"builder/vscode:/vscode.git/clone" did not exist on "4c9959f6b95e20f0a4a0a45c21d168ee7b568dc9"
lowering.cpp 20.3 KB
Newer Older
Shucai Xiao's avatar
Shucai Xiao committed
1
#include <iterator>
Paul's avatar
Paul committed
2
3
4
#include <migraphx/gpu/lowering.hpp>
#include <migraphx/manage_ptr.hpp>
#include <migraphx/instruction.hpp>
5
6
7
8
9
10
11
12
#include <migraphx/make_op.hpp>

#include <migraphx/op/abs.hpp>
#include <migraphx/op/batch_norm_inference.hpp>
#include <migraphx/op/convolution.hpp>
#include <migraphx/op/deconvolution.hpp>
#include <migraphx/op/dot.hpp>
#include <migraphx/op/elu.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
13
#include <migraphx/op/if_op.hpp>
14
#include <migraphx/op/layernorm.hpp>
15
16
17
18
19
20
21
22
23
#include <migraphx/op/leaky_relu.hpp>
#include <migraphx/op/lrn.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/op/reshape.hpp>
#include <migraphx/op/quant_convolution.hpp>
#include <migraphx/op/quant_dot.hpp>

#include <migraphx/gpu/abs.hpp>
#include <migraphx/gpu/batch_norm_inference.hpp>
Paul's avatar
Paul committed
24
25
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/convolution.hpp>
kahmed10's avatar
kahmed10 committed
26
#include <migraphx/gpu/deconvolution.hpp>
27
#include <migraphx/gpu/device_name.hpp>
Khalique's avatar
Khalique committed
28
#include <migraphx/gpu/elu.hpp>
29
#include <migraphx/gpu/equal.hpp>
Paul's avatar
Paul committed
30
#include <migraphx/gpu/gemm.hpp>
31
#include <migraphx/gpu/greater.hpp>
32
#include <migraphx/gpu/int8_conv_pack.hpp>
33
#include <migraphx/gpu/layernorm.hpp>
34
#include <migraphx/gpu/leaky_relu.hpp>
35
#include <migraphx/gpu/less.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
36
37
38
#include <migraphx/gpu/logical_and.hpp>
#include <migraphx/gpu/logical_or.hpp>
#include <migraphx/gpu/logical_xor.hpp>
39
40
41
42
#include <migraphx/gpu/lrn.hpp>
#include <migraphx/gpu/miopen.hpp>
#include <migraphx/gpu/quant_convolution.hpp>
#include <migraphx/gpu/rocblas.hpp>
43
#include <migraphx/gpu/unary_not.hpp>
turneram's avatar
turneram committed
44
#include <migraphx/gpu/where.hpp>
45
#include <migraphx/gpu/compiler.hpp>
46
#include <migraphx/iterator_for.hpp>
47
#include <migraphx/program.hpp>
Paul's avatar
Paul committed
48
#include <utility>
49
#include <functional>
Khalique's avatar
Khalique committed
50
#include <algorithm>
Shucai Xiao's avatar
Shucai Xiao committed
51
#include <map>
Paul's avatar
Paul committed
52

Paul's avatar
Paul committed
53
namespace migraphx {
Paul's avatar
Paul committed
54
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
55
namespace gpu {
Paul's avatar
Paul committed
56
57
58

struct miopen_apply
{
Shucai Xiao's avatar
Shucai Xiao committed
59
    module* mod          = nullptr;
60
    const lowering* pass = nullptr;
Shucai Xiao's avatar
Shucai Xiao committed
61
    std::unordered_map<std::string, std::function<instruction_ref(instruction_ref)>> apply_map{};
Shucai Xiao's avatar
Shucai Xiao committed
62
    instruction_ref last{};
63
    std::unordered_map<instruction_ref, std::string> prog_output_names{};
Shucai Xiao's avatar
Shucai Xiao committed
64
65
    bool offload_copy   = false;
    bool int8_x4_format = true;
66
    bool compute_fp32   = false;
Paul's avatar
Paul committed
67

