROW("MLIR doesnt support non-standard output");
                return s;
110
111
112
113
114
115
116
117
118
119
            }
            std::vector<shape> input_shapes;
            input_shapes.resize(ins->inputs().size());
            std::transform(ins->inputs().begin(),
                           ins->inputs().end(),
                           input_shapes.begin(),
                           [&](auto in) { return ins_shapes[in]; });
            ins_shapes[ins] = ins->get_operator().compute_shape(input_shapes);
        }
        MIGRAPHX_THROW("No return found in the submodule");
Paul Fultz II's avatar
Paul Fultz II committed
120
121
    }
};
122
MIGRAPHX_REGISTER_OP(mlir_op);
Paul Fultz II's avatar
Paul Fultz II committed
123
124

namespace {
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
std::tuple<instruction_ref, std::vector<instruction_ref>>
fuse_input_ops_and_gemm_based_op(module_ref mm, instruction_ref gemm_based_op)
{
    std::vector<instruction_ref> top_inputs;
    std::vector<instruction_ref> imm_inputs;
    size_t input_cnt = 0;
    for(instruction_ref input : gemm_based_op->inputs())
    {
        std::vector<operation> op_stream;
        while(contains({"slice", "transpose", "contiguous", "reshape"}, input->name()))
        {
            op_stream.push_back(input->get_operator());
            input = input->inputs().at(0);
        }
        top_inputs.push_back(input);
        instruction_ref prev_input =
            mm->add_parameter("y" + std::to_string(input_cnt++), input->get_shape());
        for(const auto& op : reverse(op_stream))
        {
            prev_input = mm->add_instruction(op, {prev_input});
        }
        imm_inputs.push_back(prev_input);
    }
    instruction_ref new_gemm_based_op =
        mm->add_instruction(gemm_based_op->get_operator(), imm_inputs);
    return {new_gemm_based_op, top_inputs};
}
152
153
154

MIGRAPHX_PRED_MATCHER(is_mlir_conv, instruction_ref ins)
{
155
    if(ins->name() != "convolution" and ins->name() != "quant_convolution")
156
157
158
159
160
        return false;
    value v    = ins->get_operator().to_value();
    auto group = v.at("group").to<int>();
    if(group != 1)
        return false;
161
162
163
    // Avoid MLIR assertion: Index < Length && "Invalid index!"
    if(ins->get_shape().lens().size() != 4)
        return false;
164
165
166
    return true;
}

167
168
std::unordered_map<instruction_ref, instruction_ref>
    create_param_map_with_literals(module_ref mm, const module* pm, const shape& shape)
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
    {
        std::unordered_map<instruction_ref, instruction_ref> ins_map;
        for(auto ins : iterator_for(*pm))
        {
            if(ins->name() != "@literal")
            {
                continue;
            }
            literal r               = ins->get_literal();
            instruction_ref literal = mm->add_literal(r);
            instruction_ref mbcast  = mm->add_instruction(
                make_op("multibroadcast", {{"out_lens", shape.lens()}}), literal);
            ins_map[ins] = mbcast;
        }
        return ins_map;
    }

186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
std::vector<instruction_ref> fold_pointwise_mod(instruction_ref pm_ins, module_ref parent_mod, const std::unordered_map<instruction_ref, instruction_ref>& ins_map){
    auto* pm           = pm_ins->module_inputs().front();
    auto names         = pm->get_parameter_names();
    std::sort(names.begin(), names.end());
    std::unordered_map<instruction_ref, instruction_ref> param_map =
            create_param_map_with_literals(parent_mod, pm, pm_ins->get_shape());
    std::transform( names.begin(),
                    names.end(),
                    pm_ins->inputs().begin(),
                    std::inserter(param_map, param_map.end()),
                    [&](auto name, auto input) {
                        if(ins_map.count(input))
                            return std::make_pair(pm->get_parameter(name), ins_map.at(input));
                        return std::make_pair(pm->get_parameter(name),
                                                parent_mod->add_parameter(name, input->get_shape()));
                    });
    return parent_mod->insert_instructions(parent_mod->end(), pm, param_map);
}

