lowering.cpp 24.8 KB
Newer Older
Paul's avatar
Paul committed
1

Paul's avatar
Paul committed
2
3
4
#include <migraphx/cpu/lowering.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/dfor.hpp>
Paul's avatar
Paul committed
5
6
7
8
9
10
11
12
13
14
15
#include <migraphx/op/batch_norm.hpp>
#include <migraphx/op/convolution.hpp>
#include <migraphx/op/dot.hpp>
#include <migraphx/op/elu.hpp>
#include <migraphx/op/im2col.hpp>
#include <migraphx/op/leaky_relu.hpp>
#include <migraphx/op/logsoftmax.hpp>
#include <migraphx/op/lrn.hpp>
#include <migraphx/op/pad.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/op/softmax.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
16
17
#include <migraphx/op/argmax.hpp>
#include <migraphx/op/argmin.hpp>
Paul's avatar
Paul committed
18
19
#include <migraphx/shape_for_each.hpp>
#include <migraphx/iterator_for.hpp>
Paul's avatar
Paul committed
20
#include <migraphx/par_dfor.hpp>
Paul's avatar
Paul committed
21
#include <migraphx/cpu/gemm.hpp>
Paul's avatar
Paul committed
22
#include <unordered_map>
Paul's avatar
Paul committed
23
#include <utility>
Paul's avatar
Paul committed
24

Paul's avatar
Paul committed
25
namespace migraphx {
Paul's avatar
Paul committed
26
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
27
28
29
30
31
32
33
34
namespace cpu {

template <typename T>
T zero(const T&)
{
    return T(0);
}

Khalique's avatar
Khalique committed
35
36
37
38
template <class T>
typename std::conditional_t<std::is_integral<T>{}, std::make_signed<T>, std::enable_if<true, T>>::
    type
    make_signed(T x)
Khalique's avatar
Khalique committed
39
40
41
42
{
    return x;
}

43
44
45
46
//
// cpu implemenataion of batch norm for inference
//
// inputs are:
47
48
49
50
// args[0] -> input data buffer
// args[1] -> mini batch mean
// args[2] -> mini batch variance
// args[3] -> gamma
Aditya Atluri's avatar
Aditya Atluri committed
51
// args[4] -> bias
52
53
54
//
// The equation to compute batch norm for inference is:
//
Aditya Atluri's avatar
Aditya Atluri committed
55
// output[i] = bias + gamma * (input[i] + mean) / sqrt(variance + epsilon)
56
57
58
59
60
//
// the input data format should be nchw
//
struct cpu_batch_norm_inference
{
61
    op::batch_norm_inference op;
62

63
64
65
66
67
68
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

69
70
    std::string name() const { return "cpu::batch_norm_inference"; }

Paul's avatar
Paul committed
71
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
72

Paul's avatar
Paul committed
73
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
74
    {
75
76
        argument output{output_shape};

Aditya Atluri's avatar
Aditya Atluri committed
77
78
        double epsilon           = op.epsilon;
        auto input               = args[0];
Paul's avatar
Paul committed
79
80
81
82
        auto arg_gamma           = args[1];
        auto arg_bias            = args[2];
        auto mini_batch_mean     = args[3];
        auto mini_batch_variance = args[4];
83

84
        auto num_batch    = output_shape.lens()[0];
Aditya Atluri's avatar
Aditya Atluri committed
85
86
        auto num_channels = output_shape.lens()[1];
        auto image_height = output_shape.lens()[2];
87
        auto image_width  = output_shape.lens()[3];
Aditya Atluri's avatar
Aditya Atluri committed
88

89
        if(op.bn_mode == op::batch_norm_inference::spatial)
Scott Thornton's avatar
Scott Thornton committed
90
91
92
93
        {
            visit_all(output, input, mini_batch_mean, mini_batch_variance, arg_gamma, arg_bias)(
                [&](auto result, auto buffer, auto mean, auto variance, auto gamma, auto bias) {

Paul's avatar
Paul committed
94
                    par_dfor(num_batch, num_channels, image_height, image_width)(
Scott Thornton's avatar
Scott Thornton committed
95
                        [&](std::size_t n, std::size_t c, std::size_t h, std::size_t w) {
96
97
98
99
                            assert((variance[c] + epsilon) > 0);
                            result(n, c, h, w) = gamma[c] * (buffer(n, c, h, w) - mean[c]) /
                                                     std::sqrt(variance[c] + epsilon) +
                                                 bias[c];
Scott Thornton's avatar
Scott Thornton committed
100
101
                        });
                });
102
103
        }

104
        if(op.bn_mode == op::batch_norm_inference::per_activation)
Scott Thornton's avatar
Scott Thornton committed
105
        {
106
107
108
            visit_all(output, input, mini_batch_mean, mini_batch_mean, arg_gamma, arg_bias)(
                [&](auto result, auto buffer, auto mean, auto variance, auto gamma, auto bias) {

Paul's avatar
Paul committed
109
                    par_dfor(num_batch, num_channels, image_height, image_width)(
110
                        [&](std::size_t n, std::size_t c, std::size_t h, std::size_t w) {
Paul's avatar
Paul committed
111
                            assert((variance(c, h, w) + epsilon) > 0);
Scott Thornton's avatar
Scott Thornton committed
112
113
114
115
116
117
                            result(n, c, h, w) = gamma(c, h, w) *
                                                     (buffer(n, c, h, w) - mean(c, h, w)) /
                                                     std::sqrt(variance(c, h, w) + epsilon) +
                                                 bias(c, h, w);
                        });
                });
118
        }
119
120
121
122
123

        return output;
    }
};

Khalique's avatar
Khalique committed
124
struct cpu_lrn
Khalique's avatar
Khalique committed
125
{
Khalique's avatar
Khalique committed
126
    op::lrn op;
Khalique's avatar
Khalique committed
127

128
129
130
131
132
133
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

Khalique's avatar
Khalique committed
134
    std::string name() const { return "cpu::lrn"; }
Khalique's avatar
Khalique committed
135
136
137
138
139
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
Khalique's avatar
Khalique committed
140
141
142
143
            int n_batch         = output_shape.lens()[0];
            int channels        = output_shape.lens()[1];
            int height          = output_shape.lens()[2];
            int width           = output_shape.lens()[3];
Paul's avatar
Paul committed
144
            float alphaoverarea = op.alpha / float(op.size);
Khalique's avatar
Khalique committed
145
            int radius          = (op.size - 1) / 2;
Khalique's avatar
Khalique committed
146

147
            par_dfor(n_batch, height, width)([&](int b, int h, int w) {
Khalique's avatar
Khalique committed
148
                float scale = 0;
Khalique's avatar
Khalique committed
149
150
                dfor(channels)([&](int c) {
                    auto start = (c - radius) < 0 ? 0 : (c - radius);
Khalique's avatar
Khalique committed
151
                    auto end   = (c + radius) > channels ? channels : (c + radius);
Khalique's avatar
Khalique committed
152
153
                    for(auto k = start; k < end; ++k)
                    {
Khalique's avatar
Khalique committed
154
                        scale += std::pow(input(b, k, h, w), 2);
Khalique's avatar
Khalique committed
155
156
157
                    }
                    scale *= alphaoverarea;
                    scale += op.bias;
Khalique's avatar
Khalique committed
158
                    scale              = std::pow(scale, -op.beta);
Khalique's avatar
Khalique committed
159
160
161
162
163
164
165
166
                    output(b, c, h, w) = input(b, c, h, w) * scale;
                });
            });
        });
        return result;
    }
};

Paul's avatar
Paul committed
167
168
struct cpu_convolution
{
169
    op::convolution op;
Paul's avatar
Paul committed
170

171
172
173
174
175
176
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

Paul's avatar
Paul committed
177
    std::string name() const { return "cpu::convolution"; }
Paul's avatar
Paul committed
178
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Paul's avatar
Paul committed
179
180
181
182
    argument compute(context&, shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        visit_all(result, args[0], args[1])([&](auto output, auto input, auto weights) {
Khalique's avatar
Khalique committed
183
            auto in   = input.get_shape().lens();
Khalique's avatar
Khalique committed
184
185
            auto in_h = in[2];
            auto in_w = in[3];
Paul's avatar
Paul committed
186