68
    context& get_context() const
69
70
71
72
73
74
    {
        assert(pass != nullptr);
        assert(pass->ctx != nullptr);
        return *pass->ctx;
    }

Paul's avatar
Paul committed
75
76
77
78
79
80
81
    void check_shape(shape x, instruction_ref i)
    {
        assert(x == i->get_shape());
        (void)x;
        (void)i;
    }

82
83
    void create_output_names()
    {
Shucai Xiao's avatar
Shucai Xiao committed
84
        this->last = instruction::get_output_alias(std::prev(mod->end()));
85
86
        if(this->last->name() == "@return")
        {
87
            const auto& prog_outputs = last->inputs();
88
89
90
91
92
93
94
95
96
97
            std::vector<instruction_ref> outputs_alias(prog_outputs.size());

            std::transform(prog_outputs.begin(),
                           prog_outputs.end(),
                           outputs_alias.begin(),
                           [](const auto& i) { return instruction::get_output_alias(i); });

            std::size_t index = 0;
            for(auto ins : outputs_alias)
            {
Shucai Xiao's avatar
Shucai Xiao committed
98
                prog_output_names[ins] = mod->name() + ":#output_" + std::to_string(index++);
99
100
101
102
            }
        }
    }

103
104
105
106
107
108
    const std::unordered_set<std::string>& get_rocblas_fp32_archs()
    {
        static std::unordered_set<std::string> supported_archs{"gfx908", "gfx90a"};
        return supported_archs;
    }

109
110
    void init()
    {
Shucai Xiao's avatar
Shucai Xiao committed
111
        assert(mod != nullptr);
112
        assert(pass != nullptr);
113

Shucai Xiao's avatar
Shucai Xiao committed
114
#if ROCBLAS_VERSION_MAJOR >= 2 && ROCBLAS_VERSION_MINOR >= 38
115
116
117
118
        auto& ctx              = get_context();
        const auto device_name = trim(split_string(get_device_name(), ':').front());
        if(contains(get_rocblas_fp32_archs(), device_name))
            compute_fp32 = true;
Shucai Xiao's avatar
Shucai Xiao committed
119
120
121
122
123
        rocblas_gemm_flags flag;
        rocblas_query_int8_layout_flag(ctx.get_stream().get_rocblas(), &flag);
        int8_x4_format = (flag == rocblas_gemm_flags_pack_int8x4);
#endif

Shucai Xiao's avatar
Shucai Xiao committed
124
        offload_copy = (mod->name() == "main") ? pass->offload_copy : false;
125
        create_output_names();
Paul's avatar
Paul committed
126

127
128
129
130
131
132
133
134
135
136
137
138
        add_generic_op("acos");
        add_generic_op("acosh");
        add_generic_op("add");
        add_generic_op("asin");
        add_generic_op("asinh");
        add_generic_op("atan");
        add_generic_op("atanh");
        add_generic_op("ceil");
        add_generic_op("contiguous");
        add_generic_op("cos");
        add_generic_op("cosh");
        add_generic_op("div");
139
        add_generic_op("equal");
140
141
142
        add_generic_op("erf");
        add_generic_op("exp");
        add_generic_op("floor");
143
        add_generic_op("greater");
144
        add_generic_op("layernorm");
145
        add_generic_op("less");
146
        add_generic_op("log");
Shucai Xiao's avatar
Shucai Xiao committed
147
148
149
        add_generic_op("logical_and");
        add_generic_op("logical_or");
        add_generic_op("logical_xor");
150
151
152
        add_generic_op("max");
        add_generic_op("min");
        add_generic_op("mul");
153
        add_generic_op("not");
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
        add_generic_op("pow");
        add_generic_op("prelu");
        add_generic_op("recip");
        add_generic_op("relu");
        add_generic_op("round");
        add_generic_op("rsqrt");
        add_generic_op("sigmoid");
        add_generic_op("sign");
        add_generic_op("sin");
        add_generic_op("sinh");
        add_generic_op("sqdiff");
        add_generic_op("sqrt");
        add_generic_op("sub");
        add_generic_op("tan");
        add_generic_op("tanh");
turneram's avatar
turneram committed
169
        add_generic_op("where");
170