205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
// Whitelist supported fusion options, including imposing type constraints
// for cases where MLIR only supports an operation (usually a pointwise function)
// on particular types.
bool is_pointwise_op_supported_by_mlir(const instruction& i)
{
    using type_t                                      = shape::type_t;
    const auto& name                                  = i.name();
    const auto result_type                            = i.get_shape().type();
    const std::initializer_list<type_t> allowed_types = {type_t::float_type,
                                                            type_t::half_type,
                                                            type_t::int8_type,
                                                            type_t::int32_type,
                                                            type_t::bool_type};
    // Preliminary type check.
    if(not contains(allowed_types, result_type))
    {
        return false;
    }
    const std::initializer_list<std::string> any_type_ops = {"@literal", "@param", "@return"};
    const std::initializer_list<std::string> no_bool_ops  = {
        "convolution",
        "quant_convolution",
        "dot",
        "quant_dot",
        "add",
        "clip",
        "relu",
        "sub",
        "mul",
        "div",
        "pow",
        "where",
        "quantizelinear",
        "dequantizelinear",
        "abs",
        "neg",
    };
    const std::initializer_list<std::string> fp_only_ops = {
        "ceil",
        "erf",
        "exp",
        "floor",
        "log",
        "recip",
        "rsqrt",
        "sigmoid",
        "softmax",
        "tanh",
    };
    bool is_float = contains({type_t::float_type, type_t::half_type}, result_type);
    if(contains(any_type_ops, name))
        return true;
    if(result_type != type_t::bool_type and contains(no_bool_ops, name))
        return true;
    if(is_float and contains(fp_only_ops, name))
        return true;
    // Only conversions between floating types are known to be unambigiously
    // supported.
    if(is_float and name == "convert")
    {
        return std::all_of(i.inputs().begin(), i.inputs().end(), [](const auto& arg) {
            return contains({type_t::float_type, type_t::half_type}, arg->get_shape().type());
        });
    }
    return false;
}

272
273
274
275
276
277
278
279
280
281
282
283
284


struct find_mlir_fused_ops
{
    auto matcher() const
    {
        auto dot_or_conv = match::skip(match::name("contiguous"))(
            match::any_of(match::name("dot"), match::name("quant_dot"), is_mlir_conv())
                .bind("gemm_based_op"));
        return match::name("pointwise")(match::any_of[match::inputs()](dot_or_conv.bind("x")));
    }

    void rewrite(module_pass_manager& mpm, const match::matcher_result& r) const
Paul Fultz II's avatar
Paul Fultz II committed
285
    {
286
287
288
289
290
        auto ins           = r.result;
        auto gemm_based_op = r.instructions["gemm_based_op"];
        auto x_ins         = r.instructions["x"]; // input after contiguous
        auto* pm           = ins->module_inputs().front();
        auto names         = pm->get_parameter_names();
291
292
293
        // Whitelist pointwise operators.
        if(std::any_of(pm->begin(), pm->end(), [&](const auto& i) {
               return not is_pointwise_op_supported_by_mlir(i);
Paul Fultz II's avatar
Paul Fultz II committed
294
295
           }))
            return;
296

Paul Fultz II's avatar
Paul Fultz II committed
297
298
299
        std::sort(names.begin(), names.end());
        module_ref mm = mpm.create_module("mlir_" + pm->name());
        mm->set_bypass();
300
        auto [anchor_op, top_inputs] = fuse_input_ops_and_gemm_based_op(mm, gemm_based_op);
301
        mm->add_return(fold_pointwise_mod(ins, mm, {{x_ins, anchor_op}}));
Paul Fultz II's avatar
Paul Fultz II committed
302
303
304
305
306

        std::vector<instruction_ref> inputs;
        std::copy_if(ins->inputs().begin(),
                     ins->inputs().end(),
                     std::back_inserter(inputs),
307
                     [&](auto input) { return input != gemm_based_op; });
308
        inputs.insert(inputs.end(), top_inputs.begin(), top_inputs.end());
Paul Fultz II's avatar
Paul Fultz II committed
309
        mpm.get_module().replace_instruction(
310
            ins, mlir_op{gemm_based_op->get_operator()}, inputs, {mm});
Paul Fultz II's avatar
Paul Fultz II committed
311
    }
312
313
314
315
316
317
318
319
320
321
322
323
324
325

    void apply(module_pass_manager& mpm, const match::matcher_result& r) const
    {
        auto ins           = r.result;
        auto* pm           = ins->module_inputs().front();
        // Whitelist pointwise operators.
        if(std::any_of(pm->begin(), pm->end(), [&](const auto& i) {
               return not is_pointwise_op_supported_by_mlir(i);
           }))
            return;
        rewrite(mpm, r);
    }
};

326

327
struct find_mlir_standalone_op
328
{
329
330
331
332
333
334
335
336
337
338
339
    void rewrite(module_pass_manager& mpm, instruction_ref top_ins) const
    {
      static size_t counter = 0;
      module_ref mm         = mpm.create_module("mlir_" + std::to_string(counter++));
      mm->set_bypass();
      auto [anchor_op, top_inputs] = fuse_input_ops_and_gemm_based_op(mm, top_ins);
      mm->add_return({anchor_op});
      mpm.get_module().replace_instruction(
      top_ins, mlir_op{top_ins->get_operator()}, top_inputs, {mm});
    }

