gen_onnx.py 56.3 KB
Newer Older
Khalique's avatar
Khalique committed
1
2
3
4
5
6
import numpy as np
import onnx
from onnx import helper
from onnx import numpy_helper
from onnx import AttributeProto, TensorProto, GraphProto

Khalique's avatar
Khalique committed
7

Khalique's avatar
Khalique committed
8
9
def onnx_test(op_test):
    def run_test():
Khalique's avatar
Khalique committed
10
11
        op_info = op_test()
        if len(op_info) > 3:
Khalique's avatar
Khalique committed
12
13
14
15
16
            graph_def = helper.make_graph(op_info[0],
                                          op_test.__name__,
                                          op_info[1],
                                          op_info[2],
                                          initializer=op_info[3])
Khalique's avatar
Khalique committed
17
        else:
Khalique's avatar
Khalique committed
18
19
20
21
            graph_def = helper.make_graph(op_info[0], op_test.__name__,
                                          op_info[1], op_info[2])
        model_def = helper.make_model(graph_def,
                                      producer_name=op_test.__name__)
Khalique's avatar
Khalique committed
22
        onnx.save(model_def, '{}.onnx'.format(op_test.__name__))
Khalique's avatar
Khalique committed
23

Khalique's avatar
Khalique committed
24
25
    return run_test

Khalique's avatar
Khalique committed
26

Khalique's avatar
Khalique committed
27
@onnx_test
Khalique's avatar
Khalique committed
28
29
30
31
32
33
34
35
36
37
def acos_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Acos',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
38
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
39

Khalique's avatar
Khalique committed
40

Khalique's avatar
Khalique committed
41
@onnx_test
Khalique's avatar
Khalique committed
42
43
44
def add_bcast_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4])
Khalique's avatar
Khalique committed
45
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [2, 3, 4, 5])
Khalique's avatar
Khalique committed
46

Khalique's avatar
Khalique committed
47
48
49
50
51
52
53
    node = onnx.helper.make_node('Add',
                                 inputs=['0', '1'],
                                 broadcast=1,
                                 axis=1,
                                 outputs=['2'])

    return ([node], [x, y], [z])
Khalique's avatar
Khalique committed
54
55


Khalique's avatar
Khalique committed
56
@onnx_test
Khalique's avatar
Khalique committed
57
58
59
60
61
62
63
64
65
66
67
def add_fp16_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT16, [1])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT16, [1])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT16, [1])

    node = onnx.helper.make_node(
        'Add',
        inputs=['0', '1'],
        outputs=['2'],
    )

Khalique's avatar
Khalique committed
68
    return (
Khalique's avatar
Khalique committed
69
        [node],
Khalique's avatar
Khalique committed
70
        [x, y],
Khalique's avatar
Khalique committed
71
72
        [z],
        # '0' -> 1.5, '1' -> 2.5
Khalique's avatar
Khalique committed
73
74
75
76
        [
            onnx.helper.make_tensor('0', TensorProto.FLOAT16, [1], [15872]),
            onnx.helper.make_tensor('1', TensorProto.FLOAT16, [1], [16640])
        ])
Khalique's avatar
Khalique committed
77
78


Khalique's avatar
Khalique committed
79
@onnx_test
Khalique's avatar
Khalique committed
80
81
82
def add_scalar_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [])
Khalique's avatar
Khalique committed
83
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [2, 3, 4, 5])
Khalique's avatar
Khalique committed
84

Khalique's avatar
Khalique committed
85
86
87
88
    node = onnx.helper.make_node('Add', inputs=['0', '1'], outputs=['2'])

    return ([node], [x, y], [z],
            [helper.make_tensor('1', TensorProto.FLOAT, [], [1])])
Khalique's avatar
Khalique committed
89
90


Khalique's avatar
Khalique committed
91
@onnx_test
Khalique's avatar
Khalique committed
92
93
94
95
def argmax_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 6])

Khalique's avatar
Khalique committed
96
97
98
99
100
    node = onnx.helper.make_node('ArgMax',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axis=2,
                                 keepdims=0)
Khalique's avatar
Khalique committed
101

Khalique's avatar
Khalique committed
102
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
103

Khalique's avatar
Khalique committed
104

Khalique's avatar
Khalique committed
105
@onnx_test
Khalique's avatar
Khalique committed
106
107
108
109
def argmin_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 5])