Shucai Xiao's avatar
Shucai Xiao committed
171
        add_extend_op("abs");
172
173
174
175
176
        add_extend_op("argmax");
        add_extend_op("argmin");
        add_extend_op("clip");
        add_extend_op("concat");
        add_extend_op("convert");
Shucai Xiao's avatar
Shucai Xiao committed
177
        add_extend_op("elu");
178
        add_extend_op("gather");
Shucai Xiao's avatar
Shucai Xiao committed
179
        add_extend_op("leaky_relu");
180
        add_extend_op("logsoftmax");
Shucai Xiao's avatar
Shucai Xiao committed
181
        add_extend_op("lrn");
turneram's avatar
turneram committed
182
        add_extend_op("multinomial");
Shucai Xiao's avatar
Shucai Xiao committed
183
        add_extend_op("nonzero");
184
        add_extend_op("pad");
185
        add_extend_op("pooling");
186
        add_extend_op("prefix_scan_sum");
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
187
        add_extend_op("reverse");
188
189
190
        add_extend_op("rnn_var_sl_last_output");
        add_extend_op("rnn_var_sl_shift_output");
        add_extend_op("rnn_var_sl_shift_sequence");
191
        add_extend_op("scatter_none");
Shucai Xiao's avatar
Shucai Xiao committed
192
        add_extend_op("topk");
193

Shucai Xiao's avatar
Shucai Xiao committed
194
        add_batch_norm_inference_op();
195
        add_convolution_op();
kahmed10's avatar
kahmed10 committed
196
        add_deconvolution_op();
Shucai Xiao's avatar
Shucai Xiao committed
197
198
        add_gemm_op<op::dot>("dot");
        add_gemm_op<op::quant_dot>("quant_dot");
Shucai Xiao's avatar
Shucai Xiao committed
199
        add_if_op();
Shucai Xiao's avatar
Shucai Xiao committed
200
        add_loop_op();
Shucai Xiao's avatar
Shucai Xiao committed
201
        add_neg_op();
202
        add_nms_op();
Shucai Xiao's avatar
Shucai Xiao committed
203
        add_quant_convolution_op();
204
205
    }

206
207
    void copy_params()
    {
Shucai Xiao's avatar
Shucai Xiao committed
208
        if(not offload_copy)
209
            return;
210

Shucai Xiao's avatar
Shucai Xiao committed
211
        for(auto ins : iterator_for(*mod))
212
213
214
        {
            if(ins->name() != "@param")
                continue;
215

Shucai Xiao's avatar
Shucai Xiao committed
216
217
218
219
            // parameter no outputs, no need to insert copy to gpu
            if(ins->outputs().empty())
                continue;

220
221
            auto pos = std::next(ins);
            auto a   = insert_allocation(pos, ins->get_shape());
222
            auto c   = mod->insert_instruction(pos, make_op("hip::copy_to_gpu"), ins, a);
Shucai Xiao's avatar
Shucai Xiao committed
223
            mod->replace_instruction(ins, c);
224
        }
225
226

        // return instruction
Shucai Xiao's avatar
Shucai Xiao committed
227
        auto ret = std::prev(mod->end());
228
229
        if(ret->name() == "@return")
        {
230
            const auto& inputs = ret->inputs();
231
232
233

            // each input of ret need to be copied from gpu to host, and replace
            // output with copy output
234
            for(const auto& in : inputs)
235
            {
236
                auto p_output = mod->insert_instruction(ret, make_op("hip::copy_from_gpu"), in);
237
238
239
240
241
242
                instruction::replace_argument(ret, in, p_output);
            }
        }
        // else branch to handle legacy program without the return instruction
        else
        {
243
            mod->add_instruction(make_op("hip::copy_from_gpu"), ret);
244
        }
245
246
    }

Paul's avatar
Paul committed
247
248
    void apply()
    {
249
        init();
Shucai Xiao's avatar
Shucai Xiao committed
250
        for(auto it = mod->begin(); it != mod->end(); it++)
Paul's avatar
Paul committed
251
        {
Paul's avatar
Paul committed
252
            auto s = it->get_shape();
253
            if(apply_map.count(it->name()) > 0)
254
            {
255
                check_shape(s, apply_map.at(it->name())(it));
Paul's avatar
Paul committed
256
            }
257
258
259
260
            else if(has_compiler_for(it->name()))
            {
                check_shape(s, insert_precompile_op(it));
            }
Paul's avatar
Paul committed
261
        }
262

263
        copy_params();
Paul's avatar
Paul committed
264
265
    }

266
267
268
269
270
271
272
273
274
275
276
277
278
    instruction_ref insert_precompile_op(instruction_ref ins)
    {
        auto output                       = insert_allocation(ins, ins->get_shape());
        std::vector<instruction_ref> refs = ins->inputs();
        refs.push_back(output);

        return mod->replace_instruction(
            ins,
            make_op("gpu::precompile_op", {{"op", to_value(ins->get_operator())}}),
            refs,
            ins->module_inputs());
    }

Paul's avatar
Paul committed
279
    instruction_ref insert_allocation(instruction_ref ins, const shape& s, std::string tag = "")
Paul's avatar
Paul committed
280
    {
281
        // Instruction's output is an input of the ret instruction
Shucai Xiao's avatar
Shucai Xiao committed
282
        if(offload_copy)
Paul's avatar
Paul committed
283
        {
284
285
            auto result = mod->insert_instruction(
                ins, make_op("hip::allocate", {{"shape", to_value(s)}, {"tag", std::move(tag)}}));
Paul's avatar
Paul committed
286
287
            return result;
        }
288
289
290
291

        auto ins_alias = instruction::get_output_alias(ins);
        if(last->name() == "@return" and tag.empty() and prog_output_names.count(ins_alias) > 0)
        {
Shucai Xiao's avatar
Shucai Xiao committed
292
            return mod->add_parameter(prog_output_names[ins_alias], s);
293
294
295
        }
        else if(ins == last and tag.empty())
        {
Shucai Xiao's avatar
Shucai Xiao committed
296
            return mod->add_parameter("output", s);
297
298
        }

299
300
        return mod->insert_instruction(
            ins, make_op("hip::allocate", {{"shape", to_value(s)}, {"tag", std::move(tag)}}));
Paul's avatar
Paul committed
301
302
    }

Shucai Xiao's avatar
Shucai Xiao committed
303
    void add_convolution_op()
Paul's avatar
Paul committed
304
    {
305
306
        apply_map.emplace("convolution", [=](instruction_ref ins) {
            auto&& op = any_cast<op::convolution>(ins->get_operator());
Paul's avatar
Paul committed
307

308
            auto conv = miopen_convolution{op, make_conv(op)};
309
            auto ws   = conv.find(get_context(), ins->get_shape(), to_shapes(ins->inputs()));
Paul's avatar
Paul committed
310

311
312
            auto workspace = insert_allocation(ins, ws, "workspace");
            auto output    = insert_allocation(ins, ins->get_shape());
kahmed10's avatar
kahmed10 committed
313

Shucai Xiao's avatar
Shucai Xiao committed
314
            return mod->replace_instruction(
kahmed10's avatar
kahmed10 committed
315
316
317
318
319
320
321
322
323
324
325
326
327
328
                ins, conv, ins->inputs().at(0), ins->inputs().at(1), workspace, output);
        });
    }

    void add_deconvolution_op()
    {
        apply_map.emplace("deconvolution", [=](instruction_ref ins) {
            auto&& op = any_cast<op::deconvolution>(ins->get_operator());

            auto conv = miopen_deconvolution{op, make_deconv(op)};
            auto ws   = conv.compile(get_context(), ins->get_shape(), to_shapes(ins->inputs()));

            auto workspace = insert_allocation(ins, ws, "workspace");
            auto output    = insert_allocation(ins, ins->get_shape());
Paul's avatar
Paul committed
329