340
341
342
343
344
345
346
347
348
349
    void apply(module_pass_manager& mpm, const match::matcher_result& r) const
    {
        auto conv_based_op = r.result;
        // enable only for fp32/fp16/i8 types
        if(std::any_of(conv_based_op->inputs().begin(), conv_based_op->inputs().end(), [&](auto i) {
               return not contains(
                   {shape::type_t::float_type, shape::type_t::half_type, shape::type_t::int8_type},
                   i->get_shape().type());
           }))
            return;
350
        rewrite(mpm, conv_based_op);
351
352
353
    }
};

354
355
struct find_mlir_standalone_convolution_op : find_mlir_standalone_op
{
356
    auto matcher() const { return is_mlir_conv; }
357
358
359
360
};

struct find_mlir_standalone_dot_op : find_mlir_standalone_op
{
361
    auto matcher() const { return match::any_of(match::name("dot"), match::name("quant_dot")); }
362
363
};

364
struct find_mlir_standalone_attention_op
365
366
367
368
369
370
371
372
373
374
375
{
    void rewrite(module_pass_manager& mpm, const match::matcher_result& r) const
    {
      static size_t counter = 0;
      module_ref mm         = mpm.create_module("mlir_" + std::to_string(counter++));
      std::vector<instruction_ref> inputs;
      mm->set_bypass();

      std::unordered_map<instruction_ref, instruction_ref> ins_map;
      auto top_ins = r.instructions["top_dot"];
      auto [new_top_ins, top_inputs] = fuse_input_ops_and_gemm_based_op(mm, top_ins);
376
      ins_map[top_ins] = new_top_ins;
377
378
379
380
381
382
383
384
385
      if(r.instructions.find("scale") != r.instructions.end()){
        auto scale_ins = r.instructions["scale"];
        new_top_ins = fold_pointwise_mod(scale_ins, mm, ins_map)[0];
        std::copy_if(scale_ins->inputs().begin(),
                     scale_ins->inputs().end(),
                     std::back_inserter(inputs),
                     [&](auto input) { return input != top_ins; });
      }
      auto softmax = mm->add_instruction(r.instructions["softmax"]->get_operator(), new_top_ins);
386
387
388
389
390
391
392
393
394
395
396
      std::transform(r.instructions["bottom_dot"]->inputs().begin(),
                     r.instructions["bottom_dot"]->inputs().end(),
                     std::inserter(ins_map, ins_map.end()),
                     [&](auto old_ins) {
                        if(old_ins == r.instructions["softmax"]){
                            return std::make_pair(old_ins, softmax);
                        }
                        inputs.push_back(old_ins);
                        return std::make_pair(old_ins,
                                              mm->add_parameter("bdot_non_smax_in", old_ins->get_shape()));
                     });
397
398
      auto bottom_dot_a = ins_map[r.instructions["bottom_dot"]->inputs().front()];
      auto bottom_dot_b = ins_map[r.instructions["bottom_dot"]->inputs().back()];
399
      auto new_bottom_dot = mm->add_instruction(make_op("dot"), {bottom_dot_a, bottom_dot_b});
400
401
402
      if(r.instructions.find("trailing_pm") != r.instructions.end()){
        new_bottom_dot = fold_pointwise_mod(r.instructions["trailing_pm"], mm, ins_map)[0];
      }
403
404
405
      mm->add_return({new_bottom_dot});
      inputs.insert(inputs.end(), top_inputs.begin(), top_inputs.end());
      mpm.get_module().replace_instruction(
406
      r.instructions["bottom_dot"], mlir_op{new_bottom_dot->get_operator()}, inputs, {mm});
407
408
409
410
    }

    auto matcher() const {
        auto match_softmax_input =  match::any_of[match::inputs()](match::name("dot").bind("top_dot"), match::name("pointwise")(match::any_of[match::inputs()](match::name("dot").bind("top_dot"))).bind("scale"));
411
        auto is_mlir_attention = match::name("dot")(match::any_of[match::inputs()](match::name("softmax")(match_softmax_input).bind("softmax"))).bind("bottom_dot");
412
413
414
        return is_mlir_attention;
    }

