lowering.cpp 20.7 KB
Newer Older
Shucai Xiao's avatar
Shucai Xiao committed
1
#include <iterator>
Paul's avatar
Paul committed
2
3
4
#include <migraphx/gpu/lowering.hpp>
#include <migraphx/manage_ptr.hpp>
#include <migraphx/instruction.hpp>
5
6
7
8
9
10
11
12
#include <migraphx/make_op.hpp>

#include <migraphx/op/abs.hpp>
#include <migraphx/op/batch_norm_inference.hpp>
#include <migraphx/op/convolution.hpp>
#include <migraphx/op/deconvolution.hpp>
#include <migraphx/op/dot.hpp>
#include <migraphx/op/elu.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
13
#include <migraphx/op/if_op.hpp>
14
15
16
17
18
19
20
21
22
#include <migraphx/op/leaky_relu.hpp>
#include <migraphx/op/lrn.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/op/reshape.hpp>
#include <migraphx/op/quant_convolution.hpp>
#include <migraphx/op/quant_dot.hpp>

#include <migraphx/gpu/abs.hpp>
#include <migraphx/gpu/batch_norm_inference.hpp>
Paul's avatar
Paul committed
23
24
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/convolution.hpp>
kahmed10's avatar
kahmed10 committed
25
#include <migraphx/gpu/deconvolution.hpp>
26
#include <migraphx/gpu/device_name.hpp>
Khalique's avatar
Khalique committed
27
#include <migraphx/gpu/elu.hpp>
28
#include <migraphx/gpu/equal.hpp>
Paul's avatar
Paul committed
29
#include <migraphx/gpu/gemm.hpp>
30
#include <migraphx/gpu/greater.hpp>
31
#include <migraphx/gpu/int8_conv_pack.hpp>
32
#include <migraphx/gpu/leaky_relu.hpp>
33
#include <migraphx/gpu/less.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
34
35
36
#include <migraphx/gpu/logical_and.hpp>
#include <migraphx/gpu/logical_or.hpp>
#include <migraphx/gpu/logical_xor.hpp>
37
38
39
40
#include <migraphx/gpu/lrn.hpp>
#include <migraphx/gpu/miopen.hpp>
#include <migraphx/gpu/quant_convolution.hpp>
#include <migraphx/gpu/rocblas.hpp>
41
#include <migraphx/gpu/unary_not.hpp>
turneram's avatar
turneram committed
42
#include <migraphx/gpu/where.hpp>
43
#include <migraphx/gpu/compiler.hpp>
44
#include <migraphx/iterator_for.hpp>
45
#include <migraphx/program.hpp>
Paul's avatar
Paul committed
46
#include <utility>
47
#include <functional>
Khalique's avatar
Khalique committed
48
#include <algorithm>
Shucai Xiao's avatar
Shucai Xiao committed
49
#include <map>
Paul's avatar
Paul committed
50

Paul's avatar
Paul committed
51
namespace migraphx {
Paul's avatar
Paul committed
52
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
53
namespace gpu {
Paul's avatar
Paul committed
54
55
56

struct miopen_apply
{
Shucai Xiao's avatar
Shucai Xiao committed
57
    module* mod          = nullptr;
58
    const lowering* pass = nullptr;
Shucai Xiao's avatar
Shucai Xiao committed
59
    std::unordered_map<std::string, std::function<instruction_ref(instruction_ref)>> apply_map{};
Shucai Xiao's avatar
Shucai Xiao committed
60
    instruction_ref last{};
61
    std::unordered_map<instruction_ref, std::string> prog_output_names{};
Shucai Xiao's avatar
Shucai Xiao committed
62
63
    bool offload_copy   = false;
    bool int8_x4_format = true;
64
    bool compute_fp32   = false;
Paul's avatar
Paul committed
65

66
    context& get_context() const
67
68
69
70
71
72
    {
        assert(pass != nullptr);
        assert(pass->ctx != nullptr);
        return *pass->ctx;
    }