Shucai Xiao's avatar
Shucai Xiao committed
330
            return mod->replace_instruction(
331
332
                ins, conv, ins->inputs().at(0), ins->inputs().at(1), workspace, output);
        });
Paul's avatar
Paul committed
333
334
    }

335
336
    template <typename Op>
    void add_gemm_op(const std::string& name)
337
338
    {
        apply_map.emplace(name, [=](instruction_ref ins) {
339
            std::vector<instruction_ref> refs = ins->inputs();
Shucai Xiao's avatar
Shucai Xiao committed
340
            if(refs.size() == 2)
341
342
            {
                auto output = insert_allocation(ins, ins->get_shape());
Shucai Xiao's avatar
Shucai Xiao committed
343
344
345
346
347
348
                refs.push_back(output);
            }
            else
            {
                auto c_alias = instruction::get_output_alias(refs.back());
                if(ins == last or refs.back()->outputs().size() > 1 or c_alias->inputs().empty())
349
                {
350
351
352
353
                    auto output = insert_allocation(ins, ins->get_shape());
                    auto copy_out =
                        mod->insert_instruction(ins, make_op("hip::copy"), refs.back(), output);
                    refs.back() = copy_out;
354
355
                    refs.push_back(copy_out);
                }
Shucai Xiao's avatar
Shucai Xiao committed
356
357
358
359
                else
                {
                    refs.push_back(refs.back());
                }
360
            }
Shucai Xiao's avatar
Shucai Xiao committed
361
            return mod->replace_instruction(
362
                ins, rocblas_gemm<Op>{Op{}, 1, 0, int8_x4_format, compute_fp32}, refs);
363
364
365
        });
    }

366
367
368
369
370
    void add_quant_convolution_op()
    {
        apply_map.emplace("quant_convolution", [=](instruction_ref ins) {
            auto&& op = any_cast<op::quant_convolution>(ins->get_operator());
            auto conv = miopen_quant_convolution{op, make_conv(op)};
371
            auto ws   = conv.compile(get_context(), ins->get_shape(), to_shapes(ins->inputs()));
372

Shucai Xiao's avatar
Shucai Xiao committed
373
            auto args      = ins->inputs();
374
            auto workspace = insert_allocation(ins, ws, "workspace");
Shucai Xiao's avatar
Shucai Xiao committed
375
376
            auto output    = insert_allocation(ins, ins->get_shape());

Shucai Xiao's avatar
Shucai Xiao committed
377
            return mod->replace_instruction(ins, conv, args[0], args[1], workspace, output);
Shucai Xiao's avatar
Shucai Xiao committed
378
379
380
        });
    }

381
382
383
    // add_generic_op just constructs the operator with no fields whereas add_extend_op copies over
    // the fields Since it doesn't have fields its default constructed

384
385
386
    void add_generic_op(const std::string& name) { add_generic_op(name, "gpu::" + name); }

    void add_generic_op(const std::string& op_name, const std::string& gpu_name)
Paul's avatar
Paul committed
387
    {
388
        apply_map.emplace(op_name, [=](instruction_ref ins) {
389
390
391
            auto output                       = insert_allocation(ins, ins->get_shape());
            std::vector<instruction_ref> refs = ins->inputs();
            refs.push_back(output);
Paul's avatar
Paul committed
392

Shucai Xiao's avatar
Shucai Xiao committed
393
            return mod->replace_instruction(ins, make_op(gpu_name), refs);
394
        });
Paul's avatar
Paul committed
395
    }
Paul's avatar
Paul committed
396