415
    bool check(const match::matcher_result& r) const {
416
417
418
419
420
421
422
423
424
425
426
427
428
        auto top_dot = r.instructions["top_dot"];
        // Check the pointwise mod only contains a single mul
        if(r.instructions.find("scale") != r.instructions.end()){
            auto scale_pm = r.instructions["scale"];
            bool found_mul = false;
            for(const auto& scale_ins : *scale_pm->module_inputs().front()){
                if(contains({"@param", "@literal", "@return"}, scale_ins.name())){
                    continue;
                }
                if(scale_ins.name() == "mul" && !found_mul){
                    found_mul = true;
                    continue;
                }
429
                return false;
430
431
432
433
434
435
436
437
            }
        }
        // enable only for fp32/fp16/i8 types
        if(std::any_of(top_dot->inputs().begin(), top_dot->inputs().end(), [&](auto i) {
               return not contains(
                   {shape::type_t::float_type, shape::type_t::half_type, shape::type_t::int8_type},
                   i->get_shape().type());
           })){
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
            return false;
        }
        return true;
    }

    void apply(module_pass_manager& mpm, const match::matcher_result& r) const
    {
        if(!check(r)){
            return;
        }
        rewrite(mpm, r);
    }
};

struct find_mlir_attention_fused_ops : public find_mlir_standalone_attention_op
{
    auto matcher() const {
        auto standalone_matcher = find_mlir_standalone_attention_op::matcher();
        return match::name("pointwise")(match::any_of[match::inputs()](standalone_matcher).bind("trailing_pm"));;
    }

    bool check(const match::matcher_result& r) const {
        if(!find_mlir_standalone_attention_op::check(r)){
            return false;
        }
        auto trailing_pm_ins = r.instructions["trailing_pm"]; // input after contiguous
        auto* trailing_pm = trailing_pm_ins->module_inputs().front();
        // Whitelist pointwise operators.
        if(std::any_of(trailing_pm->begin(), trailing_pm->end(), [&](const auto& i) {
               return not is_pointwise_op_supported_by_mlir(i);
           }))
            return false;
        return true;
    }

    void apply(module_pass_manager& mpm, const match::matcher_result& r) const
    {
        if(!check(r)){
476
477
478
479
480
481
            return;
        }
        rewrite(mpm, r);
    }
};

482
483
484
485
486
487
488
/**
 * @brief Declares a new MIGraphX environment variable which forces to generate
 * only specific MLIR operations.
 *
 * The variable, if defined, forces MIGraphX to use only specific operations
 * with MLIR regardless of the underlying GPU architecture. The variable accepts
 * a list of operations separated by comma. The variable recognizes the following
489
 * operations: "fused", "convolution", "dot". If the variable is not defined MIGraphX
490
491
492
493
494
495
496
497
498
499
500
501
502
503
 * will decide by itself which operations to delegate to MLIR. The variable is
 * intended to be primarily used by rocMLIR developers.
 */
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_MLIR_USE_SPECIFIC_OPS);
bool is_self_decide() { return string_value_of(MIGRAPHX_MLIR_USE_SPECIFIC_OPS{}, "").empty(); }

bool is_requested(std::string_view option)
{
    assert(not is_self_decide());
    auto string_value  = string_value_of(MIGRAPHX_MLIR_USE_SPECIFIC_OPS{}, "");
    const auto options = split_string(string_value, ',');
    return contains(options, option);
}

504
bool is_enabled(std::string_view op_name, context* ctx)
505
506
507
{
    if(is_self_decide())
    {
508
        if(op_name == "fused")
509
        {
510
511
            return true;
        }
512
        else if(op_name == "convolution" or op_name == "quant_convolution")
513
514
515
516
517
518
519
520
521
522
523
        {
            if(ctx == nullptr)
            {
                return false;
            }
            else
            {
                const auto& device = ctx->get_current_device();
                const std::string navi_family{"gfx110"};
                return starts_with(device.get_gfx_name(), navi_family);
            }
524
525
526
        }
        else
        {
527
            return false;
528
529
        }
    }
530
    return is_requested(op_name);
531
}
Paul Fultz II's avatar
Paul Fultz II committed
532
533
} // namespace

534
#endif // MIGRAPHX_MLIR
Paul Fultz II's avatar
Paul Fultz II committed
535
536
537
538

void fuse_mlir::apply(module_pass_manager& mpm) const
{
#ifdef MIGRAPHX_MLIR
539
    match::find_matches(mpm, find_mlir_standalone_attention_op{});
540
    if(is_enabled("fused", this->ctx))
541
542
    {   
        match::find_matches(mpm, find_mlir_attention_fused_ops{});
543
544
545
        match::find_matches(mpm, find_mlir_fused_ops{});
    }

546
    if(is_enabled("convolution", this->ctx))
547
548
549
    {
        match::find_matches(mpm, find_mlir_standalone_convolution_op{});
    }
550
551
552
553
554

    if(is_enabled("dot", this->ctx))
    {
        match::find_matches(mpm, find_mlir_standalone_dot_op{});
    }
Paul Fultz II's avatar
Paul Fultz II committed
555
556
557
558
559
560
561
562
#else
    (void)mpm;
#endif
}

} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx