"scripts/vscode:/vscode.git/clone" did not exist on "9baa294c0d925896f267063f97e6c2666ef4d89f"
onnx.cpp 28.6 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
16
17
18
19
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>

namespace migraphx {
Paul's avatar
Paul committed
20
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
struct unknown
{
    std::string op;
    std::string name() const { return "unknown:" + op; }
    shape compute_shape(std::vector<shape> input) const
    {
        if(input.empty())
            return {};
        else
            return input.front();
    }
    friend std::ostream& operator<<(std::ostream& os, const unknown& x)
    {
        os << x.name();
        return os;
    }
};

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
43
    using op_func = std::function<instruction_ref(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
44
45
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
Scott Thornton's avatar
Scott Thornton committed
46
    program prog    = program();
47
    bool is_pytorch = false;
Paul's avatar
Paul committed
48
49
50
51
52

    std::unordered_map<std::string, op_func> ops;

    onnx_parser()
    {
Shucai Xiao's avatar
Shucai Xiao committed
53
        add_generic_op("MatMul", op::dot{});
Khalique's avatar
Khalique committed
54
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
55
56
        // disable dropout for inference
        add_generic_op("Dropout", op::identity{});
Khalique's avatar
Khalique committed
57
        add_generic_op("Identity", op::identity{});
Paul's avatar
Paul committed
58

59
60
61
62
63
        add_broadcastable_binary_op("Add", op::add{});
        add_broadcastable_binary_op("Div", op::div{});
        add_broadcastable_binary_op("Mul", op::mul{});
        add_broadcastable_binary_op("Sub", op::sub{});
        add_broadcastable_binary_op("Sum", op::add{});
Paul's avatar
Paul committed
64

Khalique's avatar
Khalique committed
65
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
66
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
Paul's avatar
Paul committed
67
68
        add_mem_op("Constant", &onnx_parser::parse_constant);
        add_mem_op("Conv", &onnx_parser::parse_conv);
Paul's avatar
Paul committed
69
70
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
71
72
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
Paul's avatar
Paul committed
73
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
Paul's avatar
Paul committed
74
75
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
76
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
Paul's avatar
Paul committed
77
        add_mem_op("Softmax", &onnx_parser::parse_softmax);
78
79
80
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("Slice", &onnx_parser::parse_slice);
Scott Thornton's avatar
Scott Thornton committed
81
        add_mem_op("Concat", &onnx_parser::parse_concat);
Khalique's avatar
Khalique committed
82
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
Paul's avatar
Paul committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
    }

    template <class F>
    void add_op(std::string name, F f)
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
98
99
100
101
    template <class T>
    void add_broadcastable_binary_op(std::string name, T x)
    {
        ops.emplace(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
102
            if(args.size() != 2)
Paul's avatar
Paul committed
103
                MIGRAPHX_THROW("binary operators should have 2 operands");
104
105
106
107
108
109
110
111
112
113
114
115
            if(contains(attributes, "broadcast"))
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
                    uint64_t axis = (contains(attributes, "axis"))
                                        ? parse_value(attributes.at("axis")).at<uint64_t>()
                                        : 0;
                    auto l =
                        prog.add_instruction(op::broadcast{axis, args[0]->get_shape()}, args[1]);
                    return prog.add_instruction(x, args[0], l);
                }
116
                return prog.add_instruction(x, args);
117
            }
118
            else if(args[0]->get_shape() != args[1]->get_shape())
119
120
121
122
            {
                // Example:
                // s0 = (3,2,4,5) and s1 = (2,1,1)
                //
Scott Thornton's avatar
Scott Thornton committed
123
124
                // In this case we need to broadcast (:,1,1) portion of
                // s1 plus broadcast the 1st dimension of s1
125
126
127
128
129
130
131
132
133
                // giving output_lens = (3,2,4,5)
                //
                // Another example:
                // s0 = (3,2,1,5) and s1 = (2,7,5)
                // In this case we need to broadcast the (:,:,1:,:) axis
                // of s0 plus the 1st dimension of s1 giving
                // output_lens = (3,2,7,5)
                //
                // Get lengths for both arguments
Paul's avatar
Paul committed
134
135
136
137
138
139
                const std::vector<std::size_t>* s0 = &args[0]->get_shape().lens();
                const std::vector<std::size_t>* s1 = &args[1]->get_shape().lens();

                // Make sure s0 is the smaller size
                if(s0->size() > s1->size())
                    std::swap(s0, s1);
140
141