397
398
399
    void add_extend_op(const std::string& name) { add_extend_op(name, "gpu::" + name); }

    void add_extend_op(const std::string& op_name, const std::string& gpu_name)
Khalique's avatar
Khalique committed
400
    {
401
402
        apply_map.emplace(op_name, [=](instruction_ref ins) {
            auto&& op                         = ins->get_operator();
403
404
405
            auto output                       = insert_allocation(ins, ins->get_shape());
            std::vector<instruction_ref> refs = ins->inputs();
            refs.push_back(output);
Paul's avatar
Paul committed
406

Shucai Xiao's avatar
Shucai Xiao committed
407
            return mod->replace_instruction(ins, make_op(gpu_name, op.to_value()), refs);
408
        });
Khalique's avatar
Khalique committed
409
410
    }

Shucai Xiao's avatar
Shucai Xiao committed
411
    void add_batch_norm_inference_op()
412
    {
413
414
415
416
        apply_map.emplace("batch_norm_inference", [=](instruction_ref ins) {
            auto&& op       = any_cast<op::batch_norm_inference>(ins->get_operator());
            auto output     = insert_allocation(ins, ins->get_shape());
            shape old_shape = ins->inputs().at(1)->get_shape();
Shucai Xiao's avatar
Shucai Xiao committed
417
418
419
420
421
422
423
424
425
426
427
428
429
430
            auto input      = ins->inputs()[0];
            auto input_lens = input->get_shape().lens();
            std::vector<int64_t> rsp_lens(input_lens.size(), 1);
            // for per_activation case, also need to reshape input
            if(op.bn_mode == op::batch_norm_inference::per_activation)
            {
                std::copy(input_lens.begin() + 1, input_lens.end(), rsp_lens.begin() + 1);
            }
            else
            {
                rsp_lens[1] = static_cast<int64_t>(old_shape.elements());
            }

            auto reshape_op = op::reshape{rsp_lens};
431
432
            std::vector<instruction_ref> reshapes;
            std::transform(ins->inputs().begin() + 1,
Shucai Xiao's avatar
Shucai Xiao committed
433
434
                           ins->inputs().end(),
                           std::back_inserter(reshapes),
Shucai Xiao's avatar
Shucai Xiao committed
435
                           [&](auto i) { return mod->insert_instruction(ins, reshape_op, i); });
Shucai Xiao's avatar
Shucai Xiao committed
436

Shucai Xiao's avatar
Shucai Xiao committed
437
438
439
440
441
442
443
444
            return mod->replace_instruction(ins,
                                            miopen_batch_norm_inference{op},
                                            input,
                                            reshapes[0],
                                            reshapes[1],
                                            reshapes[2],
                                            reshapes[3],
                                            output);
445
        });
446
    }
Shucai Xiao's avatar
Shucai Xiao committed
447
448
449
450
451
452
453

    // use 0 - input to represent neg
    void add_neg_op()
    {
        apply_map.emplace("neg", [=](instruction_ref ins) {
            auto s = ins->get_shape();
            std::vector<float> zeros(s.elements(), 0.0f);
Shucai Xiao's avatar
Shucai Xiao committed
454
            auto l0     = mod->add_literal(literal(s, zeros));
Shucai Xiao's avatar
Shucai Xiao committed
455
            auto output = insert_allocation(ins, s);
Shucai Xiao's avatar
Shucai Xiao committed
456
            return mod->replace_instruction(
457
                ins, make_op("gpu::sub"), l0, ins->inputs().front(), output);
Shucai Xiao's avatar
Shucai Xiao committed
458
459
        });
    }
Shucai Xiao's avatar
Shucai Xiao committed
460