Khalique's avatar
Khalique committed
110
111
112
113
114
    node = onnx.helper.make_node('ArgMin',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axis=3,
                                 keepdims=0)
Khalique's avatar
Khalique committed
115

Khalique's avatar
Khalique committed
116
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
117

Khalique's avatar
Khalique committed
118

Khalique's avatar
Khalique committed
119
@onnx_test
Khalique's avatar
Khalique committed
120
121
122
123
124
125
126
127
128
129
def asin_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Asin',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
130
131
    return ([node], [x], [y])

Khalique's avatar
Khalique committed
132

Khalique's avatar
Khalique committed
133
@onnx_test
Khalique's avatar
Khalique committed
134
135
136
137
138
139
140
141
142
def atan_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Atan',
        inputs=['x'],
        outputs=['y'],
    )
Khalique's avatar
Khalique committed
143

Khalique's avatar
Khalique committed
144
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
145

Khalique's avatar
Khalique committed
146

147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
@onnx_test
def averagepool_notset_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 1, 1])

    node = onnx.helper.make_node('AveragePool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[6, 6],
                                 strides=[2, 2],
                                 pads=[0, 0, 1, 1],
                                 auto_pad='NOTSET')

    return ([node], [x], [y])


@onnx_test
def averagepool_same_lower_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

    node = onnx.helper.make_node('AveragePool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[2, 2],
                                 auto_pad='SAME_LOWER')

    return ([node], [x], [y])


@onnx_test
def averagepool_same_upper_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

    node = onnx.helper.make_node('AveragePool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[2, 2],
                                 auto_pad='SAME_UPPER')

    return ([node], [x], [y])


Khalique's avatar
Khalique committed
191
@onnx_test
Khalique's avatar
Khalique committed
192
193
194
195
def cast_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

Khalique's avatar
Khalique committed
196
197
    node = onnx.helper.make_node('Cast', inputs=['x'], outputs=['y'], to=1)

Khalique's avatar
Khalique committed
198
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
199

kahmed10's avatar
kahmed10 committed
200

Shucai Xiao's avatar
Shucai Xiao committed
201
202
203
204
205
206
207
208
209
210
211
212
@onnx_test
def ceil_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Ceil',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])
Khalique's avatar
Khalique committed
213

kahmed10's avatar
kahmed10 committed
214

Khalique's avatar
Khalique committed
215
@onnx_test
Khalique's avatar
Khalique committed
216
217
218
219
def clip_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

Khalique's avatar
Khalique committed
220
221
222
223
224
    node = onnx.helper.make_node('Clip',
                                 inputs=['0'],
                                 outputs=['1'],
                                 max=6.0,
                                 min=0.0)
Khalique's avatar
Khalique committed
225

Khalique's avatar
Khalique committed
226
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
227

Khalique's avatar
Khalique committed
228

Khalique's avatar
Khalique committed
229
@onnx_test
Khalique's avatar
Khalique committed
230
231
232
233
234
235
236
237
238
239
240
241
def concat_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 4, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [7, 4, 3])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [9, 4, 3])

    node = onnx.helper.make_node(
        'Concat',
        inputs=['0', '1'],
        axis=0,
        outputs=['2'],
    )

Khalique's avatar
Khalique committed
242
243
    return ([node], [x, y], [z])

Khalique's avatar
Khalique committed
244

Khalique's avatar
Khalique committed
245
@onnx_test
Khalique's avatar
Khalique committed
246
247
248
def constant_test():
    x = np.array([0, 1, 2])
    y = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
Khalique's avatar
Khalique committed
249

Khalique's avatar
Khalique committed
250
251
252
253
254
255
256
257
258
259
260
261
    node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['0'],
        value=onnx.helper.make_tensor(
            name='const_tensor',
            data_type=TensorProto.FLOAT,
            dims=x.shape,
            vals=x.flatten().astype(float),
        ),
    )

Khalique's avatar
Khalique committed
262
    return ([node], [], [y])
Khalique's avatar
Khalique committed
263

Khalique's avatar
Khalique committed
264

Khalique's avatar
Khalique committed
265
@onnx_test
Khalique's avatar
Khalique committed
266
def constant_fill_test():
Khalique's avatar
Khalique committed
267
268
269
270
271
272
    value = helper.make_tensor_value_info('value', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node(
        'ConstantFill',
        inputs=[],
        outputs=['value'],
Khalique's avatar
Khalique committed
273
274
275
276
        dtype=1,
        value=1.0,
        shape=[2, 3],
        input_as_shape=0,
Khalique's avatar
Khalique committed
277
278
    )

Khalique's avatar
Khalique committed
279
    return ([node], [], [value])
Khalique's avatar
Khalique committed
280

Khalique's avatar
Khalique committed
281

Khalique's avatar
Khalique committed
282
@onnx_test
Khalique's avatar
Khalique committed
283
def constant_fill_input_as_shape_test():
Khalique's avatar
Khalique committed
284
    np_shape = np.array([2, 3])
Khalique's avatar
Khalique committed
285
286
287
    shape = helper.make_tensor_value_info('shape', TensorProto.INT32, [2])
    value = helper.make_tensor_value_info('value', TensorProto.FLOAT, [2, 3])

Khalique's avatar
Khalique committed
288
289
290
291
    ts_shape = helper.make_tensor(name='shape_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=np_shape.shape,
                                  vals=np_shape.flatten().astype(int))
Khalique's avatar
Khalique committed
292
293
294
295
296
297
298
299
300
301
302
303

    const_shape_node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=ts_shape,
    )

    node = onnx.helper.make_node(
        'ConstantFill',
        inputs=['shape'],
        outputs=['value'],
Khalique's avatar
Khalique committed
304
305
306
        dtype=1,
        value=1.0,
        input_as_shape=1,
Khalique's avatar
Khalique committed
307
308
    )

Khalique's avatar
Khalique committed
309
    return ([const_shape_node, node], [], [value])
Khalique's avatar
Khalique committed
310

Khalique's avatar
Khalique committed
311

Khalique's avatar
Khalique committed
312
@onnx_test
Khalique's avatar
Khalique committed
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
def constant_scalar_test():
    x = np.array([1])
    y = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1])

    node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['0'],
        value=onnx.helper.make_tensor(
            name='const_tensor',
            data_type=TensorProto.INT32,
            dims=x.shape,
            vals=x.flatten().astype(int),
        ),
    )

Khalique's avatar
Khalique committed
329
    return ([node], [], [y])
Khalique's avatar
Khalique committed
330

Khalique's avatar
Khalique committed
331

Khalique's avatar
Khalique committed
332
@onnx_test
Khalique's avatar
Khalique committed
333
def const_of_shape_empty_input_test():
Khalique's avatar
Khalique committed
334
335
    tensor_val = onnx.helper.make_tensor('value', onnx.TensorProto.INT64, [1],
                                         [10])
Khalique's avatar
Khalique committed
336
337
    shape_val = np.array([2, 3, 4]).astype(np.int64)
    empty_val = np.array([]).astype(np.int64)
Khalique's avatar
Khalique committed
338
339
340
341
    empty_ts = helper.make_tensor(name='empty_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=empty_val.shape,
                                  vals=empty_val.flatten().astype(int))
Khalique's avatar
Khalique committed
342
343
344
345
346
347
348
349
350
351
352
353
    shape_const = helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=empty_ts,
    )
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4])

    node = onnx.helper.make_node(
        'ConstantOfShape',
        inputs=['shape'],
        outputs=['y'],
Khalique's avatar
Khalique committed
354
        value=tensor_val,
Khalique's avatar
Khalique committed
355
356
    )

Khalique's avatar
Khalique committed
357
    return ([shape_const, node], [], [y])
Khalique's avatar
Khalique committed
358

Khalique's avatar
Khalique committed
359

Khalique's avatar
Khalique committed
360
@onnx_test
Khalique's avatar
Khalique committed
361
def const_of_shape_float_test():
Khalique's avatar
Khalique committed
362
363
    tensor_val = onnx.helper.make_tensor('value', onnx.TensorProto.FLOAT, [1],
                                         [10])
Khalique's avatar
Khalique committed
364
365

    shape_val = np.array([2, 3, 4]).astype(np.int64)
Khalique's avatar
Khalique committed
366
367
368
369
    shape_ts = helper.make_tensor(name='shape_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=shape_val.shape,
                                  vals=shape_val.flatten().astype(int))
Khalique's avatar
Khalique committed
370
371
372
373
374
375
376
377
378

    shape_const = helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=shape_ts,
    )
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4])