Paul's avatar
Paul committed
73
74
75
76
77
78
79
    void check_shape(shape x, instruction_ref i)
    {
        assert(x == i->get_shape());
        (void)x;
        (void)i;
    }

80
81
    void create_output_names()
    {
Shucai Xiao's avatar
Shucai Xiao committed
82
        this->last = instruction::get_output_alias(std::prev(mod->end()));
83
84
        if(this->last->name() == "@return")
        {
85
            const auto& prog_outputs = last->inputs();
86
87
88
89
90
91
92
93
94
95
            std::vector<instruction_ref> outputs_alias(prog_outputs.size());

            std::transform(prog_outputs.begin(),
                           prog_outputs.end(),
                           outputs_alias.begin(),
                           [](const auto& i) { return instruction::get_output_alias(i); });

            std::size_t index = 0;
            for(auto ins : outputs_alias)
            {
Shucai Xiao's avatar
Shucai Xiao committed
96
                prog_output_names[ins] = mod->name() + ":#output_" + std::to_string(index++);
97
98
99
100
            }
        }
    }

101
102
103
104
105
106
    const std::unordered_set<std::string>& get_rocblas_fp32_archs()
    {
        static std::unordered_set<std::string> supported_archs{"gfx908", "gfx90a"};
        return supported_archs;
    }

107
108
    void init()
    {
Shucai Xiao's avatar
Shucai Xiao committed
109
        assert(mod != nullptr);
110
        assert(pass != nullptr);
111

Shucai Xiao's avatar
Shucai Xiao committed
112
#if ROCBLAS_VERSION_MAJOR >= 2 && ROCBLAS_VERSION_MINOR >= 38
113
114
115
116
        auto& ctx              = get_context();
        const auto device_name = trim(split_string(get_device_name(), ':').front());
        if(contains(get_rocblas_fp32_archs(), device_name))
            compute_fp32 = true;
Shucai Xiao's avatar
Shucai Xiao committed
117
118
119
120
121
        rocblas_gemm_flags flag;
        rocblas_query_int8_layout_flag(ctx.get_stream().get_rocblas(), &flag);
        int8_x4_format = (flag == rocblas_gemm_flags_pack_int8x4);
#endif

Shucai Xiao's avatar
Shucai Xiao committed
122
        offload_copy = (mod->name() == "main") ? pass->offload_copy : false;
123
        create_output_names();
Paul's avatar
Paul committed
124

125
126
127
128
129
130
131
132
133
134
135
136
        add_generic_op("acos");
        add_generic_op("acosh");
        add_generic_op("add");
        add_generic_op("asin");
        add_generic_op("asinh");
        add_generic_op("atan");
        add_generic_op("atanh");
        add_generic_op("ceil");
        add_generic_op("contiguous");
        add_generic_op("cos");
        add_generic_op("cosh");
        add_generic_op("div");
137
        add_generic_op("equal");
138
139
140
        add_generic_op("erf");
        add_generic_op("exp");
        add_generic_op("floor");
141
142
        add_generic_op("greater");
        add_generic_op("less");
143
        add_generic_op("log");
Shucai Xiao's avatar
Shucai Xiao committed
144
145
146
        add_generic_op("logical_and");
        add_generic_op("logical_or");
        add_generic_op("logical_xor");
147
148
149
        add_generic_op("max");
        add_generic_op("min");
        add_generic_op("mul");
150
        add_generic_op("not");
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
        add_generic_op("pow");
        add_generic_op("prelu");
        add_generic_op("recip");
        add_generic_op("relu");
        add_generic_op("round");
        add_generic_op("rsqrt");
        add_generic_op("sigmoid");
        add_generic_op("sign");
        add_generic_op("sin");
        add_generic_op("sinh");
        add_generic_op("sqdiff");
        add_generic_op("sqrt");
        add_generic_op("sub");
        add_generic_op("tan");
        add_generic_op("tanh");
turneram's avatar
turneram committed
166
        add_generic_op("where");
167

Shucai Xiao's avatar
Shucai Xiao committed
168
        add_extend_op("abs");
169
170
171
172
173
        add_extend_op("argmax");
        add_extend_op("argmin");
        add_extend_op("clip");
        add_extend_op("concat");
        add_extend_op("convert");
Shucai Xiao's avatar
Shucai Xiao committed
174
        add_extend_op("elu");
175
        add_extend_op("gather");
Shucai Xiao's avatar
Shucai Xiao committed
176
        add_extend_op("leaky_relu");
177
        add_extend_op("logsoftmax");
Shucai Xiao's avatar
Shucai Xiao committed
178
        add_extend_op("lrn");
turneram's avatar
turneram committed
179
        add_extend_op("multinomial");
Shucai Xiao's avatar
Shucai Xiao committed
180
        add_extend_op("nonzero");
181
        add_extend_op("pad");
182
        add_extend_op("pooling");
183
        add_extend_op("prefix_scan_sum");
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
184
        add_extend_op("reverse");
185
186
187
        add_extend_op("rnn_var_sl_last_output");
        add_extend_op("rnn_var_sl_shift_output");
        add_extend_op("rnn_var_sl_shift_sequence");
188
        add_extend_op("scatter_none");
189
        add_extend_op("softmax");
Shucai Xiao's avatar
Shucai Xiao committed
190
        add_extend_op("topk");
191

Shucai Xiao's avatar
Shucai Xiao committed
192
        add_batch_norm_inference_op();
193
        add_convolution_op();
kahmed10's avatar
kahmed10 committed
194
        add_deconvolution_op();
Shucai Xiao's avatar
Shucai Xiao committed
195
196
        add_gemm_op<op::dot>("dot");
        add_gemm_op<op::quant_dot>("quant_dot");
Shucai Xiao's avatar
Shucai Xiao committed
197
        add_if_op();
Shucai Xiao's avatar
Shucai Xiao committed
198
        add_loop_op();
Shucai Xiao's avatar
Shucai Xiao committed
199
        add_neg_op();
200
        add_nms_op();
Shucai Xiao's avatar
Shucai Xiao committed
201
        add_quant_convolution_op();
202
203
    }

204
205
    void copy_params()
    {
Shucai Xiao's avatar
Shucai Xiao committed
206
        if(not offload_copy)
207
            return;
208

Shucai Xiao's avatar
Shucai Xiao committed
209
        for(auto ins : iterator_for(*mod))
210
211
212
        {
            if(ins->name() != "@param")
                continue;
213

Shucai Xiao's avatar
Shucai Xiao committed
214
215
216
217
            // parameter no outputs, no need to insert copy to gpu
            if(ins->outputs().empty())
                continue;

218
219
            auto pos = std::next(ins);
            auto a   = insert_allocation(pos, ins->get_shape());
220
            auto c   = mod->insert_instruction(pos, make_op("hip::copy_to_gpu"), ins, a);
Shucai Xiao's avatar
Shucai Xiao committed
221
            mod->replace_instruction(ins, c);
222
        }
223
224

        // return instruction
Shucai Xiao's avatar
Shucai Xiao committed
225
        auto ret = std::prev(mod->end());
226
227
        if(ret->name() == "@return")
        {
228
            const auto& inputs = ret->inputs();
229
230
231

            // each input of ret need to be copied from gpu to host, and replace
            // output with copy output
232
            for(const auto& in : inputs)
233
            {
234
                auto p_output = mod->insert_instruction(ret, make_op("hip::copy_from_gpu"), in);
235
236
237
238
239
240
                instruction::replace_argument(ret, in, p_output);
            }
        }
        // else branch to handle legacy program without the return instruction
        else
        {
241
            mod->add_instruction(make_op("hip::copy_from_gpu"), ret);
242
        }
243
244
    }