Shucai Xiao's avatar
Shucai Xiao committed
461
    // add input and output argument for the if operator
Shucai Xiao's avatar
Shucai Xiao committed
462
463
464
465
    void add_if_op()
    {
        apply_map.emplace("if", [=](instruction_ref ins) {
            std::vector<instruction_ref> inputs = ins->inputs();
466
467
468
            auto cpu_cond =
                mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), inputs.front());
            auto sync_cond = mod->insert_instruction(ins, make_op("hip::sync_stream"), cpu_cond);
Shucai Xiao's avatar
Shucai Xiao committed
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
            inputs.front() = sync_cond;

            std::vector<module_ref> mod_args = ins->module_inputs();
            std::map<std::string, shape> name_shapes;
            for(const auto& smod : mod_args)
            {
                auto ps = smod->get_parameter_shapes();
                name_shapes.insert(ps.begin(), ps.end());
            }

            bool ins_output_allocated = false;
            for(auto& pn : name_shapes)
            {
                const auto& s = pn.second;
                instruction_ref output{};
                if(s == ins->get_shape() and not ins_output_allocated)
                {
                    output               = insert_allocation(ins, s);
                    ins_output_allocated = true;
                }
                else
                {
491
492
                    output = mod->insert_instruction(
                        ins, make_op("hip::allocate", {{"shape", to_value(s)}}));
Shucai Xiao's avatar
Shucai Xiao committed
493
494
495
496
497
498
499
                }
                inputs.push_back(output);
            }

            return mod->replace_instruction(ins, ins->get_operator(), inputs, mod_args);
        });
    }
Shucai Xiao's avatar
Shucai Xiao committed
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537

    // replace the loop operator with gpu_loop operator
    void add_loop_op()
    {
        apply_map.emplace("loop", [=](instruction_ref ins) {
            std::vector<instruction_ref> inputs = ins->inputs();
            // copy max_iter from gpu to cpu
            auto cpu_max_iter =
                mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), inputs.at(0));
            auto cpu_cond =
                mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), inputs.at(1));
            auto synced_max_iter =
                mod->insert_instruction(ins, make_op("hip::sync_stream"), cpu_max_iter, cpu_cond);
            inputs.at(0)     = synced_max_iter;
            inputs.at(1)     = cpu_cond;
            auto copy_inputs = inputs;
            std::transform(
                copy_inputs.begin(), copy_inputs.end(), std::back_inserter(inputs), [&](auto in) {
                    return mod->insert_instruction(
                        ins, make_op("hip::allocate", {{"shape", to_value(in->get_shape())}}));
                });

            auto mod_args = ins->module_inputs();
            auto output   = insert_allocation(ins, ins->get_shape());

            const auto* sub_mod = mod_args.front();
            auto cond_out       = mod->insert_instruction(
                ins,
                make_op("hip::allocate",
                        {{"shape", to_value(sub_mod->get_output_shapes().front())}}));
            // add cond and mod outputs to the argument list
            inputs.push_back(cond_out);
            inputs.push_back(output);

            return mod->replace_instruction(
                ins, make_op("gpu::loop", ins->get_operator().to_value()), inputs, mod_args);
        });
    }
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557

    void add_nms_op()
    {
        apply_map.emplace("nonmaxsuppression", [=](instruction_ref ins) {
            auto s      = ins->get_shape();
            auto output = insert_allocation(ins, s);
            std::vector<instruction_ref> cpu_inputs;
            auto inputs = ins->inputs();
            std::transform(
                inputs.begin(), inputs.end(), std::back_inserter(cpu_inputs), [&](auto in) {
                    return mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), in);
                });
            cpu_inputs.front() =
                mod->insert_instruction(ins, make_op("hip::sync_stream"), cpu_inputs);
            auto cpu_out = mod->insert_instruction(ins, ins->get_operator(), cpu_inputs);
            auto gpu_out =
                mod->insert_instruction(ins, make_op("hip::copy_to_gpu"), cpu_out, output);
            return mod->replace_instruction(ins, gpu_out);
        });
    }
Paul's avatar
Paul committed
558
559
};

Shucai Xiao's avatar
Shucai Xiao committed
560
void lowering::apply(module& m) const { miopen_apply{&m, this}.apply(); }
Shucai Xiao's avatar
Shucai Xiao committed
561

Paul's avatar
Paul committed
562
} // namespace gpu
Paul's avatar
Paul committed
563
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
564
} // namespace migraphx