simplify_algebra.cpp 49.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
Paul's avatar
Paul committed
24
#include <migraphx/simplify_algebra.hpp>
Paul's avatar
Paul committed
25
#include <migraphx/dead_code_elimination.hpp>
Paul's avatar
Paul committed
26
#include <migraphx/program.hpp>
27
#include <migraphx/op/concat.hpp>
28
#include <migraphx/op/slice.hpp>
29
#include <migraphx/op/convolution.hpp>
Paul's avatar
Paul committed
30
#include <migraphx/op/broadcast.hpp>
31
32
#include <migraphx/op/reshape.hpp>
#include <migraphx/op/transpose.hpp>
Paul's avatar
Paul committed
33
#include <migraphx/matcher.hpp>
34
#include <migraphx/common.hpp>
Paul's avatar
Paul committed
35
#include <migraphx/literal.hpp>
36
37
38
#include <migraphx/make_op.hpp>
#include <migraphx/serialize.hpp>

39
#include <migraphx/algorithm.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
40
#include <unordered_set>
Paul's avatar
Paul committed
41

Paul's avatar
Paul committed
42
namespace migraphx {
Paul's avatar
Paul committed
43
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
44

Paul's avatar
Paul committed
45
auto lit_broadcast() { return match::any_of(match::is_constant(), match::name("broadcast")); }
Paul's avatar
Paul committed
46
auto not_lit_broadcast() { return match::none_of(match::is_constant(), match::name("broadcast")); }
Paul's avatar
Paul committed
47
48
auto op_lit_broadcast(std::string op, std::string x, std::string y)
{
Paul's avatar
Paul committed
49
50
    return match::name(std::move(op))(match::either_arg(0, 1)(
        lit_broadcast().bind(std::move(x)), not_lit_broadcast().bind(std::move(y))));
Paul's avatar
Paul committed
51
52
}

Paul's avatar
Paul committed
53
54
auto conv_const_weights()
{
55
56
57
    return match::name("convolution")(
        match::used_once(),
        match::args(match::none_of(match::is_constant()), match::is_constant().bind("w")));
Paul's avatar
Paul committed
58
59
}

Shucai Xiao's avatar
Shucai Xiao committed
60
61
auto reduction() { return match::name_contains("reduce"); }

62
// conv(x, w) * a => conv(x, a * w)
Paul's avatar
Paul committed
63
64
65
struct find_mul_conv
{
    auto matcher() const
Paul's avatar
Paul committed
66
    {
67
68
69
        return match::name("mul")(
            match::either_arg(0, 1)(conv_const_weights().bind("conv"),
                                    match::name("broadcast", "multibroadcast").bind("a")));
Paul's avatar
Paul committed
70
    }
Paul's avatar
Paul committed
71

72
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
73
    {
Paul's avatar
Paul committed
74
        auto ins      = r.result;
Paul's avatar
Paul committed
75
        auto conv_ins = r.instructions["conv"];
Paul's avatar
Paul committed
76
77
78
        auto a_ins    = r.instructions["a"];
        auto w_ins    = r.instructions["w"];

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
        const auto& a_input_lens = a_ins->inputs().front()->get_shape().lens();

        std::size_t num_not_one_dims = std::count_if(
            a_input_lens.cbegin(), a_input_lens.cend(), [](auto dim) { return dim != 1; });
        if(num_not_one_dims > 1)
            return;

        // check broadcasted along channels
        const auto& a_lens    = a_ins->get_shape().lens();
        const auto& a_strides = a_ins->get_shape().strides();

        auto is_broadcasted_axis = [](auto len, auto stride) { return len == 1 or stride == 0; };

        if(a_strides.at(1) != 1)
            return;

        if(not is_broadcasted_axis(a_lens.front(), a_strides.front()))
            return;

        if(not std::equal(a_lens.begin() + 2,
                          a_lens.end(),
                          a_strides.begin() + 2,
                          a_strides.end(),
                          is_broadcasted_axis))
Paul's avatar
Paul committed
103
104
            return;

105
        auto sq    = m.insert_instruction(ins, make_op("squeeze"), a_ins->inputs().front());
106
        auto new_a = m.insert_instruction(
107
            ins, make_op("broadcast", {{"axis", 0}, {"out_lens", w_ins->get_shape().lens()}}), sq);
108
109
        auto new_mul  = m.insert_instruction(ins, make_op("mul"), new_a, w_ins);
        auto new_conv = m.insert_instruction(
Paul's avatar
Paul committed
110
            ins, conv_ins->get_operator(), conv_ins->inputs().front(), new_mul);
111
        m.replace_instruction(ins, new_conv);
Paul's avatar
Paul committed
112
    }
Paul's avatar
Paul committed
113
114
};

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
struct find_mul_slice_conv
{
    static auto conv()
    {
        return match::name("convolution")(
            match::all_of[match::outputs()](match::name("slice")),
            match::args(match::any(), match::is_constant().bind("w")));
    }
    auto matcher() const
    {
        return match::name("mul")(match::either_arg(0, 1)(
            match::name("slice")(match::used_once(), match::arg(0)(conv().bind("conv")))
                .bind("slice"),
            match::name("broadcast")(match::is_constant()).bind("a")));
    }

131
    void apply(module& m, const match::matcher_result& r) const
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
    {
        auto ins       = r.result;
        auto slice_ins = r.instructions["slice"];
        auto conv_ins  = r.instructions["conv"];
        auto a_ins     = r.instructions["a"];
        auto w_ins     = r.instructions["w"];

        auto broadcast_op = any_cast<op::broadcast>(a_ins->get_operator());
        if(broadcast_op.axis != 1)
            return;

        auto slice_op = any_cast<op::slice>(slice_ins->get_operator());
        if(slice_op.axes.size() != 1)
            return;
        if(slice_op.axes.front() != 1)
            return;

        auto slice_idx = std::distance(conv_ins, slice_ins);
        if(std::any_of(conv_ins->outputs().begin(), conv_ins->outputs().end(), [&](auto i) {
               if(i == slice_ins)
                   return false;
               if(std::distance(conv_ins, i) < slice_idx)
                   return true;
               auto sop = any_cast<op::slice>(i->get_operator());
               if(sop.axes != slice_op.axes)
                   return true;
               if(std::max(sop.starts.front(), slice_op.starts.front()) <
                  std::min(sop.ends.front(), slice_op.ends.front()))
                   return true;
               return false;
           }))
            return;

        auto w_slice_op  = slice_op;
        w_slice_op.axes  = {0};
167
        auto slice_w_ins = m.insert_instruction(ins, w_slice_op, w_ins);
168

169
        auto new_a = m.insert_instruction(
170
            ins,
171
            make_op("broadcast", {{"axis", 0}, {"out_lens", slice_w_ins->get_shape().lens()}}),
172
            a_ins->inputs().front());
173
        auto new_mul = m.insert_instruction(ins, make_op("mul"), new_a, slice_w_ins);
174
175
176

        std::vector<instruction_ref> sliced_weights;
        if(slice_op.starts.front() != 0)
177
            sliced_weights.push_back(m.insert_instruction(
178
179
180
                ins,
                make_op("slice", {{"axes", {0}}, {"starts", {0}}, {"ends", slice_op.starts}}),
                w_ins));
181
182
183
        sliced_weights.push_back(new_mul);
        int64_t end_axis = w_ins->get_shape().lens().at(0);
        if(slice_op.ends.front() != end_axis)
184
            sliced_weights.push_back(m.insert_instruction(
185
186
187
                ins,
                make_op("slice", {{"axes", {0}}, {"starts", slice_op.ends}, {"ends", {end_axis}}}),
                w_ins));
188

189
        auto new_weights =
190
            m.insert_instruction(ins, make_op("concat", {{"axis", 0}}), sliced_weights);
191

192
        auto new_conv = m.insert_instruction(
193
194
195
            ins, conv_ins->get_operator(), conv_ins->inputs().front(), new_weights);
        assert(conv_ins->get_shape() == new_conv->get_shape());

196
        auto slice1 = m.insert_instruction(ins, slice_op, new_conv);
197
        assert(ins->get_shape().lens() == slice1->get_shape().lens());
198
        m.replace_instruction(ins, slice1);
199
        // TODO: Check each slice doesn't overlap and that it occurs after slice_ins
200
201
        auto outputs = conv_ins->outputs();
        for(auto output : outputs)
202
203
204
205
206
            if(output != slice_ins)
                instruction::replace_argument(output, conv_ins, new_conv);
    }
};

Paul's avatar
Paul committed
207
208
209
210
struct find_mul_dot
{
    auto matcher() const
    {
Paul's avatar
Format  
Paul committed
211
212
213
214
        auto is_dot_const_inputs =
            match::name("dot")(match::any_of[match::inputs()](match::is_constant()));
        return match::name("mul")(match::either_arg(0, 1)(
            is_dot_const_inputs.bind("dot"), match::name("broadcast", "multibroadcast").bind("c")));
Paul's avatar
Paul committed
215
216
217
218
    }

    void apply(module& m, const match::matcher_result& r) const
    {
Paul's avatar
Format  
Paul committed
219
        auto ins     = r.result;
Paul's avatar
Paul committed
220
        auto dot_ins = r.instructions["dot"];
Paul's avatar
Format  
Paul committed
221
222
223
        auto a_ins   = dot_ins->inputs()[0];
        auto b_ins   = dot_ins->inputs()[1];
        auto c_ins   = r.instructions["c"];
Paul's avatar
Paul committed
224
225
226
227

        const auto& c_strides = c_ins->get_shape().strides();

        // There should only be one stride that is not zero
Paul's avatar
Format  
Paul committed
228
        if(std::count_if(c_strides.begin(), c_strides.end(), [](auto s) { return s != 0; }) > 1)
Paul's avatar
Paul committed
229
230
231
            return;

        auto add_mul_const = [&](instruction_ref x_ins) {
Paul's avatar
Format  
Paul committed
232
            if(not x_ins->can_eval())
Paul's avatar
Paul committed
233
                return m.end();
Paul's avatar
Format  
Paul committed
234
            auto broadcast_v        = c_ins->get_operator().to_value();
Paul's avatar
Paul committed
235
236
            broadcast_v["out_lens"] = x_ins->get_shape().lens();

Paul's avatar
Format  
Paul committed
237
238
            auto cb_ins =
                m.insert_instruction(ins, make_op(c_ins->name(), broadcast_v), c_ins->inputs());
Paul's avatar
Paul committed
239
240
241
            return m.insert_instruction(ins, make_op("mul"), x_ins, cb_ins);
        };

Paul's avatar
Format  
Paul committed
242
243
        if(c_strides.back() == 1)
        {
Paul's avatar
Paul committed
244
245
            b_ins = add_mul_const(b_ins);
        }
Paul's avatar
Format  
Paul committed
246
247
        else if(c_strides[c_strides.size() - 2] == 1)
        {
Paul's avatar
Paul committed
248
249
            a_ins = add_mul_const(a_ins);
        }
Paul's avatar
Format  
Paul committed
250
        else if(c_ins->get_shape().scalar())
Paul's avatar
Paul committed
251
        {
Paul's avatar
Format  
Paul committed
252
            if(a_ins->can_eval())
Paul's avatar
Paul committed
253
254
255
256
                a_ins = add_mul_const(a_ins);
            else
                b_ins = add_mul_const(b_ins);
        }
Paul's avatar
Format  
Paul committed
257
258
        else
        {
Paul's avatar
Paul committed
259
260
261
            return;
        }

Paul's avatar
Format  
Paul committed
262
        if(contains({a_ins, b_ins}, m.end()))
Paul's avatar
Paul committed
263
264
265
266
267
268
269
270
271
272
273
            return;

        m.replace_instruction(ins, make_op("dot"), a_ins, b_ins);
    }
};

struct find_dot_mul
{
    auto matcher() const
    {
        auto const_broadcast = match::name("broadcast", "multibroadcast")(match::is_constant());
Paul's avatar
Format  
Paul committed
274
275
276
277
        auto mul             = match::name("mul")(
            match::used_once(),
            match::either_arg(0, 1)(const_broadcast.bind("d"),
                                    match::none_of(match::is_constant()).bind("z")));
Paul's avatar
Paul committed
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
        return match::name("dot")(match::either_arg(0, 1)(mul, match::is_constant().bind("c")));
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins   = r.result;
        auto a_ins = ins->inputs()[0];
        auto b_ins = ins->inputs()[1];
        auto d_ins = r.instructions["d"];
        auto c_ins = r.instructions["c"];
        auto z_ins = r.instructions["z"];

        const auto& d_strides = d_ins->get_shape().strides();

        // There should only be one stride that is not zero
Paul's avatar
Format  
Paul committed
293
        if(std::count_if(d_strides.begin(), d_strides.end(), [](auto s) { return s != 0; }) > 1)
Paul's avatar
Paul committed
294
295
            return;

Paul's avatar
Format  
Paul committed
296
297
298
        if(not d_ins->get_shape().scalar())
        {
            if(d_strides.back() == 1 and not b_ins->can_eval())
Paul's avatar
Paul committed
299
                return;
Paul's avatar
Format  
Paul committed
300
            if(d_strides[d_strides.size() - 2] == 1 and not a_ins->can_eval())
Paul's avatar
Paul committed
301
302
303
                return;
        }

Paul's avatar
Format  
Paul committed
304
305
        auto broadcast_v = d_ins->get_operator().to_value();
        auto c_lens      = c_ins->get_shape().lens();
Paul's avatar
Paul committed
306
307
308
309
310
311
312
313
        std::vector<int64_t> permutation(c_lens.size());
        std::iota(permutation.begin(), permutation.end(), 0);
        if(c_ins == b_ins)
        {
            std::swap(permutation.back(), permutation[permutation.size() - 2]);
            c_lens = reorder_dims(c_lens, permutation);
        }
        broadcast_v["out_lens"] = c_lens;
Paul's avatar
Format  
Paul committed
314
315
        auto db_ins =
            m.insert_instruction(ins, make_op(d_ins->name(), broadcast_v), d_ins->inputs());
Paul's avatar
Format  
Paul committed
316
317
        auto db_transpose_ins =
            m.insert_instruction(ins, make_op("transpose", {{"permutation", permutation}}), db_ins);
Paul's avatar
Paul committed
318
        auto cd_ins = m.insert_instruction(ins, make_op("mul"), c_ins, db_transpose_ins);
Paul's avatar
Paul committed
319

Paul's avatar
Format  
Paul committed
320
        if(c_ins == b_ins)
Paul's avatar
Paul committed
321
322
323
324
325
326
        {
            a_ins = z_ins;
            b_ins = cd_ins;
        }
        else
        {
Paul's avatar
Format  
Paul committed
327
            a_ins = cd_ins;
Paul's avatar
Paul committed
328
329
330
331
332
333
334
            b_ins = z_ins;
        }

        m.replace_instruction(ins, make_op("dot"), a_ins, b_ins);
    }
};

335
336
337
338
339
340
// ******************************
//  a * (x + b) => a * x + a * b
// ******************************
// When a * (x + b) is followed by another add of constant, then the
// additional add can be const folded. Also, better fusions can be applied
// when the add comes after.
Paul's avatar
Paul committed
341
342
343
344
345
struct find_mul_add
{
    auto matcher() const
    {
        return match::name("mul")(match::either_arg(0, 1)(
Paul's avatar
Paul committed
346
347
348
            match::name("add")(
                match::either_arg(0, 1)(
                    match::any().bind("x"),
Paul's avatar
Paul committed
349
                    match::any_of(conv_const_weights(), match::is_constant()).bind("b")),
Paul's avatar
Paul committed
350
                match::none_of(match::args(match::is_constant(), match::is_constant())),
Paul's avatar
Paul committed
351
                match::used_once()),
Paul's avatar
Paul committed
352
            match::is_constant().bind("a")));
Paul's avatar
Paul committed
353
354
    }

355
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
356
    {
Paul's avatar
Paul committed
357
        auto ins   = r.result;
Paul's avatar
Paul committed
358
        auto a_ins = r.instructions["a"];
Paul's avatar
Paul committed
359
        auto b_ins = r.instructions["b"];
Paul's avatar
Paul committed
360
        auto x_ins = r.instructions["x"];
Paul's avatar
Paul committed
361
        assert(x_ins != b_ins);
Paul's avatar
Paul committed
362

363
364
365
        auto ax_ins = m.insert_instruction(ins, make_op("mul"), a_ins, x_ins);
        auto ab_ins = m.insert_instruction(ins, make_op("mul"), a_ins, b_ins);
        m.replace_instruction(ins, make_op("add"), ax_ins, ab_ins);
Paul's avatar
Paul committed
366
367
368
    }
};

369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
struct find_dot_add
{
    auto matcher() const
    {
        return match::name("dot")(match::either_arg(0, 1)(
            match::name("add")(
                match::either_arg(0, 1)(match::any().bind("x"),
                                        match::any_of(match::is_constant()).bind("b")),
                match::none_of(match::args(match::is_constant(), match::is_constant())),
                match::used_once()),
            match::is_constant().bind("a")));
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins   = r.result;
        auto a_ins = r.instructions["a"];
        auto b_ins = r.instructions["b"];
        auto x_ins = r.instructions["x"];
        assert(x_ins != b_ins);

        const bool flipped = a_ins == ins->inputs().back();

        auto insert_dot = [&](auto x, auto y) {
            if(flipped)
                return m.insert_instruction(ins, make_op("dot"), y, x);
            else
                return m.insert_instruction(ins, make_op("dot"), x, y);
        };

        auto ax_ins = insert_dot(a_ins, x_ins);
        auto ab_ins = insert_dot(a_ins, b_ins);
        m.replace_instruction(ins, make_op("add"), ax_ins, ab_ins);
    }
};

405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
struct find_conv_add
{
    auto matcher() const
    {
        auto add = match::name("add")(
            match::either_arg(0, 1)(match::any().bind("x"),
                                    match::any_of(match::is_constant()).bind("a")),
            match::used_once());
        return match::name("convolution")(match::used_once(),
                                          match::args(add, match::is_constant().bind("w")));
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins   = r.result;
        auto a_ins = r.instructions["a"];
        auto x_ins = r.instructions["x"];
        auto w_ins = r.instructions["w"];

        auto conv1 = m.insert_instruction(ins, ins->get_operator(), a_ins, w_ins);
        auto conv2 = m.insert_instruction(ins, ins->get_operator(), x_ins, w_ins);

        m.replace_instruction(ins, make_op("add"), conv1, conv2);
    }
};

Paul's avatar
Paul committed
431
struct find_add_lit_broadcast
Paul's avatar
Paul committed
432
433
434
435
436
437
438
{
    auto matcher() const
    {
        return match::name("add")(
            match::either_arg(0, 1)(op_lit_broadcast("add", "a", "x"), lit_broadcast().bind("b")));
    }

439
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
440
441
442
443
444
445
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto a_ins = r.instructions["a"];
        auto b_ins = r.instructions["b"];

446
447
        auto sumab = m.insert_instruction(ins, make_op("add"), a_ins, b_ins);
        m.replace_instruction(ins, make_op("add"), x_ins, sumab);
Paul's avatar
Paul committed
448
449
450
451
    }
};

struct find_double_add_lit_broadcast
Paul's avatar
Paul committed
452
{
Paul's avatar
Paul committed
453
454
    auto matcher() const
    {
Paul's avatar
Paul committed
455
        return match::name("add")(
Paul's avatar
Paul committed
456
            match::args(op_lit_broadcast("add", "a", "x"), op_lit_broadcast("add", "b", "y")));
Paul's avatar
Paul committed
457
458
    }

459
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
460
    {
Paul's avatar
Paul committed
461
462
463
464
465
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto y_ins = r.instructions["y"];
        auto a_ins = r.instructions["a"];
        auto b_ins = r.instructions["b"];
Paul's avatar
Paul committed
466
467
468

        instruction_ref sumab;

Paul's avatar
Paul committed
469
        if(a_ins->name() == "broadcast" and b_ins->name() == "broadcast")
Paul's avatar
Paul committed
470
471
472
        {
            if(a_ins->inputs().at(0)->get_shape() != b_ins->inputs().at(0)->get_shape())
                return;
473
            auto op     = a_ins->get_operator();
474
            auto presum = m.insert_instruction(
475
                ins, make_op("add"), a_ins->inputs().at(0), b_ins->inputs().at(0));
476
            sumab = m.insert_instruction(ins, op, presum);
Paul's avatar
Paul committed
477
478
479
        }
        else
        {
480
            sumab = m.insert_instruction(ins, make_op("add"), a_ins, b_ins);
Paul's avatar
Paul committed
481
482
        }

483
484
        auto sumxy = m.insert_instruction(ins, make_op("add"), x_ins, y_ins);
        m.replace_instruction(ins, make_op("add"), sumxy, sumab);
Paul's avatar
Paul committed
485
486
487
    }
};

Paul's avatar
Paul committed
488
489
struct find_inner_broadcast
{
490
    auto matcher() const { return pointwise(match::all_of[match::inputs()](match::broadcast())); }
Paul's avatar
Paul committed
491

492
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
493
    {
494
495
496
497
498
499
500
501
502
503
        auto ins        = r.result;
        auto broadcasts = ins->inputs();
        if(broadcasts.empty())
            return;
        std::vector<instruction_ref> inputs;
        std::transform(broadcasts.begin(),
                       broadcasts.end(),
                       std::back_inserter(inputs),
                       [](auto i) { return i->inputs().front(); });
        if(std::any_of(inputs.begin(), inputs.end(), [&](auto i) {
504
505
               return i->get_shape() != inputs.front()->get_shape() and
                      i->get_shape().elements() != 1;
506
           }))
Paul's avatar
Paul committed
507
508
            return;

509
510
511
512
513
514
515
        auto b_it = std::find_if(broadcasts.begin(), broadcasts.end(), [&](auto i) {
            return not i->get_shape().scalar();
        });
        if(b_it == broadcasts.end())
            b_it = broadcasts.begin();
        auto op = insert_common_op(m, ins, ins->get_operator(), inputs);
        m.replace_instruction(ins, (*b_it)->get_operator(), op);
Paul's avatar
Paul committed
516
517
518
    }
};

519
struct find_concat_op
520
521
522
{
    auto matcher() const
    {
523
        return match::name("concat")(match::any_of[match::inputs()](
524
            match::any_of(match::pointwise(), match::name("broadcast")), match::used_once()));
525
526
    }

527
528
    template <class Iterator>
    static std::vector<std::size_t> get_output_lens(Iterator start, Iterator last, std::size_t axis)
529
    {
530
531
532
        assert(start != last);
        std::size_t dim = 0;
        for(auto ins : range(start, last))
533
        {
534
            dim += ins->get_shape().lens().at(axis);
535
        }
536
537
538
        auto lens  = (*start)->get_shape().lens();
        lens[axis] = dim;
        return lens;
539
540
    }

541
542
543
544
545
    static bool is_valid_op(const operation& op)
    {
        return op.name() == "broadcast" or op.attributes().contains("pointwise");
    }

546
    void apply(module& m, const match::matcher_result& r) const
547
    {
548
549
        auto ins  = r.result;
        auto axis = any_cast<op::concat>(ins->get_operator()).axis;
550

551
552
553
554
555
556
        auto each = [&](auto start, auto last) -> std::vector<instruction_ref> {
            if(std::distance(start, last) < 2)
                return {start, last};
            auto x = *start;
            if(x->inputs().size() > 2 or x->inputs().empty() or x->outputs().size() > 1)
                return {start, last};
557
558
            auto op = x->get_operator();
            if(not is_valid_op(op))
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
                return {start, last};
            auto iaxis = axis;
            // Adjust broadcast lens
            if(op.name() == "broadcast")
            {
                auto b = any_cast<op::broadcast>(op);
                if(b.axis != iaxis)
                    return {start, last};
                b.broadcast_lens = get_output_lens(start, last, iaxis);
                op               = b;
                iaxis            = 0;
            }

            std::vector<instruction_ref> concats;
            for(std::size_t i = 0; i < x->inputs().size(); i++)
            {
                std::vector<instruction_ref> inputs;
                std::transform(start, last, std::back_inserter(inputs), [&](auto j) {
                    return j->inputs().at(i);
                });
579
                auto concat =
580
                    m.insert_instruction(ins, make_op("concat", {{"axis", iaxis}}), inputs);
581
582
                concats.push_back(concat);
            }
583
            auto y = m.insert_instruction(ins, op, concats);
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
            return {y};
        };

        std::vector<instruction_ref> args;
        auto update_args = [&](auto start, auto last) {
            auto x = each(start, last);
            args.insert(args.end(), x.begin(), x.end());
        };
        auto pred = [](auto i, auto j) {
            return i->get_operator() == j->get_operator() and
                   i->inputs().size() == i->inputs().size() and
                   i->outputs().size() == i->outputs().size();
        };
        group_unique(ins->inputs().begin(), ins->inputs().end(), update_args, pred);
        if(args.size() == 1)
599
            m.replace_instruction(ins, args.front());
600
        else
601
            m.replace_instruction(ins, make_op("concat", {{"axis", axis}}), args);
602
603
604
    }
};

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
void move_instructions_back(module& m, instruction_ref pos, std::vector<instruction_ref> inss)
{
    auto start = range(m.begin(), pos);
    for(auto ins : iterator_for(start))
    {
        auto it = std::find(inss.begin(), inss.end(), ins);
        if(it != inss.end())
            inss.erase(it);
    }
    for(auto ins : inss)
    {
        if(not m.has_instruction(ins))
            continue;
        move_instructions_back(m, pos, ins->inputs());
        m.move_instruction(ins, pos);
    }
}

623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
std::vector<instruction_ref> get_splits(instruction_ref ins)
{
    std::vector<instruction_ref> result;
    std::copy_if(ins->outputs().begin(),
                 ins->outputs().end(),
                 std::back_inserter(result),
                 [&](auto i) { return i->name() == "slice"; });
    if(result.size() < 2)
        return {};
    auto get_slice = [](auto& i) -> auto& { return any_cast<op::slice>(i->get_operator()); };
    auto&& axes    = get_slice(result.front()).axes;
    if(std::any_of(result.begin(), result.end(), [&](auto i) { return get_slice(i).axes != axes; }))
        return {};
    auto get_start = [&](auto& i) -> auto& { return get_slice(i).starts; };
    auto get_end   = [&](auto& i) -> auto& { return get_slice(i).ends; };
    std::sort(
        result.begin(), result.end(), [&](auto x, auto y) { return get_start(x) < get_start(y); });
    if(std::any_of(get_start(result.front()).begin(), get_start(result.front()).end(), [&](auto i) {
           return i != 0;
       }))
        return {};
    auto it = std::adjacent_find(
        result.begin(), result.end(), [&](auto x, auto y) { return get_end(x) != get_start(y); });
    if(it != result.end())
        return {};
    for(std::size_t i = 0; i < axes.size(); i++)
    {
        auto axis = axes[i];
        if(ins->get_shape().lens()[axis] != get_slice(result.back()).ends[i])
            return {};
    }
    return result;
}

struct find_splits
{
    auto matcher() const
    {
661
662
663
        return match::any(
            match::any_of[match::outputs()](match::name("slice")(match::any_of[match::outputs()](
                match::pointwise(match::any_of(match::nargs(1), match::nargs(2))), reduction()))));
664
665
    }

Shucai Xiao's avatar
Shucai Xiao committed
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
    static bool is_dependent(const module& m, instruction_ref ins1, instruction_ref ins2)
    {

        std::unordered_set<instruction_ref> traversed;
        return fix<bool>([&](auto self, auto ins) -> bool {
            if(ins == ins2)
                return true;

            if(contains(traversed, ins))
                return false;

            traversed.insert(ins);
            const auto& inputs = ins->inputs();
            return std::any_of(inputs.begin(), inputs.end(), [&](auto in) {
                return m.has_instruction(in) and self(in);
            });
        })(ins1);
    }

685
    static std::vector<std::vector<instruction_ref>>
Shucai Xiao's avatar
Shucai Xiao committed
686
    get_split_groups(const module& m, const std::vector<instruction_ref>& splits)
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
    {
        std::vector<std::vector<instruction_ref>> groups;
        for(auto out : splits.front()->outputs())
        {
            if(out->name() == "slice")
                continue;
            std::vector<instruction_ref> group;
            for(auto split : splits)
            {
                auto it =
                    std::find_if(split->outputs().begin(), split->outputs().end(), [&](auto i) {
                        return i->get_operator() == out->get_operator();
                    });
                if(it == split->outputs().end())
                    break;
                assert((*it)->name() != "slice");
Shucai Xiao's avatar
Shucai Xiao committed
703

704
                // If there is a duplicate bail
Shucai Xiao's avatar
Shucai Xiao committed
705
706
707
708
709
                // there are should be no dependency between instructions in the group
                if(std::any_of(group.begin(), group.end(), [&](auto i) {
                       return is_dependent(m, *it, i) or is_dependent(m, i, *it);
                   }))
                {
710
                    return {};
Shucai Xiao's avatar
Shucai Xiao committed
711
712
                }

713
714
715
716
717
718
719
720
721
                group.push_back(*it);
            }
            if(group.size() != splits.size())
                continue;
            groups.push_back(group);
        }
        return groups;
    }

Shucai Xiao's avatar
Shucai Xiao committed
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
    bool is_fusable(instruction_ref start, instruction_ref split_front) const
    {
        auto op = start->get_operator();
        if(contains(op.name(), "reduce"))
        {
            auto slc         = any_cast<op::slice>(split_front->get_operator());
            auto slc_axes    = slc.axes;
            auto reduce_axes = start->get_operator().to_value()["axes"].to_vector<int64_t>();
            // axes of slice and reduce op cannot have overlap
            if(std::any_of(slc_axes.begin(), slc_axes.end(), [&](auto axis) {
                   return (std::find(reduce_axes.begin(), reduce_axes.end(), axis) !=
                           reduce_axes.end());
               }))
            {
                return false;
            }
        }
        else if(not op.attributes().contains("pointwise"))
        {
            return false;
        }

        return true;
    }

747
    void apply(module& m, const match::matcher_result& r) const
748
    {
Shucai Xiao's avatar
Shucai Xiao committed
749
        auto ins    = r.result;
750
751
752
        auto splits = get_splits(ins);
        if(splits.empty())
            return;
Shucai Xiao's avatar
Shucai Xiao committed
753

754
        for(const auto& group : get_split_groups(m, splits))
755
        {
Shucai Xiao's avatar
Shucai Xiao committed
756
757
758
759
760
            auto start       = group.front();
            auto split_front = splits.front();
            auto op          = start->get_operator();
            if(not is_fusable(start, split_front))
            {
761
                continue;
Shucai Xiao's avatar
Shucai Xiao committed
762
            }
763
764
765
766
767
768

            // Make sure there is no duplicates
            assert(std::none_of(
                std::next(group.begin()), group.end(), [&](auto i) { return i == start; }));

            auto split_idx    = 0;
769
            instruction_ref c = m.end();
770
771
            if(start->inputs().size() == 1)
            {
772
                c = m.insert_instruction(std::next(ins), op, ins);
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
            }
            else if(start->inputs().size() == 2)
            {
                assert(not std::none_of(start->inputs().begin(), start->inputs().end(), [](auto i) {
                    return i->name() == "slice";
                }) && "one argument must be a split");
                auto data_idx = 1;
                if(start->inputs().back()->name() == "slice")
                {
                    split_idx = 1;
                    data_idx  = 0;
                }

                std::vector<instruction_ref> data_args;
                std::transform(group.begin(),
                               group.end(),
                               std::back_inserter(data_args),
                               [&](auto i) { return i->inputs()[data_idx]; });

                // Data arguments must be a constant
                if(std::any_of(data_args.begin(), data_args.end(), [](auto i) {
                       return not i->can_eval();
                   }))
                    return;

798
                move_instructions_back(m, ins, data_args);
799
800
801
802
803
804
805

                auto slice_op = any_cast<op::slice>(splits.front()->get_operator());
                assert(not slice_op.axes.empty());
                if(slice_op.axes.size() > 1)
                    return;
                auto concat_axis = slice_op.axes.front();
                // TODO: Check if axises match
806
                auto concat = m.insert_instruction(
807
                    ins, make_op("concat", {{"axis", concat_axis}}), data_args);
808
809
810
811
812

                std::vector<instruction_ref> args;
                args.resize(2);
                args[split_idx] = ins;
                args[data_idx]  = concat;
813
                c               = m.insert_instruction(std::next(ins), op, args);
814
            }
815
            if(c != m.end())
816
817
818
819
820
821
            {
                for(auto i : group)
                {
                    auto split = i->inputs()[split_idx];
                    assert(split->name() == "slice");
                    // Insert contiguous for reshapes
822
823
                    auto outputs = i->outputs();
                    for(auto output : outputs)
824
                    {
825
                        if(output->name() != "reshape")
826
                            continue;
827
                        auto x = m.insert_instruction(output, make_op("contiguous"), i);
828
                        m.replace_instruction(output, output->get_operator(), x);
829
830
                    }

831
                    m.replace_instruction(i, split->get_operator(), c);
832
833
834
835
836
837
838
839
840
841
842
843
844
845
                }
            }
        }
    }
};

struct find_split_concat
{
    auto matcher() const
    {
        return match::any(match::any_of[match::outputs()](
            match::name("slice")(match::all_of[match::outputs()](match::name("concat")))));
    }

846
    void apply(module& m, const match::matcher_result& r) const
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
    {
        auto ins = r.result;

        auto splits = get_splits(ins);
        if(splits.empty())
            return;
        if(std::any_of(
               splits.begin(), splits.end(), [](auto i) { return i->outputs().size() != 1; }))
            return;
        // Check for concat operator
        auto concat = splits.front()->outputs().front();
        if(std::any_of(splits.begin(), splits.end(), [&](auto i) {
               return i->outputs().front() != concat;
           }))
            return;
        // Check axis match
        auto concat_op = any_cast<op::concat>(concat->get_operator());
        auto split_op  = any_cast<op::slice>(splits.front()->get_operator());
        if(split_op.axes.size() != 1)
            return;
        if(split_op.axes.front() != concat_op.axis)
            return;
        // Replace args
        auto args = concat->inputs();
        auto it =
            std::find_if(args.begin(), args.end(), [&](auto i) { return i == splits.front(); });
        if(std::distance(it, args.end()) < splits.size())
            return;
875
876
877
878
879
880
881
        // If the slices are not in order then stop
        if(not std::is_sorted(it, it + splits.size(), [](instruction_ref x, instruction_ref y) {
               auto xop = any_cast<op::slice>(x->get_operator());
               auto yop = any_cast<op::slice>(y->get_operator());
               return std::tie(xop.starts, xop.ends) < std::tie(yop.starts, yop.ends);
           }))
            return;
882
883
884
885
        *it = splits.front()->inputs().front();
        args.erase(std::next(it), it + splits.size());

        if(args.size() == 1)
886
            m.replace_instruction(concat, args.front());
887
        else
888
            m.replace_instruction(concat, concat->get_operator(), args);
889
890
891
    }
};

892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
bool axis_equal(const std::vector<std::size_t>& x,
                const std::vector<std::size_t>& y,
                std::size_t axis)
{
    return x.size() == y.size() and x.size() > axis and
           std::equal(x.begin(), x.begin() + axis, y.begin()) and
           std::equal(x.begin() + axis + 1, x.end(), y.begin() + axis + 1);
}

bool axis_shape_equal(const shape& x, const shape& y, std::size_t axis)
{
    // TODO: Check strides
    return axis_equal(x.lens(), y.lens(), axis);
}

struct find_add_convs
{
    auto matcher() const
    {
        return match::name("add")(
            match::args(conv_const_weights().bind("a"), conv_const_weights().bind("b")));
    }

    static bool symmetrical_strides(const op::convolution& op)
    {
        return op.stride[0] == op.stride[1];
    }

    static std::size_t compute_stride_factor(const op::convolution& x, const op::convolution& y)
    {
        if(not symmetrical_strides(x))
            return 0;
        if(not symmetrical_strides(y))
            return 0;
        if((x.stride[0] % y.stride[0]) != 0)
            return 0;
        return x.stride[0] / y.stride[0];
    }

931
    void apply(module& m, const match::matcher_result& r) const
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
    {
        auto ins       = r.result;
        auto a_conv    = r.instructions["a"];
        auto a_input   = a_conv->inputs().at(0);
        auto a_weights = a_conv->inputs().at(1);
        auto b_conv    = r.instructions["b"];
        auto b_input   = b_conv->inputs().at(0);
        auto b_weights = b_conv->inputs().at(1);

        if(not axis_shape_equal(a_weights->get_shape(), b_weights->get_shape(), 1))
            return;

        auto a_op   = any_cast<op::convolution>(a_conv->get_operator());
        auto b_op   = any_cast<op::convolution>(b_conv->get_operator());
        auto new_op = a_op;

        if(a_op != b_op)
        {
            if(std::tie(a_op.padding, a_op.dilation, a_op.group) ==
                   std::tie(b_op.padding, b_op.dilation, b_op.group) and
               a_weights->get_shape().lens()[2] == 1 and a_weights->get_shape().lens()[3] == 1)
            {
                if(a_op.stride < b_op.stride)
                {
                    auto n = compute_stride_factor(b_op, a_op);
                    if(n == 0)
                        return;
                    new_op  = a_op;
960
                    b_input = m.insert_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
961
                        ins, make_op("step", {{"axes", {2, 3}}, {"steps", {n, n}}}), b_input);
962
963
964
965
966
967
968
                }
                else if(b_op.stride < a_op.stride)
                {
                    auto n = compute_stride_factor(a_op, b_op);
                    if(n == 0)
                        return;
                    new_op  = b_op;
969
                    a_input = m.insert_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
970
                        ins, make_op("step", {{"axes", {2, 3}}, {"steps", {n, n}}}), a_input);
971
972
973
974
975
976
977
978
                }
                else
                    return;
            }
            else
                return;
        }

979
        auto concat_input =
980
            m.insert_instruction(ins, make_op("concat", {{"axis", 1}}), a_input, b_input);
981
        auto concat_weights =
982
983
            m.insert_instruction(ins, make_op("concat", {{"axis", 1}}), a_weights, b_weights);
        m.replace_instruction(ins, new_op, concat_input, concat_weights);
984
985
986
    }
};

987
988
989
990
991
992
993
994
995
996
MIGRAPHX_PRED_MATCHER(horiz_conv_dot, instruction_ref ins)
{
    auto pred = [&](auto name) {
        return [=](auto i) {
            return i->name() == name and i->inputs().front() == ins and
                   i->inputs().at(1)->can_eval();
        };
    };
    auto dots  = std::count_if(ins->outputs().begin(), ins->outputs().end(), pred("dot"));
    auto convs = std::count_if(ins->outputs().begin(), ins->outputs().end(), pred("convolution"));
997
    return (dots >= 2 or convs >= 2);
998
999
1000
1001
1002
1003
}

struct find_conv_dot_horiz_fusion
{
    auto matcher() const { return horiz_conv_dot(); }

1004
    void apply(module& m, const match::matcher_result& r) const
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
    {
        auto ins = r.result;

        auto pred = [](auto i, auto j) {
            if(i->get_operator() != j->get_operator())
                return false;
            if(not contains({"dot", "convolution"}, i->name()))
                return true;
            auto x = i->inputs()[1]->get_shape().lens();
            auto y = j->inputs()[1]->get_shape().lens();
            if(x.size() != y.size())
                return false;
1017
            // Check that non-axes match
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
            int axis = 1;
            if(i->name() == "dot")
            {
                axis = x.size() - 1;
            }
            return axis_equal(x, y, axis);
        };

        auto each = [&](auto start, auto last) {
            if(std::distance(start, last) < 2)
                return;
            auto&& name = (*start)->name();
            if(not contains({"dot", "convolution"}, name))
                return;
1032
1033
1034
1035
1036
1037
1038
            auto op   = (*start)->get_operator();
            int group = 1;
            if(name == "convolution")
                group = any_cast<op::convolution>(op).group;
            // Skip group convolution
            if(group != 1)
                return;
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
            auto input = (*start)->inputs().front();
            std::vector<instruction_ref> args;
            std::transform(
                start, last, std::back_inserter(args), [&](auto x) { return x->inputs().at(1); });
            int axis        = 1;
            int concat_axis = 0;
            if(name == "dot")
            {
                axis        = int(args.front()->get_shape().lens().size() - 1);
                concat_axis = axis;
            }