Khalique's avatar
Khalique committed
187
            auto wei   = weights.get_shape().lens();
Khalique's avatar
Khalique committed
188
189
190
191
            auto wei_n = wei[0];
            auto wei_c = wei[1];
            auto wei_h = wei[2];
            auto wei_w = wei[3];
Paul's avatar
Paul committed
192

Paul's avatar
Paul committed
193
            par_dfor(output_shape.lens()[0],
Paul's avatar
Paul committed
194
195
196
                     output_shape.lens()[1],
                     output_shape.lens()[2],
                     output_shape.lens()[3])(
Paul's avatar
Paul committed
197
                [&](std::size_t o, std::size_t w, std::size_t i, std::size_t j) {
Paul's avatar
Paul committed
198
199
200
                    const auto start_x  = i * op.stride[0] - op.padding[0];
                    const auto start_y  = j * op.stride[1] - op.padding[1];
                    const auto group_id = w / (wei_n / op.group);
Paul's avatar
Paul committed
201
202
203

                    double acc = 0;
                    dfor(wei_c, wei_h, wei_w)([&](std::size_t k, std::size_t x, std::size_t y) {
Paul's avatar
Paul committed
204
205
206
                        const auto in_x  = start_x + x;
                        const auto in_y  = start_y + y;
                        const auto in_ch = group_id * wei_c + k;
Paul's avatar
Paul committed
207
208
                        if(in_x >= 0 && in_x < in_h && in_y >= 0 && in_y < in_w)
                        {
Khalique's avatar
Khalique committed
209
                            acc += input(o, in_ch, in_x, in_y) * weights(w, k, x, y);
Paul's avatar
Paul committed
210
211
212
213
214
215
216
217
218
                        }
                    });
                    output(o, w, i, j) = acc;
                });
        });
        return result;
    }
};

Scott Thornton's avatar
Scott Thornton committed
219
220
struct cpu_im2col
{
221
    op::im2col op;
Scott Thornton's avatar
Scott Thornton committed
222

223
224
225
226
227
228
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

Scott Thornton's avatar
Scott Thornton committed
229
230
    static std::string name() { return "cpu::im2col"; }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Scott Thornton's avatar
Scott Thornton committed
231

wsttiger's avatar
wsttiger committed
232
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Scott Thornton's avatar
Scott Thornton committed
233
    {
Scott Thornton's avatar
Scott Thornton committed
234
        argument result{output_shape};
Scott Thornton's avatar
Scott Thornton committed
235
        auto input_shape   = args[0].get_shape();
Scott Thornton's avatar
Scott Thornton committed
236
237
        auto weights_shape = args[1].get_shape();
        visit_all(result, args[0])([&](auto col, auto input) {
Scott Thornton's avatar
Scott Thornton committed
238
239
            const std::size_t& height   = input_shape.lens()[2];
            const std::size_t& width    = input_shape.lens()[3];
Scott Thornton's avatar
Scott Thornton committed
240
241
242
            const std::size_t& channels = weights_shape.lens()[1];
            const std::size_t& kernel_h = weights_shape.lens()[2];
            const std::size_t& kernel_w = weights_shape.lens()[3];
Scott Thornton's avatar
Scott Thornton committed
243
244
            const std::size_t& pad_h    = op.padding[0];
            const std::size_t& pad_w    = op.padding[1];
Scott Thornton's avatar
Scott Thornton committed
245
246
247
            const std::size_t& stride_h = op.stride[0];
            const std::size_t& stride_w = op.stride[1];

Paul's avatar
Paul committed
248
249
            long kdiv2_h = kernel_h / 2;
            long kdiv2_w = kernel_w / 2;
Scott Thornton's avatar
Scott Thornton committed
250
            // calculate output sizes
Scott Thornton's avatar
Scott Thornton committed
251
252
            const std::size_t col_height = (height - kernel_h + 2 * pad_h) / stride_h + 1;
            const std::size_t col_width  = (width - kernel_w + 2 * pad_w) / stride_w + 1;
wsttiger's avatar
wsttiger committed
253
            // account for padding for the starting position of the input pixels
Paul's avatar
Paul committed
254
            long iinput = kdiv2_h - pad_h;
wsttiger's avatar
wsttiger committed
255
            // loop over output pixels (ioutput, joutput)
Scott Thornton's avatar
Scott Thornton committed
256
257
            for(std::size_t ioutput = 0; ioutput < col_height; ioutput++, iinput += stride_h)
            {
Paul's avatar
Paul committed
258
                long jinput = kdiv2_w - pad_w;
Scott Thornton's avatar
Scott Thornton committed
259
260
261
262
263
                for(std::size_t joutput = 0; joutput < col_width; joutput++, jinput += stride_w)
                {
                    // compute linear index for output
                    std::size_t ldx = ioutput * col_width + joutput;
                    std::size_t p   = 0;
wsttiger's avatar
wsttiger committed
264
265
266
                    dfor(channels,
                         kernel_h,
                         kernel_w)([&](std::size_t c, std::size_t koffset, std::size_t loffset) {
Paul's avatar
Paul committed
267
268
                        auto idx    = iinput + long(koffset) - kdiv2_h;
                        auto jdx    = jinput + long(loffset) - kdiv2_w;
wsttiger's avatar
wsttiger committed
269
270
271
272
273
                        col(ldx, p) = ((idx >= 0) && (idx < height) && (jdx >= 0) && (jdx < width))
                                          ? input(0, c, idx, jdx)
                                          : 0;
                        p++;
                    });
Scott Thornton's avatar
Scott Thornton committed
274
275
                }
            }
Scott Thornton's avatar
Scott Thornton committed
276
        });
Scott Thornton's avatar
Scott Thornton committed
277
278
279
280
        return result;
    }
};

Paul's avatar
Paul committed
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
struct max_pool
{
    static std::string name() { return "max"; }
    static double start() { return std::numeric_limits<double>::lowest(); }

    static double apply(double x, double y)
    {
        double m = std::max(x, y);
        return (m);
    }

    static double final(double x, double) { return (x); }
};

struct avg_pool
{
    static std::string name() { return "average"; }
    static double start() { return 0.0; }

    static double apply(double x, double y) { return x + y; }

    static double final(double x, double y) { return x / y; }
};

template <class Op>
struct cpu_pooling
{
308
    op::pooling op;
Paul's avatar
Paul committed
309

310
311
312
313
314
315
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

Paul's avatar
Paul committed
316
    std::string name() const { return "cpu::pooling_" + Op::name(); }
Paul's avatar
Paul committed
317
318
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
319
320
321
322
323
324
325
    {
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
            using type = typename decltype(output)::value_type;
            auto in_h  = input.get_shape().lens()[2];
            auto in_w  = input.get_shape().lens()[3];

Paul's avatar
Paul committed
326
            par_dfor(output_shape.lens()[0],
Paul's avatar
Paul committed
327
328
329
                     output_shape.lens()[1],
                     output_shape.lens()[2],
                     output_shape.lens()[3])(
Paul's avatar
Paul committed
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
                [&](std::size_t o, std::size_t w, std::size_t i, std::size_t j) {
                    const int start_x0 = i * op.stride[0] - op.padding[0];
                    const int start_y0 = j * op.stride[1] - op.padding[1];

                    const int hend = std::min(start_x0 + op.lengths[0], in_h);
                    const int wend = std::min(start_y0 + op.lengths[1], in_w);

                    const int start_x = std::max(start_x0, 0);
                    const int start_y = std::max(start_y0, 0);

                    const int w_h       = (hend - start_x);
                    const int w_w       = (wend - start_y);
                    const int pool_size = std::max(w_h * w_w, 1);

                    double acc = Op::start();
                    dfor(w_h, w_w)([&](int x, int y) {
                        const int in_x = start_x + x;
                        const int in_y = start_y + y;
                        if(in_x >= 0 && in_x < in_h && in_y >= 0 && in_y < in_w)
                        {
                            acc = Op::apply(acc, input(o, w, in_x, in_y));
                        }
                    });
                    output(o, w, i, j) = type(Op::final(acc, pool_size));
                });
        });
        return result;
    }
};

360
struct cpu_op
Paul's avatar
Paul committed
361
{
362
363
    operation op;
    std::string name() const { return "cpu::" + op.name(); }
Paul's avatar
Paul committed
364
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Paul's avatar
Paul committed
365
    argument compute(context&, const shape& output_shape, const std::vector<argument>& args) const
Paul's avatar
Paul committed
366
    {
Paul's avatar
Paul committed
367
        return op.compute(output_shape, args);
Paul's avatar
Paul committed
368
    }
Paul's avatar
Paul committed
369
    friend bool operator==(const cpu_op& x, const cpu_op& y) { return x.op == y.op; }
370
371
372
373
374
375
    friend bool operator==(const cpu_op& x, const operation& y)
    {
        if(x.name() != y.name())
            return false;
        return x == any_cast<cpu_op>(y);
    }
Paul's avatar
Paul committed
376
    friend bool operator==(const operation& x, const cpu_op& y) { return y == x; }
Paul's avatar
Paul committed
377
378
};

Khalique's avatar
Khalique committed
379
struct cpu_pad
380
{
Khalique's avatar
Khalique committed
381
    op::pad op;
382
383
384
385
386
387
388

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

Khalique's avatar
Khalique committed
389
    std::string name() const { return "cpu::contiguous"; }
390
391
392
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
    {
Khalique's avatar
Khalique committed
393
        assert(output_shape.standard());
394
        argument result{output_shape};
Khalique's avatar
Khalique committed
395
        result.visit([&](auto output) { std::fill(output.begin(), output.end(), op.value); });
Khalique's avatar
Khalique committed
396
397

        visit_all(result, args[0])([&](auto output, auto input) {
398
            shape_for_each(input.get_shape(), [&](const auto& idx) {
Khalique's avatar
Khalique committed
399
                std::vector<std::size_t> new_idx(idx.size());
Khalique's avatar
Khalique committed
400
401
402
403
                std::transform(
                    idx.begin(), idx.end(), op.pads.begin(), new_idx.begin(), [](auto i, auto j) {
                        return i + j;
                    });
Khalique's avatar
Khalique committed
404
                output(new_idx.begin(), new_idx.end()) = input(idx.begin(), idx.end());
405
            });
Khalique's avatar
Khalique committed
406
407
        });

408
409
410
411
        return result;
    }
};

Paul's avatar
Paul committed
412
413
struct cpu_gemm
{
Shucai Xiao's avatar
Shucai Xiao committed
414
    op::dot op;
415
416
417
418
419
420

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }
Shucai Xiao's avatar
Shucai Xiao committed
421
    std::string name() const { return "cpu::dot"; }
Shucai Xiao's avatar
Shucai Xiao committed
422
423
    shape compute_shape(const std::vector<shape>& inputs) const
    {
Shucai Xiao's avatar
Shucai Xiao committed
424
425
426
427
428
        if(inputs.size() == 3)
        {
            auto c_shape = inputs.at(2);
            check_shapes{{c_shape}}.not_broadcasted();
        }
Shucai Xiao's avatar
Shucai Xiao committed
429
        return op.compute_shape(inputs);
Shucai Xiao's avatar
Shucai Xiao committed
430
    }
Paul's avatar
Paul committed
431

Paul's avatar
Paul committed
432
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
433
434
    {
        argument result{output_shape};
Shucai Xiao's avatar
Shucai Xiao committed
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
        // 3 inputs, it is alpha * A * B + beta * C, then
        // A and B are matrics, and C is broadcastable to A * B
        if(args.size() == 3)
        {
            // no need to consider the value of args[2]
            if(op.beta == 0.0f)
            {
                result.visit([&](auto output) { std::fill(output.begin(), output.end(), 0); });
            }
            else
            {
                visit_all(result, args[2])([&](auto output, auto input) {
                    std::copy(input.begin(), input.end(), output.begin());
                });
            }

            migemm(result, args[0], args[1], op.alpha, op.beta);

            return result;
        }

        // 2 input arguments
        migemm(result, args[0], args[1], op.alpha, 0.0f);

Paul's avatar
Paul committed
459
460
461
462
        return result;
    }
};

Khalique's avatar
Khalique committed
463
464
465
466
467
468
struct leaky_relu_op
{
    op::leaky_relu op;
    std::string name() const { return "cpu::leaky_relu"; }
    auto fcn() const
    {
Paul's avatar
Paul committed
469
        auto a = op.alpha;
Khalique's avatar
Khalique committed
470
471
472
473
        return [a](auto x) { return x > 0 ? x : x * a; };
    }
};

Khalique's avatar
Khalique committed
474
475
476
477
478
479
struct elu_op
{
    op::elu op;
    std::string name() const { return "cpu::elu"; }
    auto fcn() const
    {
Paul's avatar
Paul committed
480
        auto a = op.alpha;
Khalique's avatar
Khalique committed
481
482
483
484
        return [a](auto x) { return x > 0 ? x : a * std::expm1(x); };
    }
};

Paul's avatar
Paul committed
485
486
487
488
template <typename Op>
struct cpu_unary
{
    Op op;
489
490
491
492
493
494

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op.op, f);
    }
Paul's avatar
Paul committed
495
    std::string name() const { return op.name(); }
Shucai Xiao's avatar
Shucai Xiao committed
496
    shape compute_shape(const std::vector<shape>& inputs) const
497
    {
Shucai Xiao's avatar
Shucai Xiao committed
498
499
500
        check_shapes{inputs}.has(1);
        auto s = inputs.at(0);
        if(s.packed())
501
        {
Shucai Xiao's avatar
Shucai Xiao committed
502
            return s;
503
504
505
        }
        else
        {
Shucai Xiao's avatar
Shucai Xiao committed
506
            return {s.type(), s.lens()};
507
508
509
        }
    }

Paul's avatar
Paul committed
510
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
511
512
513
514
    {
        argument result{output_shape};
        result.visit([&](auto output) {
            args[0].visit([&](auto input) {
Shucai Xiao's avatar
Shucai Xiao committed
515
                if(input.get_shape().standard())
516
517
518
519
520
521
522
523
524
                {
                    std::transform(input.begin(), input.end(), output.begin(), op.fcn());
                }
                else
                {
                    shape_for_each(output.get_shape(), [&](const auto& idx) {
                        output(idx.begin(), idx.end()) = op.fcn()(input(idx.begin(), idx.end()));
                    });
                }
Paul's avatar
Paul committed
525
526
            });
        });
527

Paul's avatar
Paul committed
528
529
530
531
        return result;
    }
};

Khalique's avatar
Khalique committed
532
struct cpu_softmax
Paul's avatar
Paul committed
533
{
Khalique's avatar
Khalique committed
534
535
536
537
538
539
540
541
542
543
    op::softmax op;

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

    std::string name() const { return "cpu::softmax"; }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Paul's avatar
Paul committed
544
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
545
546
    {
        argument result{output_shape};
Khalique's avatar
Khalique committed
547
        auto batch_lens     = output_shape.lens();
Shucai Xiao's avatar
Shucai Xiao committed
548
        std::size_t n_dims  = batch_lens[op.axis];
Khalique's avatar
Khalique committed
549
        batch_lens[op.axis] = 1;
550
551
        shape batch_shape{shape::int32_type, batch_lens};

Paul's avatar
Paul committed
552
553
        visit_all(result, args[0])([&](auto output, auto input) {
            using value_type = typename decltype(input)::value_type;
Shucai Xiao's avatar
Shucai Xiao committed
554
555
            std::vector<value_type> batch_max(batch_shape.elements(),
                                              std::numeric_limits<value_type>::lowest());
556
557
            std::vector<value_type> batch_sum(batch_shape.elements(), value_type(0));
            par_for(batch_shape.elements(), [&](auto i) {
558
                auto idx = batch_shape.multi(i);
Shucai Xiao's avatar
Shucai Xiao committed
559
                for(std::size_t j = 0; j < n_dims; ++j)
560
561
562
563
                {
                    idx[op.axis] = j;
                    batch_max[i] = std::max(batch_max[i], input(idx.begin(), idx.end()));
                }
Khalique's avatar
Khalique committed
564