                // Copy the larger vector to output_lens
142
                std::vector<std::size_t> output_lens = *s1;
Scott Thornton's avatar
Scott Thornton committed
143
                auto offset                          = s1->size() - s0->size();
Paul's avatar
Paul committed
144
145
146
147
148
149
                std::transform(s0->begin(),
                               s0->end(),
                               s1->begin() + offset,
                               output_lens.begin() + offset,
                               [](auto a, auto b) { return std::max(a, b); });

150
151
152
                auto l0 = prog.add_instruction(op::multibroadcast{output_lens}, args[0]);
                auto l1 = prog.add_instruction(op::multibroadcast{output_lens}, args[1]);
                return prog.add_instruction(x, l0, l1);
Paul's avatar
Paul committed
153
154
            }
            else
155
156
            {
                return prog.add_instruction(x, args);
157
158
159
160
            }
        });
    }

Paul's avatar
Paul committed
161
    template <class T>
Paul's avatar
Paul committed
162
163
    void add_generic_op(std::string name, T x)
    {
Paul's avatar
Paul committed
164
        ops.emplace(name, [this, x](attribute_map, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
165
166
167
168
            return prog.add_instruction(x, args);
        });
    }

Paul's avatar
Paul committed
169
    instruction_ref
Paul's avatar
Paul committed
170
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
171
172
    {
        auto dims = args.front()->get_shape().lens();
Scott Thornton's avatar
Scott Thornton committed
173
174
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
175
176
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
Paul's avatar
Paul committed
177
178
    }

Paul's avatar
Paul committed
179
    instruction_ref
Paul's avatar
Paul committed
180
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
181
    {
182
        op::convolution op;
Paul's avatar
Paul committed
183
184
        if(contains(attributes, "pads"))
        {
Scott Thornton's avatar
Scott Thornton committed
185
            if(contains(attributes, "auto_pad"))
186
            {
Paul's avatar
Paul committed
187
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
188
189
190
            }
            std::vector<std::size_t> padding(4);
            copy(attributes["pads"].ints(), padding.begin());
Scott Thornton's avatar
Scott Thornton committed
191
            if(padding.size() != 4)
192
            {
Paul's avatar
Paul committed
193
                MIGRAPHX_THROW("padding should have 4 values");
194
            }
Scott Thornton's avatar
Scott Thornton committed
195
            if(padding[0] != padding[2] || padding[1] != padding[3])
196
            {
Paul's avatar
Paul committed
197
                MIGRAPHX_THROW("migraphx does not support asymetric padding");
198
199
200
            }
            op.padding[0] = padding[0];
            op.padding[1] = padding[1];
Paul's avatar
Paul committed
201
        }
Paul's avatar
Paul committed
202
203
204
205
206
207
208
209
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
        {
            copy(attributes["dilations"].ints(), op.dilation.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
210
        if(contains(attributes, "auto_pad"))
211
212
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
213
            if(contains(attributes, "pads") and to_upper(s) != "NOTSET")
214
            {
Paul's avatar
Paul committed
215
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
216
217
            }

wsttiger's avatar
fixes  
wsttiger committed
218
            if(s.find("SAME") != std::string::npos)
219
220
221
222
            {
                op.padding_mode = op::convolution::same;
            }
        }
Khalique's avatar
Khalique committed
223
224
225
226
        if(contains(attributes, "group"))
        {
            op.group = parse_value(attributes.at("group")).at<int>();
        }
Paul's avatar
Paul committed
227
228
229
230
        if(args.size() == 3)
        {
            uint64_t axis = 1;
            auto l1       = prog.add_instruction(op, args[0], args[1]);
Scott Thornton's avatar
Scott Thornton committed
231
            auto l2       = prog.add_instruction(op::broadcast{axis, l1->get_shape()}, args[2]);
232
            return prog.add_instruction(op::add{}, l1, l2);
Paul's avatar
Paul committed
233
        }
Paul's avatar
Paul committed
234
235
        return prog.add_instruction(op, args);
    }
Paul's avatar
Paul committed
236