1051
            move_instructions_back(m, input, args);
1052
            // TODO: Check if axes match
1053
            auto concat =
1054
1055
                m.insert_instruction(input, make_op("concat", {{"axis", concat_axis}}), args);
            auto fused     = m.insert_instruction(std::next(input), op, input, concat);
1056
1057
1058
            int64_t offset = 0;
            for(auto arg : range(start, last))
            {
1059
1060
1061
1062
1063
1064
1065
1066
1067
                auto outputs = arg->outputs();
                for(auto output : outputs)
                {
                    if(output->name() != "reshape")
                        continue;
                    auto x = m.insert_instruction(output, make_op("contiguous"), arg);
                    m.replace_instruction(output, output->get_operator(), x);
                }

1068
                int64_t len = arg->get_shape().lens()[axis];
1069
                m.replace_instruction(
1070
1071
1072
1073
                    arg,
                    make_op("slice",
                            {{"axes", {axis}}, {"starts", {offset}}, {"ends", {offset + len}}}),
                    fused);
1074
1075
1076
1077
1078
1079
1080
1081
1082
                offset += len;
            }
        };

        auto outputs = ins->outputs();
        group_by(outputs.begin(), outputs.end(), each, pred);
    }
};

1083
1084
1085
1086
1087
1088
1089
struct find_div_const
{
    auto matcher() const
    {
        return match::name("div")(match::arg(1)(match::is_constant().bind("c")));
    }

1090
    void apply(module& m, const match::matcher_result& r) const
1091
1092
1093
1094
    {
        auto ins   = r.result;
        auto c_ins = r.instructions["c"];

1095
        auto recip = m.insert_instruction(std::next(c_ins), make_op("recip"), c_ins);
1096
1097
1098

        auto args = ins->inputs();

1099
        m.replace_instruction(ins, make_op("mul"), args.front(), recip);
1100
1101
1102
    }
};

1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
struct find_unit_ops
{
    auto matcher() const
    {
        auto mul_1 = match::name("mul")(
            match::either_arg(0, 1)(match::has_value(1.0f), match::any().bind("x")));
        auto div_1 =
            match::name("div")(match::args(match::any().bind("x"), match::has_value(1.0f)));
        auto add_0 = match::name("add")(
            match::either_arg(0, 1)(match::has_value(0.0f, 1e-12), match::any().bind("x")));
        auto sub_0 =
            match::name("sub")(match::args(match::any().bind("x"), match::has_value(0.0f)));
        return match::any_of(mul_1, div_1, add_0, sub_0);
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins  = r.result;
        auto c_in = r.instructions["x"];

        m.replace_instruction(ins, c_in);
    }
};

struct find_neg_unit_ops
{
    auto matcher() const
    {
        auto mul_neg_1 = match::name("mul")(
            match::either_arg(0, 1)(match::has_value(-1.0f), match::any().bind("x")));
        auto div_neg_1 =
            match::name("div")(match::args(match::any().bind("x"), match::has_value(-1.0f)));
        auto sub_0 =
            match::name("sub")(match::args(match::has_value(0.0f), match::any().bind("x")));
        return match::any_of(mul_neg_1, div_neg_1, sub_0);
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins  = r.result;
        auto c_in = r.instructions["x"];

1145
        auto neg = m.insert_instruction(ins, make_op("neg"), c_in);
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
        m.replace_instruction(ins, neg);
    }
};

struct find_zero_ops
{
    auto matcher() const
    {
        auto mul_zero = match::name("mul")(
            match::either_arg(0, 1)(match::has_value(0.0f).bind("x"), match::any()));
        auto div_zero =
            match::name("div")(match::args(match::has_value(0.0f).bind("x"), match::any()));
        return match::any_of(mul_zero, div_zero);
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins      = r.result;
        auto zero_ins = r.instructions["x"];

        m.replace_instruction(ins, zero_ins);
    }
};

1170
1171
1172
1173
1174
1175
1176
struct find_sub_const
{
    auto matcher() const
    {
        return match::name("sub")(match::arg(1)(match::is_constant().bind("c")));
    }

1177
    void apply(module& m, const match::matcher_result& r) const
1178
1179
1180
1181
    {
        auto ins   = r.result;
        auto c_ins = r.instructions["c"];

1182
        auto neg = m.insert_instruction(std::next(c_ins), make_op("neg"), c_ins);
1183
1184
1185

        auto args = ins->inputs();

1186
        m.replace_instruction(ins, make_op("add"), args.front(), neg);
1187
1188
1189
    }
};

kahmed10's avatar
kahmed10 committed
1190
1191
1192
1193
1194
1195
1196
1197
struct find_rsqrt
{
    auto matcher() const
    {
        return match::name("recip")(match::args(
            match::name("sqrt")(match::used_once(), match::args(match::any().bind("x")))));
    }

1198
    void apply(module& m, const match::matcher_result& r) const
kahmed10's avatar
kahmed10 committed
1199
1200
1201
1202
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];

1203
        m.replace_instruction(ins, make_op("rsqrt"), x_ins);
kahmed10's avatar
kahmed10 committed
1204
1205
1206
    }
};

1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
static bool same_ops(const std::vector<instruction_ref>& vec_ins)
{
    return std::all_of(vec_ins.begin(), vec_ins.end(), [&](auto i) {
        return i->get_operator() == vec_ins.front()->get_operator();
    });
}

struct find_split_reshape
{
    auto matcher() const
    {
        return match::name("reshape")(match::arg(0)(match::name("contiguous")(
                                          match::arg(0)(match::name("slice").bind("slice")))))
            .bind("reshape");
    }

1223
    void apply(module& m, const match::matcher_result& r) const
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
    {
        auto slc = r.instructions["slice"];
        auto rsp = r.instructions["reshape"];

        auto input         = slc->inputs().front();
        auto split_outputs = get_splits(input);
        if(split_outputs.empty())
        {
            return;
        }

shivadbhavsar's avatar
shivadbhavsar committed
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
        // Only want to apply this optimization if each split output is followed by
        // a contiguous op and a reshape
        if(std::any_of(split_outputs.begin(), split_outputs.end(), [](auto i) {
               if(i->outputs().size() == 1)
               {
                   auto cont = i->outputs().front();
                   return cont->outputs().size() != 1;
               }
               return false;
           }))
        {
            return;
        }

1249
1250
1251
1252
1253
1254
1255
1256
        std::vector<instruction_ref> vec_rsp(split_outputs.size());
        std::transform(split_outputs.begin(), split_outputs.end(), vec_rsp.begin(), [](auto i) {
            auto cont = i->outputs().front();
            return cont->outputs().front();
        });

        // all outputs are reshape and of the same shape
        auto dims = any_cast<op::reshape>(rsp->get_operator()).dims;
1257
        if(not same_ops(vec_rsp))
1258
1259
1260
1261
1262
        {
            return;
        }

        // ensure reshape happens after the axis dimension
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
        auto axis         = any_cast<op::slice>(slc->get_operator()).axes[0];
        auto slc_lens     = slc->get_shape().lens();
        auto slc_dim_size = std::accumulate(
            slc_lens.begin() + axis, slc_lens.end(), 1, std::multiplies<std::size_t>());

        // search the reshape output (standard shape) to decide which axis are
        // in its output corresponding to the slc_dim_size
        auto rsp_lens    = rsp->get_shape().lens();
        auto rsp_strides = rsp->get_shape().strides();
        rsp_strides.insert(rsp_strides.begin(), rsp_strides[0] * rsp_lens[0]);
1273
1274
1275

        auto ait     = std::find(rsp_strides.begin(), rsp_strides.end(), slc_dim_size);
        int rsp_axis = -1;
1276
        if(ait == rsp_strides.end())
1277
1278
1279
        {
            return;
        }
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
        else if(ait == rsp_strides.end() - 1)
        {
            // edge case
            // slice_dim == 1, in that case it could match with last stride of 1.
            // it should accumulate lengths from last dim in that case. discount 1 to avoid going
            // out of bounds.
            assert(slc_dim_size == 1);
            rsp_axis = std::distance(rsp_strides.begin(), ait) - 1;
        }
        else
        {
            rsp_axis = std::distance(rsp_strides.begin(), ait);
        }
1293
        // calculate reshape output shape
1294
        std::vector<int64_t> vec_dims(vec_rsp.size());
1295

1296
1297
1298
1299
1300
        std::transform(vec_rsp.begin(), vec_rsp.end(), vec_dims.begin(), [&](auto is) {
            return is->get_shape().lens()[rsp_axis];
        });

        std::vector<int64_t> rsp_out_lens(rsp_lens.begin(), rsp_lens.end());
1301

1302
        rsp_out_lens[rsp_axis] = std::accumulate(vec_dims.begin(), vec_dims.end(), std::int64_t{0});
1303

1304
1305
1306
1307
1308
        // insert the reshape instruction and add contiguous if needed
        if(not input->get_shape().standard())
        {
            input = m.insert_instruction(std::next(input), make_op("contiguous"), input);
        }
1309
        auto rsp_ins = m.insert_instruction(
1310
            std::next(input), make_op("reshape", {{"dims", rsp_out_lens}}), input);
1311
1312

        // replace the original reshape with slice
1313
1314
        int64_t start = 0;
        for(std::size_t i = 0; i < vec_rsp.size(); ++i)
1315
        {
1316
            m.replace_instruction(
1317
1318
1319
1320
1321
                vec_rsp[i],
                make_op(
                    "slice",
                    {{"axes", {rsp_axis}}, {"starts", {start}}, {"ends", {start + vec_dims[i]}}}),
                rsp_ins);
1322
            start += vec_dims[i];
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
        }
    }
};

struct find_split_transpose
{
    auto matcher() const
    {
        return match::name("transpose")(match::arg(0)(match::name("slice").bind("slice")))
            .bind("trans");
    }

1335
    void apply(module& m, const match::matcher_result& r) const
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
    {
        auto slc   = r.instructions["slice"];
        auto trans = r.instructions["trans"];

        auto input         = slc->inputs().front();
        auto split_outputs = get_splits(input);
        if(split_outputs.empty())
        {
            return;
        }

        std::vector<instruction_ref> vec_trans(split_outputs.size());
        std::transform(split_outputs.begin(), split_outputs.end(), vec_trans.begin(), [](auto i) {
            assert(i->outputs().size() == 1);
            return i->outputs().front();
        });

        // all transpose are the same
        auto perm = any_cast<op::transpose>(trans->get_operator()).dims;
1355
        if(not same_ops(vec_trans))
1356
1357
1358
1359
1360
        {
            return;
        }

        // insert an transpose instruction
1361
        auto tr = m.insert_instruction(
1362
            std::next(input), make_op("transpose", {{"permutation", perm}}), input);
1363
1364
1365
1366
1367

        // compute the axis in the slice
        auto axis = any_cast<op::slice>(slc->get_operator()).axes.front();
        auto it   = std::find(perm.begin(), perm.end(), axis);
        assert(it != perm.end());
Paul Fultz II's avatar
Paul Fultz II committed
1368
        int64_t axis_new = std::distance(perm.begin(), it);
1369
1370
1371
1372
1373
1374
1375

        for(auto in : split_outputs)
        {
            auto oper    = any_cast<op::slice>(in->get_operator());
            auto starts  = oper.starts;
            auto ends    = oper.ends;
            auto tr_orig = in->outputs().front();
1376
            m.replace_instruction(
1377
1378
1379
                tr_orig,
                make_op("slice", {{"axes", {axis_new}}, {"starts", starts}, {"ends", ends}}),
                tr);
1380
1381
1382
1383
        }
    }
};

1384
void simplify_algebra::apply(module& m) const
Paul's avatar
Paul committed
1385
{
Paul's avatar
Paul committed
1386
    // Run simplifications multiple times
1387
    for(int i = 0; i < 8; i++)
Paul's avatar
Paul committed
1388
    {
1389
        match::find_matches(m,
Paul's avatar
Paul committed
1390
                            find_inner_broadcast{},
Paul's avatar
Paul committed
1391
1392
                            find_double_add_lit_broadcast{},
                            find_add_lit_broadcast{},
1393
                            find_add_convs{},
1394
                            find_conv_dot_horiz_fusion{},
Paul's avatar
Paul committed
1395
                            find_mul_conv{},
1396
                            find_mul_slice_conv{},
Paul's avatar
Paul committed
1397
1398
                            find_mul_dot{},
                            find_dot_mul{},
1399
                            find_mul_add{},
1400
1401
1402
                            find_unit_ops{},
                            find_neg_unit_ops{},
                            find_zero_ops{},
1403
                            find_dot_add{},
1404
                            find_conv_add{},
1405
1406
                            find_div_const{},
                            find_sub_const{},
kahmed10's avatar
kahmed10 committed
1407
                            find_rsqrt{},
1408
                            find_concat_op{},
1409
                            find_split_concat{},
1410
1411
1412
                            find_splits{},
                            find_split_reshape{},
                            find_split_transpose{});
1413
        dead_code_elimination{}.apply(m);
Paul's avatar
Paul committed
1414
    }
Paul's avatar
Paul committed
1415
}
Paul's avatar
Paul committed
1416

Paul's avatar
Paul committed
1417
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1418
} // namespace migraphx