Shucai Xiao's avatar
Shucai Xiao committed
565
                for(std::size_t j = 0; j < n_dims; ++j)
566
                {
Shucai Xiao's avatar
Shucai Xiao committed
567
568
569
                    idx[op.axis]      = j;
                    std::size_t index = output_shape.index(idx);
                    output[index]     = std::exp(input[index] - batch_max[i]);
570
                }
Khalique's avatar
Khalique committed
571

Shucai Xiao's avatar
Shucai Xiao committed
572
                for(std::size_t j = 0; j < n_dims; ++j)
573
574
575
576
                {
                    idx[op.axis] = j;
                    batch_sum[i] += output(idx.begin(), idx.end());
                }
Khalique's avatar
Khalique committed
577

Shucai Xiao's avatar
Shucai Xiao committed
578
                for(std::size_t j = 0; j < n_dims; ++j)
579
580
581
582
                {
                    idx[op.axis] = j;
                    output(idx.begin(), idx.end()) /= batch_sum[i];
                }
Paul's avatar
Paul committed
583
584
            });
        });
Khalique's avatar
Khalique committed
585

Paul's avatar
Paul committed
586
587
588
589
        return result;
    }
};

Shucai Xiao's avatar
Shucai Xiao committed
590
591
592
struct cpu_logsoftmax
{
    op::logsoftmax op;
593
594
595
596
597
598
599

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

Shucai Xiao's avatar
Shucai Xiao committed
600
601
602
603
604
    std::string name() const { return "cpu::logsoftmax"; }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
Shucai Xiao's avatar
Shucai Xiao committed
605
        auto batch_lens     = output_shape.lens();
Shucai Xiao's avatar
Shucai Xiao committed
606
        std::size_t n_dims  = batch_lens[op.axis];
607
608
609
        batch_lens[op.axis] = 1;
        shape batch_shape{shape::int32_type, batch_lens};

610
611
        // use a parallel implementation to acheive better performance
        // one thread for one batch
Shucai Xiao's avatar
Shucai Xiao committed
612
613
        visit_all(result, args[0])([&](auto output, auto input) {
            using value_type = typename decltype(input)::value_type;
Shucai Xiao's avatar
Shucai Xiao committed
614
615
            std::vector<value_type> batch_max(batch_shape.elements(),
                                              std::numeric_limits<value_type>::lowest());
616
            std::vector<value_type> batch_sum(batch_shape.elements(), value_type(0));
Shucai Xiao's avatar
Shucai Xiao committed
617

618
            par_for(batch_shape.elements(), [&](auto i) {
619
                auto idx = batch_shape.multi(i);
Shucai Xiao's avatar
Shucai Xiao committed
620
                for(std::size_t j = 0; j < n_dims; ++j)
621
622
623
624
                {
                    idx[op.axis] = j;
                    batch_max[i] = std::max(batch_max[i], input(idx.begin(), idx.end()));
                }
Shucai Xiao's avatar
Shucai Xiao committed
625

Shucai Xiao's avatar
Shucai Xiao committed
626
                for(std::size_t j = 0; j < n_dims; ++j)
627
                {
Shucai Xiao's avatar
Shucai Xiao committed
628
629
630
                    idx[op.axis]      = j;
                    std::size_t index = output_shape.index(idx);
                    output[index]     = input[index] - batch_max[i];
631
632
                }

Shucai Xiao's avatar
Shucai Xiao committed
633
                for(std::size_t j = 0; j < n_dims; ++j)
634
635
636
637
                {
                    idx[op.axis] = j;
                    batch_sum[i] += std::exp(output(idx.begin(), idx.end()));
                }
Shucai Xiao's avatar
Shucai Xiao committed
638
639
640

                batch_sum[i] = std::log(batch_sum[i]);

Shucai Xiao's avatar
Shucai Xiao committed
641
                for(std::size_t j = 0; j < n_dims; ++j)
642
643
644
645
                {
                    idx[op.axis] = j;
                    output(idx.begin(), idx.end()) -= batch_sum[i];
                }
Shucai Xiao's avatar
Shucai Xiao committed
646
647
648
649
650
651
652
            });
        });

        return result;
    }
};