Paul's avatar
Paul committed
237
238
239
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
240
    {
Khalique's avatar
Khalique committed
241
242
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
        if(starts_with(name, "Global"))
243
        {
Khalique's avatar
Khalique committed
244
245
            auto lens  = args.front()->get_shape().lens();
            op.lengths = {lens[2], lens[3]};
246
        }
Paul's avatar
Paul committed
247
248
        if(contains(attributes, "pads"))
        {
249
250
            std::vector<std::size_t> padding(4);
            copy(attributes["pads"].ints(), padding.begin());
Scott Thornton's avatar
Scott Thornton committed
251
            if(padding.size() != 4)
252
            {
Paul's avatar
Paul committed
253
                MIGRAPHX_THROW("padding should have 4 values");
254
            }
Scott Thornton's avatar
Scott Thornton committed
255
            if(padding[0] != padding[2] || padding[1] != padding[3])
256
            {
Paul's avatar
Paul committed
257
                MIGRAPHX_THROW("migraphx does not support asymetric padding");
258
259
260
            }
            op.padding[0] = padding[0];
            op.padding[1] = padding[1];
Paul's avatar
Paul committed
261
262
263
264
265
266
267
268
269
        }
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "kernel_shape"))
        {
            copy(attributes["kernel_shape"].ints(), op.lengths.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
270
        if(contains(attributes, "auto_pad"))
271
272
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
273
            if(to_upper(s) != "NOTSET")
274
            {
Paul's avatar
Paul committed
275
                MIGRAPHX_THROW("auto_pad is not supported for pooling");
276
277
278
            }
        }

Paul's avatar
Paul committed
279
        return prog.add_instruction(op, std::move(args));
Paul's avatar
Paul committed
280
281
    }

Paul's avatar
Paul committed
282
    instruction_ref
Paul's avatar
Paul committed
283
    parse_reshape(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
284
    {
285
        op::reshape op;
Paul's avatar
Paul committed
286
287
288
289
290
291
292
        if(args.size() == 1)
        {
            literal s = parse_value(attributes.at("shape"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
293
            literal s = args[1]->get_literal();
Paul's avatar
Paul committed
294
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
295
        }
Paul's avatar
Paul committed
296
297
298
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
299
    instruction_ref
Paul's avatar
Paul committed
300
    parse_flatten(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
301
302
    {
        uint64_t axis = 0;
Paul's avatar
Paul committed
303
304
305
306
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
307
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
308
309
    }

310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
    instruction_ref
    parse_squeeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::squeeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

    instruction_ref
    parse_unsqueeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::unsqueeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

Scott Thornton's avatar
Scott Thornton committed
328
329
330
331
332
333
334
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::size_t axis = parse_value(attributes.at("axis")).at<int>();
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355

    instruction_ref
    parse_slice(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::slice op;
        if(contains(attributes, "axes"))
        {
            literal s = parse_value(attributes.at("axes"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
        {
            literal s = parse_value(attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
        }
        {
            literal s = parse_value(attributes.at("starts"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
356
357
358
    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
359
360
361
362
    {
        literal v = parse_value(attributes.at("value"));
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
363

Paul's avatar
Paul committed
364
    instruction_ref
Paul's avatar
Paul committed
365
    parse_gemm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
    {
        float alpha = 1.0f;
        float beta  = 0.0f;
        bool transa = false;
        bool transb = false;
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        if(contains(attributes, "beta"))
        {
            alpha = parse_value(attributes.at("beta")).at<float>();
        }
        if(contains(attributes, "transA"))
        {
            transa = parse_value(attributes.at("transA")).at<bool>();
        }
        if(contains(attributes, "transB"))
        {
            transb = parse_value(attributes.at("transB")).at<bool>();
        }
        std::vector<int64_t> perm = {1, 0};
388
389
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
390
391
392
        if(args.size() == 3)
        {
            uint64_t axis = 1;
Shucai Xiao's avatar
Shucai Xiao committed
393
            auto l3       = prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Scott Thornton's avatar
Scott Thornton committed
394
            auto l4       = prog.add_instruction(op::broadcast{axis, l3->get_shape()}, args[2]);
395
            return prog.add_instruction(op::add{}, l3, l4);
Paul's avatar
Paul committed
396
        }
Shucai Xiao's avatar
Shucai Xiao committed
397
        return prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
398
399
    }

400
    instruction_ref
Paul's avatar
Paul committed
401
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
402
    {
Scott Thornton's avatar
Scott Thornton committed
403
404
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
405
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Scott Thornton's avatar
Scott Thornton committed
406
        bool is_test                                      = false;
407
408
409
410
411
412
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        if(contains(attributes, "momentum"))
        {
413
            momentum = parse_value(attributes.at("momentum")).at<float>();
414
415
416
        }
        if(contains(attributes, "is_test"))
        {
wsttiger's avatar
wsttiger committed
417
            is_test = parse_value(attributes.at("is_test")).at<uint64_t>() > 0;
418
419
420
        }
        if(contains(attributes, "spatial"))
        {
421
            bn_mode = (parse_value(attributes.at("spatial")).at<uint64_t>() > 0)
422
423
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
424
        }
Paul's avatar
Paul committed
425
        (void)is_test;
Paul's avatar
Paul committed
426
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
427
        return prog.add_instruction(op, std::move(args));
428
429
    }

