fuse_mlir.cpp 14.1 KB
Newer Older
Paul Fultz II's avatar
Paul Fultz II committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
#include <migraphx/gpu/fuse_mlir.hpp>
#include <migraphx/gpu/mlir.hpp>
#include <migraphx/matcher.hpp>
#include <migraphx/pass_manager.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/register_op.hpp>
30
#include <migraphx/env.hpp>
Paul Fultz II's avatar
Paul Fultz II committed
31
32
33
34
35
36
37
38

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

struct module;

namespace gpu {

39
40
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_ENABLE_MLIR);

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
bool mlir_enabled()
{
#ifdef MIGRAPHX_MLIR
    const bool mlir_enabled = enabled(MIGRAPHX_ENABLE_MLIR{});
    if(mlir_enabled)
    {
        return true;
    }
    else
    {

        std::cerr << "WARNING: MIGraphX built with MLIR but it is not enabled. Please set the env "
                     "var MIGRAPHX_ENABLE_MLIR to use MLIR kernel generator."
                  << std::endl;
        return false;
    }
#else
    return false;
#endif
}

Paul Fultz II's avatar
Paul Fultz II committed
62
#ifdef MIGRAPHX_MLIR
63
64

struct mlir_op
Paul Fultz II's avatar
Paul Fultz II committed
65
{
66
    std::string name() const { return "gpu::mlir_op"; }
Paul Fultz II's avatar
Paul Fultz II committed
67
68
69
70
71
72
73
74
75
76
    operation op = make_op("convolution");

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return pack(f(self.op, "op"));
    }

    shape compute_shape(std::vector<shape> inputs, const std::vector<module_ref>& mods) const
    {
77
        check_shapes{inputs, *this}.packed_or_broadcasted();
Paul Fultz II's avatar
Paul Fultz II committed
78
79
80
81
        if(mods.size() != 1)
            MIGRAPHX_THROW("should have one submodule.");
        if(inputs.size() < 2)
            MIGRAPHX_THROW("should have at least two inputs.");
82
83
84
85
86
87
88

        module_ref mod = mods[0];
        auto type      = mod->get_output_shapes().front().type();
        std::unordered_map<instruction_ref, shape> ins_shapes;
        size_t param_cnt               = 0;
        std::vector<std::string> names = mod->get_parameter_names();
        std::sort(names.begin(), names.end());
89
        for(const std::string& param_name : names)
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
        {
            ins_shapes[mod->get_parameter(param_name)] = inputs[param_cnt++];
        }
        for(auto ins : iterator_for(*mod))
        {
            if(ins->name() == "@param")
            {
                continue;
            }
            if(ins->name() == "@literal")
            {
                ins_shapes[ins] = ins->get_shape();
                continue;
            }
            if(ins->name() == "@return")
            {
106
107
108
109
                auto s = ins_shapes[ins->inputs().at(0)].with_type(type);
                if(not s.standard())
                    MIGRAPHX_THROW("MLIR doesnt support non-standard output");
                return s;
110
111
112
113
114
115
116
117
118
119
            }
            std::vector<shape> input_shapes;
            input_shapes.resize(ins->inputs().size());
            std::transform(ins->inputs().begin(),
                           ins->inputs().end(),
                           input_shapes.begin(),
                           [&](auto in) { return ins_shapes[in]; });
            ins_shapes[ins] = ins->get_operator().compute_shape(input_shapes);
        }
        MIGRAPHX_THROW("No return found in the submodule");
Paul Fultz II's avatar
Paul Fultz II committed
120
121
    }
};
122
MIGRAPHX_REGISTER_OP(mlir_op);
Paul Fultz II's avatar
Paul Fultz II committed
123
124

namespace {
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
std::tuple<instruction_ref, std::vector<instruction_ref>>
fuse_input_ops_and_gemm_based_op(module_ref mm, instruction_ref gemm_based_op)
{
    std::vector<instruction_ref> top_inputs;
    std::vector<instruction_ref> imm_inputs;
    size_t input_cnt = 0;
    for(instruction_ref input : gemm_based_op->inputs())
    {
        std::vector<operation> op_stream;
        while(contains({"slice", "transpose", "contiguous", "reshape"}, input->name()))
        {
            op_stream.push_back(input->get_operator());
            input = input->inputs().at(0);
        }
        top_inputs.push_back(input);
        instruction_ref prev_input =
            mm->add_parameter("y" + std::to_string(input_cnt++), input->get_shape());
        for(const auto& op : reverse(op_stream))
        {
            prev_input = mm->add_instruction(op, {prev_input});
        }
        imm_inputs.push_back(prev_input);
    }
    instruction_ref new_gemm_based_op =
        mm->add_instruction(gemm_based_op->get_operator(), imm_inputs);
    return {new_gemm_based_op, top_inputs};
}
152
153
154