Paul's avatar
Paul committed
245
246
    void apply()
    {
247
        init();
Shucai Xiao's avatar
Shucai Xiao committed
248
        for(auto it = mod->begin(); it != mod->end(); it++)
Paul's avatar
Paul committed
249
        {
Paul's avatar
Paul committed
250
            auto s = it->get_shape();
251
            if(apply_map.count(it->name()) > 0)
252
            {
253
                check_shape(s, apply_map.at(it->name())(it));
Paul's avatar
Paul committed
254
            }
255
256
257
258
            else if(has_compiler_for(it->name()))
            {
                check_shape(s, insert_precompile_op(it));
            }
Paul's avatar
Paul committed
259
        }
260

261
        copy_params();
Paul's avatar
Paul committed
262
263
    }

264
265
266
267
268
269
270
271
272
273
274
275
276
    instruction_ref insert_precompile_op(instruction_ref ins)
    {
        auto output                       = insert_allocation(ins, ins->get_shape());
        std::vector<instruction_ref> refs = ins->inputs();
        refs.push_back(output);

        return mod->replace_instruction(
            ins,
            make_op("gpu::precompile_op", {{"op", to_value(ins->get_operator())}}),
            refs,
            ins->module_inputs());
    }

Paul's avatar
Paul committed
277
    instruction_ref insert_allocation(instruction_ref ins, const shape& s, std::string tag = "")
Paul's avatar
Paul committed
278
    {
279
        // Instruction's output is an input of the ret instruction
Shucai Xiao's avatar
Shucai Xiao committed
280
        if(offload_copy)
Paul's avatar
Paul committed
281
        {
282
283
            auto result = mod->insert_instruction(
                ins, make_op("hip::allocate", {{"shape", to_value(s)}, {"tag", std::move(tag)}}));
Paul's avatar
Paul committed
284
285
            return result;
        }
286
287
288
289

        auto ins_alias = instruction::get_output_alias(ins);
        if(last->name() == "@return" and tag.empty() and prog_output_names.count(ins_alias) > 0)
        {
Shucai Xiao's avatar
Shucai Xiao committed
290
            return mod->add_parameter(prog_output_names[ins_alias], s);
291
292
293
        }
        else if(ins == last and tag.empty())
        {
Shucai Xiao's avatar
Shucai Xiao committed
294
            return mod->add_parameter("output", s);
295
296
        }

297
298
        return mod->insert_instruction(
            ins, make_op("hip::allocate", {{"shape", to_value(s)}, {"tag", std::move(tag)}}));
Paul's avatar
Paul committed
299
300
    }

Shucai Xiao's avatar
Shucai Xiao committed
301
    void add_convolution_op()
Paul's avatar
Paul committed
302
    {
303
304
        apply_map.emplace("convolution", [=](instruction_ref ins) {
            auto&& op = any_cast<op::convolution>(ins->get_operator());
Paul's avatar
Paul committed
305

306
            auto conv = miopen_convolution{op, make_conv(op)};
307
            auto ws   = conv.find(get_context(), ins->get_shape(), to_shapes(ins->inputs()));
Paul's avatar
Paul committed
308

309
310
            auto workspace = insert_allocation(ins, ws, "workspace");
            auto output    = insert_allocation(ins, ins->get_shape());
kahmed10's avatar
kahmed10 committed
311

Shucai Xiao's avatar
Shucai Xiao committed
312
            return mod->replace_instruction(
kahmed10's avatar
kahmed10 committed
313
314
315
316
317
318
319
320
321
322
323
324
325
326
                ins, conv, ins->inputs().at(0), ins->inputs().at(1), workspace, output);
        });
    }

    void add_deconvolution_op()
    {
        apply_map.emplace("deconvolution", [=](instruction_ref ins) {
            auto&& op = any_cast<op::deconvolution>(ins->get_operator());

            auto conv = miopen_deconvolution{op, make_deconv(op)};
            auto ws   = conv.compile(get_context(), ins->get_shape(), to_shapes(ins->inputs()));

            auto workspace = insert_allocation(ins, ws, "workspace");
            auto output    = insert_allocation(ins, ins->get_shape());
Paul's avatar
Paul committed
327

Shucai Xiao's avatar
Shucai Xiao committed
328
            return mod->replace_instruction(
329
330
                ins, conv, ins->inputs().at(0), ins->inputs().at(1), workspace, output);
        });
Paul's avatar
Paul committed
331
332
    }

333
334
    template <typename Op>
    void add_gemm_op(const std::string& name)
335
336
    {
        apply_map.emplace(name, [=](instruction_ref ins) {
337
            std::vector<instruction_ref> refs = ins->inputs();
Shucai Xiao's avatar
Shucai Xiao committed
338
            if(refs.size() == 2)
339
340
            {
                auto output = insert_allocation(ins, ins->get_shape());
Shucai Xiao's avatar
Shucai Xiao committed
341
342
343
344
345
346
                refs.push_back(output);
            }
            else
            {
                auto c_alias = instruction::get_output_alias(refs.back());
                if(ins == last or refs.back()->outputs().size() > 1 or c_alias->inputs().empty())
347
                {
348
349
350
351
                    auto output = insert_allocation(ins, ins->get_shape());
                    auto copy_out =
                        mod->insert_instruction(ins, make_op("hip::copy"), refs.back(), output);
                    refs.back() = copy_out;
352
353
                    refs.push_back(copy_out);
                }
Shucai Xiao's avatar
Shucai Xiao committed
354
355
356
357
                else
                {
                    refs.push_back(refs.back());
                }
358
            }
Shucai Xiao's avatar
Shucai Xiao committed
359
            return mod->replace_instruction(
360
                ins, rocblas_gemm<Op>{Op{}, 1, 0, int8_x4_format, compute_fp32}, refs);
361
362
363
        });
    }

364
365
366
367
    void add_quant_convolution_op()
    {
        apply_map.emplace("quant_convolution", [=](instruction_ref ins) {
            auto&& op = any_cast<op::quant_convolution>(ins->get_operator());
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
            shape ws;
            miopen_quant_convolution conv;
            auto compile_quant_conv_with_format = [&](bool format) {
                conv = miopen_quant_convolution{op, format, make_conv(op)};
                ws   = conv.compile(get_context(), ins->get_shape(), to_shapes(ins->inputs()));
            };

            try
            {
                compile_quant_conv_with_format(int8_x4_format);
            }
            catch(migraphx::exception&)
            {
                // In case no solver supports the default format, retry using the other format.
                compile_quant_conv_with_format(!int8_x4_format);
            }
384

Shucai Xiao's avatar
Shucai Xiao committed
385
            auto args      = ins->inputs();
386
            auto workspace = insert_allocation(ins, ws, "workspace");
Shucai Xiao's avatar
Shucai Xiao committed
387
388
            auto output    = insert_allocation(ins, ins->get_shape());

Shucai Xiao's avatar
Shucai Xiao committed
389
            return mod->replace_instruction(ins, conv, args[0], args[1], workspace, output);
Shucai Xiao's avatar
Shucai Xiao committed
390
391
392
        });
    }

393
394
395
    // add_generic_op just constructs the operator with no fields whereas add_extend_op copies over
    // the fields Since it doesn't have fields its default constructed

396
397
398
    void add_generic_op(const std::string& name) { add_generic_op(name, "gpu::" + name); }

    void add_generic_op(const std::string& op_name, const std::string& gpu_name)
Paul's avatar
Paul committed
399
    {
400
        apply_map.emplace(op_name, [=](instruction_ref ins) {
401
402
403
            auto output                       = insert_allocation(ins, ins->get_shape());
            std::vector<instruction_ref> refs = ins->inputs();
            refs.push_back(output);
Paul's avatar
Paul committed
404

Shucai Xiao's avatar
Shucai Xiao committed
405
            return mod->replace_instruction(ins, make_op(gpu_name), refs);
406
        });
Paul's avatar
Paul committed
407
    }
Paul's avatar
Paul committed
408