Paul's avatar
Paul committed
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
struct cpu_apply
{
    program* prog;
    std::unordered_map<std::string, std::function<void(instruction_ref)>> apply_map{};

    template <class T>
    auto simple_op()
    {
        return [this](instruction_ref ins) { apply_simple_op<T>(ins); };
    }

    template <class T, class Op>
    auto extend_op()
    {
        return [this](instruction_ref ins) { apply_extend_op<T, Op>(ins); };
    }

    void init()
    {
Paul's avatar
Paul committed
672
673
        apply_map["batch_norm_inference"] =
            extend_op<cpu_batch_norm_inference, op::batch_norm_inference>();
674
        apply_map["convolution"] = extend_op<cpu_convolution, op::convolution>();
675
        apply_map["dot"]         = extend_op<cpu_gemm, op::dot>();
Paul's avatar
Paul committed
676
        apply_map["elu"]         = extend_op<cpu_unary<elu_op>, op::elu>();
Paul's avatar
Paul committed
677
        apply_map["im2col"]      = extend_op<cpu_im2col, op::im2col>();
Paul's avatar
Paul committed
678
679
680
681
        apply_map["leaky_relu"]  = extend_op<cpu_unary<leaky_relu_op>, op::leaky_relu>();
        apply_map["logsoftmax"]  = extend_op<cpu_logsoftmax, op::logsoftmax>();
        apply_map["lrn"]         = extend_op<cpu_lrn, op::lrn>();
        apply_map["pad"]         = extend_op<cpu_pad, op::pad>();
Khalique's avatar
Khalique committed
682
        apply_map["softmax"]     = extend_op<cpu_softmax, op::softmax>();
Paul's avatar
Paul committed
683
684
685
686
687
688
689
    }

    void apply()
    {
        init();
        for(auto it : iterator_for(*prog))
        {
Khalique's avatar
Khalique committed
690
            if(it->name() == "pooling")
Paul's avatar
Paul committed
691
692
693
            {
                apply_pooling(it);
            }
Paul's avatar
Paul committed
694
            else if(apply_map.count(it->name()) > 0)
Paul's avatar
Paul committed
695
            {
Paul's avatar
Paul committed
696
                apply_map.at(it->name())(it);
Paul's avatar
Paul committed
697
            }
Paul's avatar
Paul committed
698
            else if(is_context_free(it->get_operator()))
699
700
701
            {
                apply_cpu_op(it);
            }
Paul's avatar
Paul committed
702
703
704
        }
    }

705
706
707
708
709
    void apply_cpu_op(instruction_ref ins)
    {
        prog->replace_instruction(ins, cpu_op{ins->get_operator()}, ins->inputs());
    }

Paul's avatar
Paul committed
710
711
712
    template <class T>
    void apply_simple_op(instruction_ref ins)
    {
Paul's avatar
Paul committed
713
        prog->replace_instruction(ins, T{}, ins->inputs());
Paul's avatar
Paul committed
714
715
716
717
718
    }

    template <class T, class Op>
    void apply_extend_op(instruction_ref ins)
    {
719
        auto&& op = any_cast<Op>(ins->get_operator());
Paul's avatar
Paul committed
720
        prog->replace_instruction(ins, T{op}, ins->inputs());
Paul's avatar
Paul committed
721
722
723
724
    }

    void apply_pooling(instruction_ref ins)
    {
725
        auto&& op = any_cast<op::pooling>(ins->get_operator());
Paul's avatar
Paul committed
726
        if(op.mode == "max")
Paul's avatar
Paul committed
727
            prog->replace_instruction(ins, cpu_pooling<max_pool>{op}, ins->inputs());
Paul's avatar
Paul committed
728
        else if(op.mode == "average")
Paul's avatar
Paul committed
729
            prog->replace_instruction(ins, cpu_pooling<avg_pool>{op}, ins->inputs());
Paul's avatar
Paul committed
730
731
732
    }
};

Shucai Xiao's avatar
Shucai Xiao committed
733
void lowering::apply(program& p) const { cpu_apply{&p}.apply(); }
Paul's avatar
Paul committed
734
735

} // namespace cpu
Paul's avatar
Paul committed
736
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
737
} // namespace migraphx