MIGRAPHX_PRED_MATCHER(is_mlir_conv, instruction_ref ins)
{
155
    if(ins->name() != "convolution" and ins->name() != "quant_convolution")
156
157
158
159
160
        return false;
    value v    = ins->get_operator().to_value();
    auto group = v.at("group").to<int>();
    if(group != 1)
        return false;
161
162
163
    // Avoid MLIR assertion: Index < Length && "Invalid index!"
    if(ins->get_shape().lens().size() != 4)
        return false;
164
165
166
    return true;
}

167
struct find_mlir_fused_ops
Paul Fultz II's avatar
Paul Fultz II committed
168
169
170
{
    auto matcher() const
    {
171
        auto dot_or_conv = match::skip(match::name("contiguous"))(
172
173
            match::any_of(match::name("dot"), match::name("quant_dot"), is_mlir_conv())
                .bind("gemm_based_op"));
174
        return match::name("pointwise")(match::any_of[match::inputs()](dot_or_conv.bind("x")));
Paul Fultz II's avatar
Paul Fultz II committed
175
176
    }

177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
    std::unordered_map<instruction_ref, instruction_ref>
    create_param_map_with_literals(module_ref mm, const module* pm, const shape& shape) const
    {
        std::unordered_map<instruction_ref, instruction_ref> ins_map;
        for(auto ins : iterator_for(*pm))
        {
            if(ins->name() != "@literal")
            {
                continue;
            }
            literal r               = ins->get_literal();
            instruction_ref literal = mm->add_literal(r);
            instruction_ref mbcast  = mm->add_instruction(
                make_op("multibroadcast", {{"out_lens", shape.lens()}}), literal);
            ins_map[ins] = mbcast;
        }
        return ins_map;
    }

196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
    // Whitelist supported fusion options, including imposing type constraints
    // for cases where MLIR only supports an operation (usually a pointwise function)
    // on particular types.
    bool is_pointwise_op_supported_by_mlir(const instruction& i) const
    {
        using type_t                                      = shape::type_t;
        const auto& name                                  = i.name();
        const auto result_type                            = i.get_shape().type();
        const std::initializer_list<type_t> allowed_types = {type_t::float_type,
                                                             type_t::half_type,
                                                             type_t::int8_type,
                                                             type_t::int32_type,
                                                             type_t::bool_type};
        // Preliminary type check.
        if(not contains(allowed_types, result_type))
        {
            return false;
        }
        const std::initializer_list<std::string> any_type_ops = {"@literal", "@param", "@return"};
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
        const std::initializer_list<std::string> no_bool_ops  = {
            "convolution",
            "quant_convolution",
            "dot",
            "quant_dot",
            "add",
            "clip",
            "relu",
            "sub",
            "mul",
            "div",
            "pow",
            "where",
            "quantizelinear",
            "dequantizelinear",
            "abs",
            "neg",
        };
        const std::initializer_list<std::string> fp_only_ops = {
            "ceil",
            "erf",
            "exp",
            "floor",
            "log",
            "recip",
            "rsqrt",
241
            "sigmoid",
242
243
244
            "softmax",
            "tanh",
        };
245
246
247
        bool is_float = contains({type_t::float_type, type_t::half_type}, result_type);
        if(contains(any_type_ops, name))
            return true;
248
        if(result_type != type_t::bool_type and contains(no_bool_ops, name))
249
            return true;
250
        if(is_float and contains(fp_only_ops, name))
251
252
253
            return true;
        // Only conversions between floating types are known to be unambigiously
        // supported.
254
        if(is_float and name == "convert")
255
256
257
258
259
260
261
262
        {
            return std::all_of(i.inputs().begin(), i.inputs().end(), [](const auto& arg) {
                return contains({type_t::float_type, type_t::half_type}, arg->get_shape().type());
            });
        }
        return false;
    }

Paul Fultz II's avatar
Paul Fultz II committed
263
264
    void apply(module_pass_manager& mpm, const match::matcher_result& r) const
    {
265
266
267
268
269
        auto ins           = r.result;
        auto gemm_based_op = r.instructions["gemm_based_op"];
        auto x_ins         = r.instructions["x"]; // input after contiguous
        auto* pm           = ins->module_inputs().front();
        auto names         = pm->get_parameter_names();
270
271
272
        // Whitelist pointwise operators.
        if(std::any_of(pm->begin(), pm->end(), [&](const auto& i) {
               return not is_pointwise_op_supported_by_mlir(i);
Paul Fultz II's avatar
Paul Fultz II committed
273
274
           }))
            return;
275