409
410
411
    void add_extend_op(const std::string& name) { add_extend_op(name, "gpu::" + name); }

    void add_extend_op(const std::string& op_name, const std::string& gpu_name)
Khalique's avatar
Khalique committed
412
    {
413
414
        apply_map.emplace(op_name, [=](instruction_ref ins) {
            auto&& op                         = ins->get_operator();
415
416
417
            auto output                       = insert_allocation(ins, ins->get_shape());
            std::vector<instruction_ref> refs = ins->inputs();
            refs.push_back(output);
Paul's avatar
Paul committed
418

Shucai Xiao's avatar
Shucai Xiao committed
419
            return mod->replace_instruction(ins, make_op(gpu_name, op.to_value()), refs);
420
        });
Khalique's avatar
Khalique committed
421
422
    }

Shucai Xiao's avatar
Shucai Xiao committed
423
    void add_batch_norm_inference_op()
424
    {
425
426
427
428
        apply_map.emplace("batch_norm_inference", [=](instruction_ref ins) {
            auto&& op       = any_cast<op::batch_norm_inference>(ins->get_operator());
            auto output     = insert_allocation(ins, ins->get_shape());
            shape old_shape = ins->inputs().at(1)->get_shape();
Shucai Xiao's avatar
Shucai Xiao committed
429
430
431
432
433
434
435
436
437
438
439
440
441
442
            auto input      = ins->inputs()[0];
            auto input_lens = input->get_shape().lens();
            std::vector<int64_t> rsp_lens(input_lens.size(), 1);
            // for per_activation case, also need to reshape input
            if(op.bn_mode == op::batch_norm_inference::per_activation)
            {
                std::copy(input_lens.begin() + 1, input_lens.end(), rsp_lens.begin() + 1);
            }
            else
            {
                rsp_lens[1] = static_cast<int64_t>(old_shape.elements());
            }

            auto reshape_op = op::reshape{rsp_lens};
443
444
            std::vector<instruction_ref> reshapes;
            std::transform(ins->inputs().begin() + 1,
Shucai Xiao's avatar
Shucai Xiao committed
445
446
                           ins->inputs().end(),
                           std::back_inserter(reshapes),
Shucai Xiao's avatar
Shucai Xiao committed
447
                           [&](auto i) { return mod->insert_instruction(ins, reshape_op, i); });
Shucai Xiao's avatar
Shucai Xiao committed
448

Shucai Xiao's avatar
Shucai Xiao committed
449
450
451
452
453
454
455
456
            return mod->replace_instruction(ins,
                                            miopen_batch_norm_inference{op},
                                            input,
                                            reshapes[0],
                                            reshapes[1],
                                            reshapes[2],
                                            reshapes[3],
                                            output);
457
        });
458
    }
Shucai Xiao's avatar
Shucai Xiao committed
459
460
461
462
463
464
465

    // use 0 - input to represent neg
    void add_neg_op()
    {
        apply_map.emplace("neg", [=](instruction_ref ins) {
            auto s = ins->get_shape();
            std::vector<float> zeros(s.elements(), 0.0f);
Shucai Xiao's avatar
Shucai Xiao committed
466
            auto l0     = mod->add_literal(literal(s, zeros));
Shucai Xiao's avatar
Shucai Xiao committed
467
            auto output = insert_allocation(ins, s);
Shucai Xiao's avatar
Shucai Xiao committed
468
            return mod->replace_instruction(
469
                ins, make_op("gpu::sub"), l0, ins->inputs().front(), output);
Shucai Xiao's avatar
Shucai Xiao committed
470
471
        });
    }
Shucai Xiao's avatar
Shucai Xiao committed
472

Shucai Xiao's avatar
Shucai Xiao committed
473
    // add input and output argument for the if operator
Shucai Xiao's avatar
Shucai Xiao committed
474
475
476
477
    void add_if_op()
    {
        apply_map.emplace("if", [=](instruction_ref ins) {
            std::vector<instruction_ref> inputs = ins->inputs();
478
479
480
            auto cpu_cond =
                mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), inputs.front());
            auto sync_cond = mod->insert_instruction(ins, make_op("hip::sync_stream"), cpu_cond);
Shucai Xiao's avatar
Shucai Xiao committed
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
            inputs.front() = sync_cond;

            std::vector<module_ref> mod_args = ins->module_inputs();
            std::map<std::string, shape> name_shapes;
            for(const auto& smod : mod_args)
            {
                auto ps = smod->get_parameter_shapes();
                name_shapes.insert(ps.begin(), ps.end());
            }

            bool ins_output_allocated = false;
            for(auto& pn : name_shapes)
            {
                const auto& s = pn.second;
                instruction_ref output{};
                if(s == ins->get_shape() and not ins_output_allocated)
                {
                    output               = insert_allocation(ins, s);
                    ins_output_allocated = true;
                }
                else
                {
503
504
                    output = mod->insert_instruction(
                        ins, make_op("hip::allocate", {{"shape", to_value(s)}}));
Shucai Xiao's avatar
Shucai Xiao committed
505
506
507
508
509
510
511
                }
                inputs.push_back(output);
            }

            return mod->replace_instruction(ins, ins->get_operator(), inputs, mod_args);
        });
    }
Shucai Xiao's avatar
Shucai Xiao committed
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

    // replace the loop operator with gpu_loop operator
    void add_loop_op()
    {
        apply_map.emplace("loop", [=](instruction_ref ins) {
            std::vector<instruction_ref> inputs = ins->inputs();
            // copy max_iter from gpu to cpu
            auto cpu_max_iter =
                mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), inputs.at(0));
            auto cpu_cond =
                mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), inputs.at(1));
            auto synced_max_iter =
                mod->insert_instruction(ins, make_op("hip::sync_stream"), cpu_max_iter, cpu_cond);
            inputs.at(0)     = synced_max_iter;
            inputs.at(1)     = cpu_cond;
            auto copy_inputs = inputs;
            std::transform(
                copy_inputs.begin(), copy_inputs.end(), std::back_inserter(inputs), [&](auto in) {
                    return mod->insert_instruction(
                        ins, make_op("hip::allocate", {{"shape", to_value(in->get_shape())}}));
                });

            auto mod_args = ins->module_inputs();
            auto output   = insert_allocation(ins, ins->get_shape());

            const auto* sub_mod = mod_args.front();
            auto cond_out       = mod->insert_instruction(
                ins,
                make_op("hip::allocate",
                        {{"shape", to_value(sub_mod->get_output_shapes().front())}}));
            // add cond and mod outputs to the argument list
            inputs.push_back(cond_out);
            inputs.push_back(output);

            return mod->replace_instruction(
                ins, make_op("gpu::loop", ins->get_operator().to_value()), inputs, mod_args);
        });
    }
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569

    void add_nms_op()
    {
        apply_map.emplace("nonmaxsuppression", [=](instruction_ref ins) {
            auto s      = ins->get_shape();
            auto output = insert_allocation(ins, s);
            std::vector<instruction_ref> cpu_inputs;
            auto inputs = ins->inputs();
            std::transform(
                inputs.begin(), inputs.end(), std::back_inserter(cpu_inputs), [&](auto in) {
                    return mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), in);
                });
            cpu_inputs.front() =
                mod->insert_instruction(ins, make_op("hip::sync_stream"), cpu_inputs);
            auto cpu_out = mod->insert_instruction(ins, ins->get_operator(), cpu_inputs);
            auto gpu_out =
                mod->insert_instruction(ins, make_op("hip::copy_to_gpu"), cpu_out, output);
            return mod->replace_instruction(ins, gpu_out);
        });
    }
Paul's avatar
Paul committed
570
571
};

Shucai Xiao's avatar
Shucai Xiao committed
572
void lowering::apply(module& m) const { miopen_apply{&m, this}.apply(); }
Shucai Xiao's avatar
Shucai Xiao committed
573

Paul's avatar
Paul committed
574
} // namespace gpu
Paul's avatar
Paul committed
575
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
576
} // namespace migraphx