Khalique's avatar
Khalique committed
379
380
381
382
    node = onnx.helper.make_node('ConstantOfShape',
                                 inputs=['shape'],
                                 outputs=['y'],
                                 value=tensor_val)
Khalique's avatar
Khalique committed
383

Khalique's avatar
Khalique committed
384
    return ([shape_const, node], [], [y])
Khalique's avatar
Khalique committed
385

Khalique's avatar
Khalique committed
386

Khalique's avatar
Khalique committed
387
@onnx_test
Khalique's avatar
Khalique committed
388
def const_of_shape_int64_test():
Khalique's avatar
Khalique committed
389
390
    tensor_val = onnx.helper.make_tensor('value', onnx.TensorProto.INT64, [1],
                                         [10])
Khalique's avatar
Khalique committed
391
    shape_val = np.array([2, 3, 4]).astype(np.int64)
Khalique's avatar
Khalique committed
392
393
394
395
    shape_ts = helper.make_tensor(name='shape_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=shape_val.shape,
                                  vals=shape_val.flatten().astype(int))
Khalique's avatar
Khalique committed
396
    shape_const = helper.make_node(
Khalique's avatar
Khalique committed
397
398
399
400
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=shape_ts,
Khalique's avatar
Khalique committed
401
402
    )
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4])
Khalique's avatar
Khalique committed
403
404
405
406
407

    node = onnx.helper.make_node('ConstantOfShape',
                                 inputs=['shape'],
                                 outputs=['y'],
                                 value=tensor_val)
Khalique's avatar
Khalique committed
408

Khalique's avatar
Khalique committed
409
    return ([shape_const, node], [], [y])
Khalique's avatar
Khalique committed
410

Khalique's avatar
Khalique committed
411

Khalique's avatar
Khalique committed
412
@onnx_test
Khalique's avatar
Khalique committed
413
414
def const_of_shape_no_value_attr_test():
    shape_val = np.array([2, 3, 4]).astype(np.int64)
Khalique's avatar
Khalique committed
415
416
417
418
    shape_ts = helper.make_tensor(name='shape_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=shape_val.shape,
                                  vals=shape_val.flatten().astype(int))
Khalique's avatar
Khalique committed
419
420
421
422
423
424
425
    shape_const = helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=shape_ts,
    )
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4])
Khalique's avatar
Khalique committed
426

Khalique's avatar
Khalique committed
427
428
429
430
431
432
    node = onnx.helper.make_node(
        'ConstantOfShape',
        inputs=['shape'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
433
    return ([shape_const, node], [], [y])
Khalique's avatar
Khalique committed
434

Khalique's avatar
Khalique committed
435

Khalique's avatar
Khalique committed
436
@onnx_test
Khalique's avatar
Khalique committed
437
438
439
440
441
def conv_autopad_fail_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 1, 1])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 34, 34])

Khalique's avatar
Khalique committed
442
443
444
445
446
447
448
449
450
    node = onnx.helper.make_node('Conv',
                                 inputs=['0', '1'],
                                 outputs=['2'],
                                 dilations=[1, 1],
                                 strides=[1, 1],
                                 auto_pad='SAME',
                                 pads=[0, 0, 1, 1, 0, 0, 1, 1])

    return ([node], [x, y], [out])
Khalique's avatar
Khalique committed
451
452


Khalique's avatar
Khalique committed
453
@onnx_test
Khalique's avatar
Khalique committed
454
455
456
457
458
459
def conv_bias_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1])
    out = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 2, 28, 28])

Khalique's avatar
Khalique committed
460
461
462
463
464
465
466
    node = onnx.helper.make_node('Conv',
                                 inputs=['0', '1', '2'],
                                 outputs=['3'],
                                 dilations=[1, 1],
                                 strides=[1, 1])

    return ([node], [x, y, z], [out])
Khalique's avatar
Khalique committed
467
468


Khalique's avatar
Khalique committed
469
@onnx_test
Khalique's avatar
Khalique committed
470
471
472
473
474
475
476
477
def conv_bn_relu_maxpool_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1])
    m = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1])
    n = helper.make_tensor_value_info('4', TensorProto.FLOAT, [1])
    k = helper.make_tensor_value_info('5', TensorProto.FLOAT, [1])
    l = helper.make_tensor_value_info('6', TensorProto.FLOAT, [1])
Khalique's avatar
Khalique committed
478
479
    out = helper.make_tensor_value_info('10', TensorProto.FLOAT,
                                        [1, 1, 14, 14])
Khalique's avatar
Khalique committed
480