Paul Fultz II's avatar
Paul Fultz II committed
276
277
278
        std::sort(names.begin(), names.end());
        module_ref mm = mpm.create_module("mlir_" + pm->name());
        mm->set_bypass();
279
280
281
        std::unordered_map<instruction_ref, instruction_ref> param_map =
            create_param_map_with_literals(mm, pm, gemm_based_op->get_shape());
        auto [anchor_op, top_inputs] = fuse_input_ops_and_gemm_based_op(mm, gemm_based_op);
Paul Fultz II's avatar
Paul Fultz II committed
282
283
284
285
        std::transform(names.begin(),
                       names.end(),
                       ins->inputs().begin(),
                       std::inserter(param_map, param_map.end()),
286
                       [&, &anchor_op = anchor_op](auto name, auto input) {
Paul Fultz II's avatar
Paul Fultz II committed
287
                           if(input == x_ins)
288
                               return std::make_pair(pm->get_parameter(name), anchor_op);
Paul Fultz II's avatar
Paul Fultz II committed
289
290
291
292
293
294
295
296
297
                           return std::make_pair(pm->get_parameter(name),
                                                 mm->add_parameter(name, input->get_shape()));
                       });
        mm->add_return(mm->insert_instructions(mm->end(), pm, param_map));

        std::vector<instruction_ref> inputs;
        std::copy_if(ins->inputs().begin(),
                     ins->inputs().end(),
                     std::back_inserter(inputs),
298
                     [&](auto input) { return input != gemm_based_op; });
299
        inputs.insert(inputs.end(), top_inputs.begin(), top_inputs.end());
Paul Fultz II's avatar
Paul Fultz II committed
300
        mpm.get_module().replace_instruction(
301
            ins, mlir_op{gemm_based_op->get_operator()}, inputs, {mm});
Paul Fultz II's avatar
Paul Fultz II committed
302
303
    }
};
304

305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
struct find_mlir_standalone_convolution_op
{
    auto matcher() const { return match::name("convolution"); }

    void apply(module_pass_manager& mpm, const match::matcher_result& r) const
    {
        auto conv_based_op = r.result;
        // enable only for fp32/fp16/i8 types
        if(std::any_of(conv_based_op->inputs().begin(), conv_based_op->inputs().end(), [&](auto i) {
               return not contains(
                   {shape::type_t::float_type, shape::type_t::half_type, shape::type_t::int8_type},
                   i->get_shape().type());
           }))
            return;

        static size_t counter = 0;
        module_ref mm         = mpm.create_module("mlir_" + std::to_string(counter++));
        mm->set_bypass();
        auto [anchor_op, top_inputs] = fuse_input_ops_and_gemm_based_op(mm, conv_based_op);
        mm->add_return({anchor_op});
        mpm.get_module().replace_instruction(
            conv_based_op, mlir_op{conv_based_op->get_operator()}, top_inputs, {mm});
    }
};

/**
 * @brief Declares a new MIGraphX environment variable which forces to generate
 * only specific MLIR operations.
 *
 * The variable, if defined, forces MIGraphX to use only specific operations
 * with MLIR regardless of the underlying GPU architecture. The variable accepts
 * a list of operations separated by comma. The variable recognizes the following
 * operations: "fused", "convolution". If the variable is not defined MIGraphX
 * will decide by itself which operations to delegate to MLIR. The variable is
 * intended to be primarily used by rocMLIR developers.
 */
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_MLIR_USE_SPECIFIC_OPS);
bool is_self_decide() { return string_value_of(MIGRAPHX_MLIR_USE_SPECIFIC_OPS{}, "").empty(); }

bool is_requested(std::string_view option)
{
    assert(not is_self_decide());
    auto string_value  = string_value_of(MIGRAPHX_MLIR_USE_SPECIFIC_OPS{}, "");
    const auto options = split_string(string_value, ',');
    return contains(options, option);
}

bool is_fusion_enabled()
{
    if(is_self_decide())
    {
        return true;
    }
    return is_requested("fused");
}

bool is_standalone_convs_enabled(context* ctx)
{
    if(is_self_decide())
    {
        if(ctx == nullptr)
        {
            return false;
        }
        else
        {
            const auto& device = ctx->get_current_device();
            const std::string navi_family{"gfx110"};
            return starts_with(device.get_gfx_name(), navi_family);
        }
    }
    return is_requested("convolution");
}
Paul Fultz II's avatar
Paul Fultz II committed
378
379
} // namespace

380
#endif // MIGRAPHX_MLIR
Paul Fultz II's avatar
Paul Fultz II committed
381
382
383
384

void fuse_mlir::apply(module_pass_manager& mpm) const
{
#ifdef MIGRAPHX_MLIR
385
386
387
388
389
390
391
392
393
    if(is_fusion_enabled())
    {
        match::find_matches(mpm, find_mlir_fused_ops{});
    }

    if(is_standalone_convs_enabled(this->ctx))
    {
        match::find_matches(mpm, find_mlir_standalone_convolution_op{});
    }
Paul Fultz II's avatar
Paul Fultz II committed
394
395
396
397
398
399
400
401
402
#else
    (void)mpm;
#endif
}

} // namespace gpu

} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx