lowering.cpp 31.6 KB
Newer Older
Paul's avatar
Paul committed
1

Paul's avatar
Paul committed
2
3
4
5
6
7
#include <migraphx/cpu/lowering.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/dfor.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/shape_for_each.hpp>
#include <migraphx/iterator_for.hpp>
Paul's avatar
Paul committed
8
#include <migraphx/par_dfor.hpp>
Paul's avatar
Paul committed
9
#include <migraphx/cpu/gemm.hpp>
Paul's avatar
Paul committed
10
#include <unordered_map>
Paul's avatar
Paul committed
11
#include <utility>
Paul's avatar
Paul committed
12

Paul's avatar
Paul committed
13
namespace migraphx {
Paul's avatar
Paul committed
14
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
15
16
17
18
19
20
21
22
namespace cpu {

template <typename T>
T zero(const T&)
{
    return T(0);
}

Khalique's avatar
Khalique committed
23
24
25
26
template <class T>
typename std::conditional_t<std::is_integral<T>{}, std::make_signed<T>, std::enable_if<true, T>>::
    type
    make_signed(T x)
Khalique's avatar
Khalique committed
27
28
29
30
{
    return x;
}

31
32
33
34
//
// cpu implemenataion of batch norm for inference
//
// inputs are:
35
36
37
38
// args[0] -> input data buffer
// args[1] -> mini batch mean
// args[2] -> mini batch variance
// args[3] -> gamma
Aditya Atluri's avatar
Aditya Atluri committed
39
// args[4] -> bias
40
41
42
//
// The equation to compute batch norm for inference is:
//
Aditya Atluri's avatar
Aditya Atluri committed
43
// output[i] = bias + gamma * (input[i] + mean) / sqrt(variance + epsilon)
44
45
46
47
48
//
// the input data format should be nchw
//
struct cpu_batch_norm_inference
{
49
    op::batch_norm_inference op;
50

51
52
53
54
55
56
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

57
58
    std::string name() const { return "cpu::batch_norm_inference"; }

Paul's avatar
Paul committed
59
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
60

Paul's avatar
Paul committed
61
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
62
    {
63
64
        argument output{output_shape};

Aditya Atluri's avatar
Aditya Atluri committed
65
66
        double epsilon           = op.epsilon;
        auto input               = args[0];
Paul's avatar
Paul committed
67
68
69
70
        auto arg_gamma           = args[1];
        auto arg_bias            = args[2];
        auto mini_batch_mean     = args[3];
        auto mini_batch_variance = args[4];
71

72
        auto num_batch    = output_shape.lens()[0];
Aditya Atluri's avatar
Aditya Atluri committed
73
74
        auto num_channels = output_shape.lens()[1];
        auto image_height = output_shape.lens()[2];
75
        auto image_width  = output_shape.lens()[3];
Aditya Atluri's avatar
Aditya Atluri committed
76

77
        if(op.bn_mode == op::batch_norm_inference::spatial)
Scott Thornton's avatar
Scott Thornton committed
78
79
80
81
        {
            visit_all(output, input, mini_batch_mean, mini_batch_variance, arg_gamma, arg_bias)(
                [&](auto result, auto buffer, auto mean, auto variance, auto gamma, auto bias) {

Paul's avatar
Paul committed
82
                    par_dfor(num_batch, num_channels, image_height, image_width)(
Scott Thornton's avatar
Scott Thornton committed
83
                        [&](std::size_t n, std::size_t c, std::size_t h, std::size_t w) {
84
85
86
87
                            assert((variance[c] + epsilon) > 0);
                            result(n, c, h, w) = gamma[c] * (buffer(n, c, h, w) - mean[c]) /
                                                     std::sqrt(variance[c] + epsilon) +
                                                 bias[c];
Scott Thornton's avatar
Scott Thornton committed
88
89
                        });
                });
90
91
        }

92
        if(op.bn_mode == op::batch_norm_inference::per_activation)
Scott Thornton's avatar
Scott Thornton committed
93
        {
94
95
96
            visit_all(output, input, mini_batch_mean, mini_batch_mean, arg_gamma, arg_bias)(
                [&](auto result, auto buffer, auto mean, auto variance, auto gamma, auto bias) {

Paul's avatar
Paul committed
97
                    par_dfor(num_batch, num_channels, image_height, image_width)(
98
                        [&](std::size_t n, std::size_t c, std::size_t h, std::size_t w) {
Paul's avatar
Paul committed
99
                            assert((variance(c, h, w) + epsilon) > 0);
Scott Thornton's avatar
Scott Thornton committed
100
101
102
103
104
105
                            result(n, c, h, w) = gamma(c, h, w) *
                                                     (buffer(n, c, h, w) - mean(c, h, w)) /
                                                     std::sqrt(variance(c, h, w) + epsilon) +
                                                 bias(c, h, w);
                        });
                });
106
        }
107
108
109
110
111

        return output;
    }
};

Khalique's avatar
Khalique committed
112
struct cpu_lrn
Khalique's avatar
Khalique committed
113
{
Khalique's avatar
Khalique committed
114
    op::lrn op;
Khalique's avatar
Khalique committed
115

116
117
118
119
120
121
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

Khalique's avatar
Khalique committed
122
    std::string name() const { return "cpu::lrn"; }
Khalique's avatar
Khalique committed
123
124
125
126
127
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
Khalique's avatar
Khalique committed
128
129
130
131
            int n_batch         = output_shape.lens()[0];
            int channels        = output_shape.lens()[1];
            int height          = output_shape.lens()[2];
            int width           = output_shape.lens()[3];
Paul's avatar
Paul committed
132
            float alphaoverarea = op.alpha / float(op.size);
Khalique's avatar
Khalique committed
133
            int radius          = (op.size - 1) / 2;
Khalique's avatar
Khalique committed
134

135
            par_dfor(n_batch, height, width)([&](int b, int h, int w) {
Khalique's avatar
Khalique committed
136
                float scale = 0;
Khalique's avatar
Khalique committed
137
138
                dfor(channels)([&](int c) {
                    auto start = (c - radius) < 0 ? 0 : (c - radius);
Khalique's avatar
Khalique committed
139
                    auto end   = (c + radius) > channels ? channels : (c + radius);
Khalique's avatar
Khalique committed
140
141
                    for(auto k = start; k < end; ++k)
                    {
Khalique's avatar
Khalique committed
142
                        scale += std::pow(input(b, k, h, w), 2);
Khalique's avatar
Khalique committed
143
144
145
                    }
                    scale *= alphaoverarea;
                    scale += op.bias;
Khalique's avatar
Khalique committed
146
                    scale              = std::pow(scale, -op.beta);
Khalique's avatar
Khalique committed
147
148
149
150
151
152
153
154
                    output(b, c, h, w) = input(b, c, h, w) * scale;
                });
            });
        });
        return result;
    }
};

Paul's avatar
Paul committed
155
156
struct cpu_convolution
{
157
    op::convolution op;
Paul's avatar
Paul committed
158

159
160
161
162
163
164
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

Paul's avatar
Paul committed
165
    std::string name() const { return "cpu::convolution"; }
Paul's avatar
Paul committed
166
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Paul's avatar
Paul committed
167
168
169
170
    argument compute(context&, shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        visit_all(result, args[0], args[1])([&](auto output, auto input, auto weights) {
Khalique's avatar
Khalique committed
171
            auto in   = input.get_shape().lens();
Khalique's avatar
Khalique committed
172
173
            auto in_h = in[2];
            auto in_w = in[3];
Paul's avatar
Paul committed
174

Khalique's avatar
Khalique committed
175
            auto wei   = weights.get_shape().lens();
Khalique's avatar
Khalique committed
176
177
178
179
            auto wei_n = wei[0];
            auto wei_c = wei[1];
            auto wei_h = wei[2];
            auto wei_w = wei[3];
Paul's avatar
Paul committed
180

Paul's avatar
Paul committed
181
            par_dfor(output_shape.lens()[0],
Paul's avatar
Paul committed
182
183
184
                     output_shape.lens()[1],
                     output_shape.lens()[2],
                     output_shape.lens()[3])(
Paul's avatar
Paul committed
185
                [&](std::size_t o, std::size_t w, std::size_t i, std::size_t j) {
Paul's avatar
Paul committed
186
187
188
                    const auto start_x  = i * op.stride[0] - op.padding[0];
                    const auto start_y  = j * op.stride[1] - op.padding[1];
                    const auto group_id = w / (wei_n / op.group);
Paul's avatar
Paul committed
189
190
191

                    double acc = 0;
                    dfor(wei_c, wei_h, wei_w)([&](std::size_t k, std::size_t x, std::size_t y) {
Paul's avatar
Paul committed
192
193
194
                        const auto in_x  = start_x + x;
                        const auto in_y  = start_y + y;
                        const auto in_ch = group_id * wei_c + k;
Paul's avatar
Paul committed
195
196
                        if(in_x >= 0 && in_x < in_h && in_y >= 0 && in_y < in_w)
                        {
Khalique's avatar
Khalique committed
197
                            acc += input(o, in_ch, in_x, in_y) * weights(w, k, x, y);
Paul's avatar
Paul committed
198
199
200
201
202
203
204
205
206
                        }
                    });
                    output(o, w, i, j) = acc;
                });
        });
        return result;
    }
};

Scott Thornton's avatar
Scott Thornton committed
207
208
struct cpu_im2col
{
209
    op::im2col op;
Scott Thornton's avatar
Scott Thornton committed
210

211
212
213
214
215
216
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

Scott Thornton's avatar
Scott Thornton committed
217
218
    static std::string name() { return "cpu::im2col"; }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Scott Thornton's avatar
Scott Thornton committed
219

wsttiger's avatar
wsttiger committed
220
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Scott Thornton's avatar
Scott Thornton committed
221
    {
Scott Thornton's avatar
Scott Thornton committed
222
        argument result{output_shape};
Scott Thornton's avatar
Scott Thornton committed
223
        auto input_shape   = args[0].get_shape();
Scott Thornton's avatar
Scott Thornton committed
224
225
        auto weights_shape = args[1].get_shape();
        visit_all(result, args[0])([&](auto col, auto input) {
Scott Thornton's avatar
Scott Thornton committed
226
227
            const std::size_t& height   = input_shape.lens()[2];
            const std::size_t& width    = input_shape.lens()[3];
Scott Thornton's avatar
Scott Thornton committed
228
229
230
            const std::size_t& channels = weights_shape.lens()[1];
            const std::size_t& kernel_h = weights_shape.lens()[2];
            const std::size_t& kernel_w = weights_shape.lens()[3];
Scott Thornton's avatar
Scott Thornton committed
231
232
            const std::size_t& pad_h    = op.padding[0];
            const std::size_t& pad_w    = op.padding[1];
Scott Thornton's avatar
Scott Thornton committed
233
234
235
            const std::size_t& stride_h = op.stride[0];
            const std::size_t& stride_w = op.stride[1];

Paul's avatar
Paul committed
236
237
            auto kdiv2_h = kernel_h / 2;
            auto kdiv2_w = kernel_w / 2;
Scott Thornton's avatar
Scott Thornton committed
238
            // calculate output sizes
Scott Thornton's avatar
Scott Thornton committed
239
240
            const std::size_t col_height = (height - kernel_h + 2 * pad_h) / stride_h + 1;
            const std::size_t col_width  = (width - kernel_w + 2 * pad_w) / stride_w + 1;
wsttiger's avatar
wsttiger committed
241
            // account for padding for the starting position of the input pixels
Scott Thornton's avatar
Scott Thornton committed
242
            std::size_t iinput = kdiv2_h - pad_h;
wsttiger's avatar
wsttiger committed
243
            // loop over output pixels (ioutput, joutput)
Scott Thornton's avatar
Scott Thornton committed
244
245
246
247
248
249
250
251
            for(std::size_t ioutput = 0; ioutput < col_height; ioutput++, iinput += stride_h)
            {
                std::size_t jinput = kdiv2_w - pad_w;
                for(std::size_t joutput = 0; joutput < col_width; joutput++, jinput += stride_w)
                {
                    // compute linear index for output
                    std::size_t ldx = ioutput * col_width + joutput;
                    std::size_t p   = 0;
wsttiger's avatar
wsttiger committed
252
253
254
                    dfor(channels,
                         kernel_h,
                         kernel_w)([&](std::size_t c, std::size_t koffset, std::size_t loffset) {
Paul's avatar
Paul committed
255
256
                        auto idx    = iinput + koffset - kdiv2_h;
                        auto jdx    = jinput + loffset - kdiv2_w;
wsttiger's avatar
wsttiger committed
257
258
259
260
261
                        col(ldx, p) = ((idx >= 0) && (idx < height) && (jdx >= 0) && (jdx < width))
                                          ? input(0, c, idx, jdx)
                                          : 0;
                        p++;
                    });
Scott Thornton's avatar
Scott Thornton committed
262
263
                }
            }
Scott Thornton's avatar
Scott Thornton committed
264
        });
Scott Thornton's avatar
Scott Thornton committed
265
266
267
268
        return result;
    }
};

Paul's avatar
Paul committed
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
struct max_pool
{
    static std::string name() { return "max"; }
    static double start() { return std::numeric_limits<double>::lowest(); }

    static double apply(double x, double y)
    {
        double m = std::max(x, y);
        return (m);
    }

    static double final(double x, double) { return (x); }
};

struct avg_pool
{
    static std::string name() { return "average"; }
    static double start() { return 0.0; }

    static double apply(double x, double y) { return x + y; }

    static double final(double x, double y) { return x / y; }
};

template <class Op>
struct cpu_pooling
{
296
    op::pooling op;
Paul's avatar
Paul committed
297

298
299
300
301
302
303
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

Paul's avatar
Paul committed
304
    std::string name() const { return "cpu::pooling_" + Op::name(); }
Paul's avatar
Paul committed
305
306
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
307
308
309
310
311
312
313
    {
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
            using type = typename decltype(output)::value_type;
            auto in_h  = input.get_shape().lens()[2];
            auto in_w  = input.get_shape().lens()[3];

Paul's avatar
Paul committed
314
            par_dfor(output_shape.lens()[0],
Paul's avatar
Paul committed
315
316
317
                     output_shape.lens()[1],
                     output_shape.lens()[2],
                     output_shape.lens()[3])(
Paul's avatar
Paul committed
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
                [&](std::size_t o, std::size_t w, std::size_t i, std::size_t j) {
                    const int start_x0 = i * op.stride[0] - op.padding[0];
                    const int start_y0 = j * op.stride[1] - op.padding[1];

                    const int hend = std::min(start_x0 + op.lengths[0], in_h);
                    const int wend = std::min(start_y0 + op.lengths[1], in_w);

                    const int start_x = std::max(start_x0, 0);
                    const int start_y = std::max(start_y0, 0);

                    const int w_h       = (hend - start_x);
                    const int w_w       = (wend - start_y);
                    const int pool_size = std::max(w_h * w_w, 1);

                    double acc = Op::start();
                    dfor(w_h, w_w)([&](int x, int y) {
                        const int in_x = start_x + x;
                        const int in_y = start_y + y;
                        if(in_x >= 0 && in_x < in_h && in_y >= 0 && in_y < in_w)
                        {
                            acc = Op::apply(acc, input(o, w, in_x, in_y));
                        }
                    });
                    output(o, w, i, j) = type(Op::final(acc, pool_size));
                });
        });
        return result;
    }
};

348
struct cpu_op
Paul's avatar
Paul committed
349
{
350
351
    operation op;
    std::string name() const { return "cpu::" + op.name(); }
Paul's avatar
Paul committed
352
353
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
354
    {
Paul's avatar
Paul committed
355
        return op.compute(output_shape, std::move(args));
Paul's avatar
Paul committed
356
    }
Paul's avatar
Paul committed
357
    friend bool operator==(const cpu_op& x, const cpu_op& y) { return x.op == y.op; }
358
359
360
361
362
363
    friend bool operator==(const cpu_op& x, const operation& y)
    {
        if(x.name() != y.name())
            return false;
        return x == any_cast<cpu_op>(y);
    }
Paul's avatar
Paul committed
364
    friend bool operator==(const operation& x, const cpu_op& y) { return y == x; }
Paul's avatar
Paul committed
365
366
};

367
368
369
370
// struct cpu_contiguous
// {
//     op::contiguous op;
//     std::string name() const { return "cpu::contiguous"; }
Paul's avatar
Paul committed
371
372
373
//     shape compute_shape(const std::vector<shape>& inputs) const { return
//     op.compute_shape(inputs); } argument compute(context&, const shape& output_shape,
//     std::vector<argument> args) const
374
375
376
377
378
//     {
//         return op.compute(output_shape, std::move(args));
//     }
// };

Khalique's avatar
Khalique committed
379
struct cpu_pad
380
{
Khalique's avatar
Khalique committed
381
    op::pad op;
382
383
384
385
386
387
388

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

Khalique's avatar
Khalique committed
389
    std::string name() const { return "cpu::contiguous"; }
390
391
392
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
    {
Khalique's avatar
Khalique committed
393
        assert(output_shape.standard());
394
        argument result{output_shape};
Khalique's avatar
Khalique committed
395
        result.visit([&](auto output) { std::fill(output.begin(), output.end(), op.value); });
Khalique's avatar
Khalique committed
396
397

        visit_all(result, args[0])([&](auto output, auto input) {
398
            shape_for_each(input.get_shape(), [&](const auto& idx) {
Khalique's avatar
Khalique committed
399
                std::vector<std::size_t> new_idx(idx.size());
Khalique's avatar
Khalique committed
400
401
402
403
                std::transform(
                    idx.begin(), idx.end(), op.pads.begin(), new_idx.begin(), [](auto i, auto j) {
                        return i + j;
                    });
Khalique's avatar
Khalique committed
404
                output(new_idx.begin(), new_idx.end()) = input(idx.begin(), idx.end());
405
            });
Khalique's avatar
Khalique committed
406
407
        });

408
409
410
411
        return result;
    }
};

412
413
414
415
// struct cpu_concat
// {
//     op::concat op;
//     std::string name() const { return "cpu::concat"; }
Paul's avatar
Paul committed
416
417
418
//     shape compute_shape(const std::vector<shape>& inputs) const { return
//     op.compute_shape(inputs); } argument compute(context&, const shape& output_shape,
//     std::vector<argument> args) const
419
420
421
422
//     {
//         return op.compute(output_shape, std::move(args));
//     }
// };
423

Paul's avatar
Paul committed
424
425
struct cpu_gemm
{
Shucai Xiao's avatar
Shucai Xiao committed
426
    op::dot op;
427
428
429
430
431
432

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }
Shucai Xiao's avatar
Shucai Xiao committed
433
    std::string name() const { return "cpu::dot"; }
Shucai Xiao's avatar
Shucai Xiao committed
434
435
    shape compute_shape(const std::vector<shape>& inputs) const
    {
Shucai Xiao's avatar
Shucai Xiao committed
436
437
438
439
440
        if(inputs.size() == 3)
        {
            auto c_shape = inputs.at(2);
            check_shapes{{c_shape}}.not_broadcasted();
        }
Shucai Xiao's avatar
Shucai Xiao committed
441
        return op.compute_shape(inputs);
Shucai Xiao's avatar
Shucai Xiao committed
442
    }
Paul's avatar
Paul committed
443

Paul's avatar
Paul committed
444
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
445
446
    {
        argument result{output_shape};
Shucai Xiao's avatar
Shucai Xiao committed
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
        // 3 inputs, it is alpha * A * B + beta * C, then
        // A and B are matrics, and C is broadcastable to A * B
        if(args.size() == 3)
        {
            // no need to consider the value of args[2]
            if(op.beta == 0.0f)
            {
                result.visit([&](auto output) { std::fill(output.begin(), output.end(), 0); });
            }
            else
            {
                visit_all(result, args[2])([&](auto output, auto input) {
                    std::copy(input.begin(), input.end(), output.begin());
                });
            }

            migemm(result, args[0], args[1], op.alpha, op.beta);

            return result;
        }

        // 2 input arguments
        migemm(result, args[0], args[1], op.alpha, 0.0f);

Paul's avatar
Paul committed
471
472
473
474
        return result;
    }
};

475
476
477
478
// struct cpu_gather
// {
//     op::gather op;
//     std::string name() const { return "cpu::gather"; }
Paul's avatar
Paul committed
479
480
//     shape compute_shape(const std::vector<shape>& inputs) const { return
//     op.compute_shape(inputs); }
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630

//     argument compute(context&, const shape& output_shape, std::vector<argument> args) const
//     {
//         return op.compute(output_shape, std::move(args));
//     }
// };

// struct identity_op
// {
//     std::string name() const { return "cpu::identity"; }
//     auto fcn() const
//     {
//         return [](auto x) { return x; };
//     }
// };

// struct abs_op
// {
//     std::string name() const { return "cpu::abs"; }
//     auto fcn() const
//     {
//         return [](auto x) { return std::abs(make_signed(x)); };
//     }
// };

// struct exp_op
// {
//     std::string name() const { return "cpu::exp"; }
//     auto fcn() const
//     {
//         return [](auto x) { return std::exp(x); };
//     }
// };

// struct log_op
// {
//     std::string name() const { return "cpu::log"; }
//     auto fcn() const
//     {
//         return [](auto x) { return std::log(x); };
//     }
// };

// struct sin_op
// {
//     std::string name() const { return "cpu::sin"; }
//     auto fcn() const
//     {
//         return [](auto x) { return std::sin(x); };
//     }
// };

// struct cos_op
// {
//     std::string name() const { return "cpu::cos"; }
//     auto fcn() const
//     {
//         return [](auto x) { return std::cos(x); };
//     }
// };

// struct tan_op
// {
//     std::string name() const { return "cpu::tan"; }
//     auto fcn() const
//     {
//         return [](auto x) { return std::tan(x); };
//     }
// };

// struct asin_op
// {
//     std::string name() const { return "cpu::asin"; }
//     auto fcn() const
//     {
//         return [](auto x) { return std::asin(x); };
//     }
// };

// struct acos_op
// {
//     std::string name() const { return "cpu::acos"; }
//     auto fcn() const
//     {
//         return [](auto x) { return std::acos(x); };
//     }
// };

// struct atan_op
// {
//     std::string name() const { return "cpu::atan"; }
//     auto fcn() const
//     {
//         return [](auto x) { return std::atan(x); };
//     }
// };

// struct sinh_op
// {
//     std::string name() const { return "cpu::sinh"; }
//     auto fcn() const
//     {
//         return [](auto x) { return std::sinh(x); };
//     }
// };

// struct cosh_op
// {
//     std::string name() const { return "cpu::cosh"; }
//     auto fcn() const
//     {
//         return [](auto x) { return std::cosh(x); };
//     }
// };

// struct tanh_op
// {
//     std::string name() const { return "cpu::tanh"; }
//     auto fcn() const
//     {
//         return [](auto x) { return std::tanh(x); };
//     }
// };

// struct sigmoid_op
// {
//     std::string name() const { return "cpu::sigmoid"; }
//     auto fcn() const
//     {
//         return [](auto x) { return 1.f / (1.f + std::exp(-x)); };
//     }
// };

// struct neg_op
// {
//     std::string name() const { return "cpu::neg"; }
//     auto fcn() const
//     {
//         return [](auto x) { return -x; };
//     }
// };

// struct relu_op
// {
//     std::string name() const { return "cpu::relu"; }
//     auto fcn() const
//     {
//         return [](auto x) { return std::max(decltype(x){0}, x); };
//     }
// };
Paul's avatar
Paul committed
631

Khalique's avatar
Khalique committed
632
633
634
635
636
637
638
639
640
641
642
struct leaky_relu_op
{
    op::leaky_relu op;
    std::string name() const { return "cpu::leaky_relu"; }
    auto fcn() const
    {
        auto& a = op.alpha;
        return [a](auto x) { return x > 0 ? x : x * a; };
    }
};

Khalique's avatar
Khalique committed
643
644
645
646
647
648
649
650
651
652
653
struct elu_op
{
    op::elu op;
    std::string name() const { return "cpu::elu"; }
    auto fcn() const
    {
        auto& a = op.alpha;
        return [a](auto x) { return x > 0 ? x : a * std::expm1(x); };
    }
};

Paul's avatar
Paul committed
654
655
656
657
template <typename Op>
struct cpu_unary
{
    Op op;
658
659
660
661
662
663

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op.op, f);
    }
Paul's avatar
Paul committed
664
    std::string name() const { return op.name(); }
Paul's avatar
Paul committed
665
666
    shape compute_shape(const std::vector<shape>& inputs) const { return inputs.front(); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
667
668
669
670
671
672
673
    {
        argument result{output_shape};
        result.visit([&](auto output) {
            args[0].visit([&](auto input) {
                std::transform(input.begin(), input.end(), output.begin(), op.fcn());
            });
        });
674

Paul's avatar
Paul committed
675
676
677
678
679
680
681
        return result;
    }
};

struct softmax2d
{
    std::string name() const { return "cpu::softmax2d"; }
Paul's avatar
Paul committed
682
683
    shape compute_shape(const std::vector<shape>& inputs) const { return inputs.front(); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
684
685
686
687
688
689
690
691
692
693
    {
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
            using value_type = typename decltype(input)::value_type;
            auto nb          = input.get_shape().lens()[0];
            auto nc          = input.get_shape().lens()[1];
            auto nh          = input.get_shape().lens()[2];
            auto nw          = input.get_shape().lens()[3];
            dfor(nb, nh, nw)([&](std::size_t b, std::size_t i, std::size_t j) {
                value_type cmax = std::numeric_limits<value_type>::lowest();
Paul's avatar
Paul committed
694
                for(std::size_t c = 0; c < nc; c++)
Paul's avatar
Paul committed
695
696
697
                {
                    cmax = std::max(cmax, input(b, c, i, j));
                }
Paul's avatar
Paul committed
698
                for(std::size_t c = 0; c < nc; c++)
Paul's avatar
Paul committed
699
700
701
702
                {
                    output(b, c, i, j) = std::exp(input(b, c, i, j) - cmax);
                }
                value_type sum = value_type(0);
Paul's avatar
Paul committed
703
                for(std::size_t c = 0; c < nc; c++)
Paul's avatar
Paul committed
704
705
706
                {
                    sum += output(b, c, i, j);
                }
Paul's avatar
Paul committed
707
                for(std::size_t c = 0; c < nc; c++)
Paul's avatar
Paul committed
708
709
710
711
712
713
714
715
716
                {
                    output(b, c, i, j) = output(b, c, i, j) / sum;
                }
            });
        });
        return result;
    }
};

Shucai Xiao's avatar
Shucai Xiao committed
717
718
719
struct cpu_logsoftmax
{
    op::logsoftmax op;
720
721
722
723
724
725
726

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

Shucai Xiao's avatar
Shucai Xiao committed
727
728
729
    std::string name() const { return "cpu::logsoftmax"; }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }

Shucai Xiao's avatar
Shucai Xiao committed
730
    template <typename T>
Shucai Xiao's avatar
Shucai Xiao committed
731
732
    std::size_t compute_batch_index(const T& idx, shape& batch_shape, int axis) const
    {
Shucai Xiao's avatar
Shucai Xiao committed
733
        if(axis == 0)
734
735
736
737
738
739
        {
            return 0;
        }
        else
        {
            std::vector<std::size_t> batch_idx(idx.begin(), idx.begin() + axis);
Shucai Xiao's avatar
Shucai Xiao committed
740
            return batch_shape.index(batch_idx.begin(), batch_idx.end());
741
        }
Shucai Xiao's avatar
Shucai Xiao committed
742
743
744
745
746
747
    }

    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        auto lens = output_shape.lens();
748
        std::vector<std::size_t> batch_lens{};
Shucai Xiao's avatar
Shucai Xiao committed
749
        if(op.axis == 0)
750
751
752
        {
            batch_lens.push_back(1);
        }
Shucai Xiao's avatar
Shucai Xiao committed
753
        else
754
755
756
        {
            batch_lens.insert(batch_lens.begin(), lens.begin(), lens.begin() + op.axis);
        }
Shucai Xiao's avatar
Shucai Xiao committed
757
758
759
        shape batch_shape{migraphx::shape::uint32_type, batch_lens};
        visit_all(result, args[0])([&](auto output, auto input) {
            using value_type = typename decltype(input)::value_type;
Shucai Xiao's avatar
Shucai Xiao committed
760
761
            std::vector<value_type> batch_max(batch_shape.elements(),
                                              std::numeric_limits<value_type>::lowest());
Shucai Xiao's avatar
Shucai Xiao committed
762
            shape_for_each(output_shape, [&](auto idx) {
763
                auto index       = this->compute_batch_index(idx, batch_shape, op.axis);
Shucai Xiao's avatar
Shucai Xiao committed
764
765
766
767
                batch_max[index] = std::max(batch_max[index], input(idx.begin(), idx.end()));
            });

            shape_for_each(output_shape, [&](auto idx) {
Shucai Xiao's avatar
Shucai Xiao committed
768
                auto index = this->compute_batch_index(idx, batch_shape, op.axis);
Shucai Xiao's avatar
Shucai Xiao committed
769
770
771
772
773
                output(idx.begin(), idx.end()) = input(idx.begin(), idx.end()) - batch_max[index];
            });

            std::vector<value_type> batch_sum(batch_shape.elements(), value_type(0));
            shape_for_each(output_shape, [&](auto idx) {
774
                auto index = this->compute_batch_index(idx, batch_shape, op.axis);
Shucai Xiao's avatar
Shucai Xiao committed
775
776
777
                batch_sum[index] += std::exp(output(idx.begin(), idx.end()));
            });

Shucai Xiao's avatar
Shucai Xiao committed
778
            for(std::size_t i = 0; i < batch_sum.size(); ++i)
Shucai Xiao's avatar
Shucai Xiao committed
779
780
781
782
783
            {
                batch_sum[i] = std::log(batch_sum[i]);
            }

            shape_for_each(output_shape, [&](auto idx) {
784
                auto index = this->compute_batch_index(idx, batch_shape, op.axis);
785
                output(idx.begin(), idx.end()) -= batch_sum[index];
Shucai Xiao's avatar
Shucai Xiao committed
786
787
788
789
790
791
792
            });
        });

        return result;
    }
};

793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
// struct add_op
// {
//     std::string name() const { return "add"; }
//     auto fcn() const
//     {
//         return [](auto x, auto y) { return x + y; };
//     }
// };

// struct sub_op
// {
//     std::string name() const { return "sub"; }
//     auto fcn() const
//     {
//         return [](auto x, auto y) { return x - y; };
//     }
// };

// struct mul_op
// {
//     std::string name() const { return "mul"; }
//     auto fcn() const
//     {
//         return [](auto x, auto y) { return x * y; };
//     }
// };

// struct div_op
// {
//     std::string name() const { return "div"; }
//     auto fcn() const
//     {
//         return [](auto x, auto y) { return x / y; };
//     }
// };

// struct max_op
// {
//     std::string name() const { return "max"; }
//     auto fcn() const
//     {
//         return [](auto x, auto y) { return std::max(x, y); };
//     }
// };

// struct min_op
// {
//     std::string name() const { return "min"; }
//     auto fcn() const
//     {
//         return [](auto x, auto y) { return std::min(x, y); };
//     }
// };

// template <typename Op>
// struct cpu_binary
// {
//     Op op;
//     std::string name() const { return "cpu::" + op.name(); }
//     shape compute_shape(const std::vector<shape>& inputs) const { return inputs.front(); }
//     argument compute(context&, const shape& output_shape, std::vector<argument> args) const
//     {
//         argument result{output_shape};
//         visit_all(result, args[0], args[1])([&](auto output, auto input1, auto input2) {
//             if(input1.get_shape().packed() and input2.get_shape().packed())
//             {
//                 std::transform(
//                     input1.begin(), input1.end(), input2.begin(), output.begin(), op.fcn());
//             }
//             else
//             {
//                 shape_for_each(output.get_shape(), [&](const auto& idx) {
//                     output(idx.begin(), idx.end()) =
//                         op.fcn()(input1(idx.begin(), idx.end()), input2(idx.begin(), idx.end()));
//                 });
//             }
//         });
//         return result;
//     }
// };
Paul's avatar
Paul committed
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892

struct cpu_apply
{
    program* prog;
    std::unordered_map<std::string, std::function<void(instruction_ref)>> apply_map{};

    template <class T>
    auto simple_op()
    {
        return [this](instruction_ref ins) { apply_simple_op<T>(ins); };
    }

    template <class T, class Op>
    auto extend_op()
    {
        return [this](instruction_ref ins) { apply_extend_op<T, Op>(ins); };
    }