Khalique's avatar
Khalique committed
481
482
483
484
485
486
    node0 = onnx.helper.make_node('Conv',
                                  inputs=['0', '1', '2'],
                                  outputs=['7'],
                                  dilations=[1, 1],
                                  strides=[1, 1],
                                  pads=[0, 0, 0, 0])
Khalique's avatar
Khalique committed
487

Khalique's avatar
Khalique committed
488
489
490
491
492
    node1 = onnx.helper.make_node('BatchNormalization',
                                  inputs=['7', '3', '4', '5', '6'],
                                  outputs=['8'],
                                  epsilon=9.99999974737875e-06,
                                  momentum=0.899999976158142)
Khalique's avatar
Khalique committed
493

Khalique's avatar
Khalique committed
494
495
496
497
498
499
500
501
502
    node2 = onnx.helper.make_node('Relu', inputs=['8'], outputs=['9'])
    node3 = onnx.helper.make_node('MaxPool',
                                  inputs=['9'],
                                  outputs=['10'],
                                  pads=[0, 0, 0, 0],
                                  strides=[2, 2],
                                  kernel_shape=[2, 2])

    return ([node0, node1, node2, node3], [x, y, z, m, n, k, l], [out])
Khalique's avatar
Khalique committed
503
504


Khalique's avatar
Khalique committed
505
@onnx_test
Khalique's avatar
Khalique committed
506
507
508
509
510
511
def conv_relu_maxpool_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1])
    out = helper.make_tensor_value_info('5', TensorProto.FLOAT, [1, 1, 14, 14])

Khalique's avatar
Khalique committed
512
513
514
515
516
517
    node1 = onnx.helper.make_node('Conv',
                                  inputs=['0', '1', '2'],
                                  outputs=['3'],
                                  dilations=[1, 1],
                                  strides=[1, 1],
                                  pads=[0, 0, 0, 0])
Khalique's avatar
Khalique committed
518

Khalique's avatar
Khalique committed
519
    node2 = onnx.helper.make_node('Relu', inputs=['3'], outputs=['4'])
Khalique's avatar
Khalique committed
520

Khalique's avatar
Khalique committed
521
522
523
524
525
526
527
528
    node3 = onnx.helper.make_node('MaxPool',
                                  inputs=['4'],
                                  outputs=['5'],
                                  pads=[0, 0, 0, 0],
                                  strides=[2, 2],
                                  kernel_shape=[2, 2])

    return ([node1, node2, node3], [x, y, z], [out])
Khalique's avatar
Khalique committed
529
530


Khalique's avatar
Khalique committed
531
@onnx_test
Khalique's avatar
Khalique committed
532
533
534
535
536
537
538
539
def conv_relu_maxpool_x2_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [5, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [5])
    m = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 5, 5, 5])
    n = helper.make_tensor_value_info('4', TensorProto.FLOAT, [1])
    out = helper.make_tensor_value_info('10', TensorProto.FLOAT, [1, 1, 5, 5])

Khalique's avatar
Khalique committed
540
541
542
543
544
545
    node1 = onnx.helper.make_node('Conv',
                                  inputs=['0', '1', '2'],
                                  outputs=['5'],
                                  dilations=[1, 1],
                                  strides=[1, 1],
                                  pads=[0, 0, 0, 0])
Khalique's avatar
Khalique committed
546

Khalique's avatar
Khalique committed
547
    node2 = onnx.helper.make_node('Relu', inputs=['5'], outputs=['6'])
Khalique's avatar
Khalique committed
548

Khalique's avatar
Khalique committed
549
550
551
552
553
554
    node3 = onnx.helper.make_node('MaxPool',
                                  inputs=['6'],
                                  outputs=['7'],
                                  pads=[0, 0, 0, 0],
                                  strides=[2, 2],
                                  kernel_shape=[2, 2])
Khalique's avatar
Khalique committed
555

Khalique's avatar
Khalique committed
556
557
558
559
560
561
    node4 = onnx.helper.make_node('Conv',
                                  inputs=['7', '3', '4'],
                                  outputs=['8'],
                                  dilations=[1, 1],
                                  strides=[1, 1],
                                  pads=[0, 0, 0, 0])
Khalique's avatar
Khalique committed
562