430
431
432
433
    instruction_ref parse_leaky_relu(const std::string&,
                                     attribute_map attributes,
                                     std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
434
        float alpha = 0.01; // default alpha val for leaky relu
435
436
437
438
439
440
441
442
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
    instruction_ref parse_imagescaler(const std::string&,
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
    {
        float scale = 1.0;
        std::vector<float> bias{};
        if(contains(attributes, "scale"))
        {
            scale = parse_value(attributes.at("scale")).at<float>();
        }

        if(contains(attributes, "bias"))
        {
            auto&& bias_floats = attributes["bias"].floats();
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
        auto input_shape = args.front()->get_shape();
Khalique's avatar
Khalique committed
460

Khalique's avatar
Khalique committed
461
462
        auto scale_val = prog.add_literal(scale);
        auto bias_vals = prog.add_literal(
Paul's avatar
Paul committed
463
            migraphx::literal{migraphx::shape{migraphx::shape::float_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
464

Paul's avatar
Paul committed
465
466
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_shape}, scale_val);
        auto img_scaled   = prog.add_instruction(migraphx::op::mul{}, args.front(), scale_tensor);
Paul's avatar
Paul committed
467
        auto bias_bcast = prog.add_instruction(migraphx::op::broadcast{1, input_shape}, bias_vals);
Paul's avatar
Paul committed
468
        return prog.add_instruction(migraphx::op::add{}, img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
469
    }
Khalique's avatar
Khalique committed
470

Khalique's avatar
Khalique committed
471
472
    instruction_ref
    parse_transpose(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
473
474
475
476
477
478
479
    {
        std::vector<int64_t> perm{};
        if(contains(attributes, "perm"))
        {
            auto&& perm_vals = attributes["perm"].ints();
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
480
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
481
482
    }

Paul's avatar
Paul committed
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
            throw std::runtime_error("Failed reading");
        }
    }

    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
502
503
504
505
506
        std::unordered_map<std::string, onnx::TensorProto> initializer_data;
        for(auto&& f : graph.initializer())
        {
            initializer_data[f.name()] = f;
        }
Paul's avatar
Paul committed
507
508
509
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
510
511
512
513
514
515
516
517
518
519
520
521
            // Does the input have an initializer?
            if(contains(initializer_data, name))
            {
                auto t             = initializer_data[name];
                instructions[name] = prog.add_literal(parse_tensor(t));
            }
            else
            {
                // TODO: Get shape of input parameter
                shape s            = parse_type(input.type());
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
522
523
524
        }
        for(auto&& p : nodes)
        {
525
            this->parse_node(get_name(p.second));
Paul's avatar
Paul committed
526
527
528
        }
    }

Paul's avatar
Paul committed
529
    void parse_node(const std::string& name)
Paul's avatar
Paul committed
530
    {
Paul's avatar
Paul committed
531
        if(name.empty())
Paul's avatar
Paul committed
532
            MIGRAPHX_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
533
534
535
536
537
538
539
540
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
541
                    auto&& iname = get_name(nodes.at(input));
Paul's avatar
Paul committed
542
                    assert(name != iname);
Paul's avatar
Paul committed
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
                    this->parse_node(iname);
                    args.push_back(instructions.at(iname));
                }
                else
                {
                    args.push_back(instructions.at(input));
                }
            }
            if(ops.count(node.op_type()) == 0)
            {
                instructions[name] = prog.add_instruction(unknown{node.op_type()}, args);
            }
            else
            {
                instructions[name] = ops[node.op_type()](get_attributes(node), args);
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

572
573
574
575
    static std::string get_name(const onnx::NodeProto& node)
    {
        if(node.name().empty())
        {
Paul's avatar
Paul committed
576
            std::string generated = "migraphx_unnamed_node";
Paul's avatar
Paul committed
577
578
579
580
            return std::accumulate(node.output().begin(),
                                   node.output().end(),
                                   generated,
                                   [](auto x, auto y) { return x + "_" + y; });
581
582
583
584
        }
        return node.name();
    }

Paul's avatar
Paul committed
585
586
587
588
589
    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
        for(auto&& node : graph.node())
        {
590
            result[get_name(node)] = node;
Paul's avatar
Paul committed
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::UNDEFINED: return {};
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::STRING: return {};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
        case onnx::AttributeProto::GRAPH: return {};
Paul's avatar
Paul committed
616
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
617
618
619
620
621
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
        case onnx::AttributeProto::STRINGS: return {};
        case onnx::AttributeProto::TENSORS: return {};
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
622
        MIGRAPHX_THROW("Invalid attribute type");
Paul's avatar
Paul committed
623
624
625
626
627
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
628
629
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
630
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
631
632
633
634
635
636
637
638
639
640
641
642
            switch(t.data_type())
            {
            case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
            case onnx::TensorProto::FLOAT: return literal{{shape::float_type, dims}, s.data()};
            case onnx::TensorProto::UINT8: throw std::runtime_error("");
            case onnx::TensorProto::INT8: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::UINT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT32: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT64: return literal{{shape::int64_type, dims}, s.data()};
            case onnx::TensorProto::STRING: throw std::runtime_error("");
            case onnx::TensorProto::BOOL: return literal{{shape::int32_type, dims}, s.data()};
Paul's avatar
Paul committed
643
            case onnx::TensorProto::FLOAT16: return literal{{shape::half_type, dims}, s.data()};
Scott Thornton's avatar
Scott Thornton committed
644
645
646
647
648
649
            case onnx::TensorProto::DOUBLE: return literal{{shape::double_type, dims}, s.data()};
            case onnx::TensorProto::UINT32: throw std::runtime_error("");
            case onnx::TensorProto::UINT64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
Paul's avatar
Paul committed
650
            MIGRAPHX_THROW("Invalid tensor type");
651
        }
Paul's avatar
Paul committed
652
653
654
655
        switch(t.data_type())
        {
        case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
        case onnx::TensorProto::FLOAT:
Paul's avatar
Paul committed
656
            return literal{{shape::float_type, dims}, t.float_data().begin(), t.float_data().end()};
Paul's avatar
Paul committed
657
658
        case onnx::TensorProto::UINT8: throw std::runtime_error("");
        case onnx::TensorProto::INT8:
Paul's avatar
Paul committed
659
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
660
        case onnx::TensorProto::UINT16:
Paul's avatar
Paul committed
661
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
662
        case onnx::TensorProto::INT16:
Paul's avatar
Paul committed
663
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
664
        case onnx::TensorProto::INT32:
Paul's avatar
Paul committed
665
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
666
        case onnx::TensorProto::INT64:
Paul's avatar
Paul committed
667
            return literal{{shape::int64_type, dims}, t.int64_data().begin(), t.int64_data().end()};
Paul's avatar
Paul committed
668
669
        case onnx::TensorProto::STRING: throw std::runtime_error("");
        case onnx::TensorProto::BOOL:
Paul's avatar
Paul committed
670
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
671
672
        case onnx::TensorProto::FLOAT16:
            return literal{{shape::half_type, dims}, t.float_data().begin(), t.float_data().end()};
Paul's avatar
Paul committed
673
674
675
676
677
678
679
680
        case onnx::TensorProto::DOUBLE:
            return literal{
                {shape::double_type, dims}, t.double_data().begin(), t.double_data().end()};
        case onnx::TensorProto::UINT32: throw std::runtime_error("");
        case onnx::TensorProto::UINT64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
681
        MIGRAPHX_THROW("Invalid tensor type");
Paul's avatar
Paul committed
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
    }

    static shape parse_type(const onnx::TypeProto& t)
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::UNDEFINED:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
        case onnx::TensorProto::STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case onnx::TensorProto::BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
Paul's avatar
Paul committed
703
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
704
705
706
707
708
709
710
711
712
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
        case onnx::TensorProto::COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case onnx::TensorProto::COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        }
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
713
        auto&& tensor_dims = t.tensor_type().shape().dim();
714
715
716
717
718
719
720
721
722
723
724
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
                       [](auto&& d) -> std::size_t {
                           if(not d.has_dim_value())
                           {
                               long default_batch_size = 1; // FIXME
                               return default_batch_size;
                           }
                           return d.dim_value();
                       });
Paul's avatar
Paul committed
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
        return {shape_type, dims};
    }
};

program parse_onnx(const std::string& name)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    onnx_parser parser;
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

Paul's avatar
Paul committed
750
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
751
} // namespace migraphx