    void init()
    {
893
894
        apply_map["im2col"]      = extend_op<cpu_im2col, op::im2col>();
        apply_map["convolution"] = extend_op<cpu_convolution, op::convolution>();
895
        apply_map["dot"]         = extend_op<cpu_gemm, op::dot>();
Aditya Atluri's avatar
Aditya Atluri committed
896
        apply_map["batch_norm_inference"] =
897
            extend_op<cpu_batch_norm_inference, op::batch_norm_inference>();
Khalique's avatar
Khalique committed
898
        apply_map["lrn"]        = extend_op<cpu_lrn, op::lrn>();
Khalique's avatar
Khalique committed
899
        apply_map["leaky_relu"] = extend_op<cpu_unary<leaky_relu_op>, op::leaky_relu>();
900
        apply_map["logsoftmax"] = extend_op<cpu_logsoftmax, op::logsoftmax>();
Khalique's avatar
Khalique committed
901
        apply_map["elu"]        = extend_op<cpu_unary<elu_op>, op::elu>();
Paul's avatar
Paul committed
902
        apply_map["softmax"]    = simple_op<softmax2d>();
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
        apply_map["pad"]        = extend_op<cpu_pad, op::pad>();
        // apply_map["contiguous"] = extend_op<cpu_contiguous, op::contiguous>();
        // apply_map["concat"]     = extend_op<cpu_concat, op::concat>();
        // apply_map["gather"]     = extend_op<cpu_gather, op::gather>();
        // apply_map["identity"]   = simple_op<cpu_unary<identity_op>>();
        // apply_map["abs"]        = simple_op<cpu_unary<abs_op>>();
        // apply_map["sinh"]       = simple_op<cpu_unary<sinh_op>>();
        // apply_map["cosh"]       = simple_op<cpu_unary<cosh_op>>();
        // apply_map["tanh"]       = simple_op<cpu_unary<tanh_op>>();
        // apply_map["sigmoid"]    = simple_op<cpu_unary<sigmoid_op>>();
        // apply_map["exp"]        = simple_op<cpu_unary<exp_op>>();
        // apply_map["log"]        = simple_op<cpu_unary<log_op>>();
        // apply_map["neg"]        = simple_op<cpu_unary<neg_op>>();
        // apply_map["sin"]        = simple_op<cpu_unary<sin_op>>();
        // apply_map["cos"]        = simple_op<cpu_unary<cos_op>>();
        // apply_map["tan"]        = simple_op<cpu_unary<tan_op>>();
        // apply_map["asin"]       = simple_op<cpu_unary<asin_op>>();
        // apply_map["acos"]       = simple_op<cpu_unary<acos_op>>();
        // apply_map["atan"]       = simple_op<cpu_unary<atan_op>>();
        // apply_map["relu"]       = simple_op<cpu_unary<relu_op>>();
        // apply_map["add"]        = simple_op<cpu_binary<add_op>>();
        // apply_map["sub"]        = simple_op<cpu_binary<sub_op>>();
        // apply_map["mul"]        = simple_op<cpu_binary<mul_op>>();
        // apply_map["div"]        = simple_op<cpu_binary<div_op>>();
        // apply_map["max"]        = simple_op<cpu_binary<max_op>>();
        // apply_map["min"]        = simple_op<cpu_binary<min_op>>();
Paul's avatar
Paul committed
929
930
931
932
933
934
935
    }

    void apply()
    {
        init();
        for(auto it : iterator_for(*prog))
        {
Khalique's avatar
Khalique committed
936
            if(it->name() == "pooling")
Paul's avatar
Paul committed
937
938
939
            {
                apply_pooling(it);
            }
Paul's avatar
Paul committed
940
            else if(apply_map.count(it->name()) > 0)
Paul's avatar
Paul committed
941
            {
Paul's avatar
Paul committed
942
                apply_map.at(it->name())(it);
Paul's avatar
Paul committed
943
            }
Paul's avatar
Paul committed
944
            else if(is_context_free(it->get_operator()))
945
946
947
            {
                apply_cpu_op(it);
            }
Paul's avatar
Paul committed
948
949
950
        }
    }

951
952
953
954
955
    void apply_cpu_op(instruction_ref ins)
    {
        prog->replace_instruction(ins, cpu_op{ins->get_operator()}, ins->inputs());
    }

Paul's avatar
Paul committed
956
957
958
    template <class T>
    void apply_simple_op(instruction_ref ins)
    {
Paul's avatar
Paul committed
959
        prog->replace_instruction(ins, T{}, ins->inputs());
Paul's avatar
Paul committed
960
961
962
963
964
    }

    template <class T, class Op>
    void apply_extend_op(instruction_ref ins)
    {
965
        auto&& op = any_cast<Op>(ins->get_operator());
Paul's avatar
Paul committed
966
        prog->replace_instruction(ins, T{op}, ins->inputs());
Paul's avatar
Paul committed
967
968
969
970
    }

    void apply_pooling(instruction_ref ins)
    {
971
        auto&& op = any_cast<op::pooling>(ins->get_operator());
Paul's avatar
Paul committed
972
        if(op.mode == "max")
Paul's avatar
Paul committed
973
            prog->replace_instruction(ins, cpu_pooling<max_pool>{op}, ins->inputs());
Paul's avatar
Paul committed
974
        else if(op.mode == "average")
Paul's avatar
Paul committed
975
            prog->replace_instruction(ins, cpu_pooling<avg_pool>{op}, ins->inputs());
Paul's avatar
Paul committed
976
977
978
    }
};

Shucai Xiao's avatar
Shucai Xiao committed
979
void lowering::apply(program& p) const { cpu_apply{&p}.apply(); }
Paul's avatar
Paul committed
980
981

} // namespace cpu
Paul's avatar
Paul committed
982
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
983
} // namespace migraphx