Khalique's avatar
Khalique committed
563
    node5 = onnx.helper.make_node('Relu', inputs=['8'], outputs=['9'])
Khalique's avatar
Khalique committed
564

Khalique's avatar
Khalique committed
565
566
567
568
569
570
571
572
    node6 = onnx.helper.make_node('MaxPool',
                                  inputs=['9'],
                                  outputs=['10'],
                                  pads=[0, 0, 0, 0],
                                  strides=[2, 2],
                                  kernel_shape=[2, 2])

    return ([node1, node2, node3, node4, node5, node6], [x, y, z, m, n], [out])
Khalique's avatar
Khalique committed
573
574


Khalique's avatar
Khalique committed
575
@onnx_test
Khalique's avatar
Khalique committed
576
577
578
579
580
581
582
583
584
585
def cos_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Cos',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
586
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
587

Khalique's avatar
Khalique committed
588

Khalique's avatar
Khalique committed
589
@onnx_test
Khalique's avatar
Khalique committed
590
591
592
593
594
595
596
597
598
599
def cosh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1])

    node = onnx.helper.make_node(
        'Cosh',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
600
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
601

Khalique's avatar
Khalique committed
602

kahmed10's avatar
kahmed10 committed
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
@onnx_test
def deconv_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 1, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

    node = onnx.helper.make_node('ConvTranspose',
                                 name='conv1',
                                 inputs=['x', 'w'],
                                 outputs=['y'])

    return ([node], [x, w], [y])


@onnx_test
def deconv_bias_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 1, 3, 3])
    b = helper.make_tensor_value_info('b', TensorProto.FLOAT, [1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

    node = onnx.helper.make_node('ConvTranspose',
                                 name='conv1',
                                 inputs=['x', 'w', 'b'],
                                 outputs=['y'])

    return ([node], [x, w, b], [y])


@onnx_test
def deconv_input_pads_strides_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 7, 5])

    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2],
                                 pads=[1, 1, 1, 1])

    return ([node], [x, w], [y])


@onnx_test
def deconv_input_pads_asymm_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 8, 6])

    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2],
                                 pads=[0, 0, 1, 1])

    return ([node], [x, w], [y])


@onnx_test
def deconv_output_shape_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 10, 8])

    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2],
                                 output_shape=[10, 8])

    return ([node], [x, w], [y])


@onnx_test
def deconv_output_padding_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 10, 8])

    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2],
                                 output_padding=[1, 1])

    return ([node], [x, w], [y])


@onnx_test
def deconv_stride_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 7, 3])

    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2])

    return ([node], [x, w], [y])


Khalique's avatar
Khalique committed
706
@onnx_test
Khalique's avatar
Khalique committed
707
def dropout_test():
Khalique's avatar
Khalique committed
708
709
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 2, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 2, 2])
Khalique's avatar
Khalique committed
710

Khalique's avatar
Khalique committed
711
712
713
714
715
716
717
    node = onnx.helper.make_node(
        'Dropout',
        inputs=['0'],
        outputs=['1'],
    )

    return ([node], [x], [y])
Khalique's avatar
Khalique committed
718
719


Khalique's avatar
Khalique committed
720
@onnx_test
Khalique's avatar
Khalique committed
721
722
723
724
def elu_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

Khalique's avatar
Khalique committed
725
726
727
728
    node = onnx.helper.make_node('Elu',
                                 inputs=['0'],
                                 outputs=['1'],
                                 alpha=0.01)
Khalique's avatar
Khalique committed
729

Khalique's avatar
Khalique committed
730
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
731

Khalique's avatar
Khalique committed
732

Khalique's avatar
Khalique committed
733
@onnx_test
Khalique's avatar
Khalique committed
734
735
736
737
738
739
740
741
742
743
def erf_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10, 15])

    node = onnx.helper.make_node(
        'Erf',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
744
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
745

Khalique's avatar
Khalique committed
746

Khalique's avatar
Khalique committed
747
@onnx_test
Khalique's avatar
Khalique committed
748
749
750
751
752
753
754
755
756
757
def exp_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Exp',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
758
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
759

Khalique's avatar
Khalique committed
760

Khalique's avatar
Khalique committed
761
@onnx_test
Khalique's avatar
Khalique committed
762
763
def expand_test():
    shape_val = np.array([2, 3, 4, 5]).astype(np.int64)
Khalique's avatar
Khalique committed
764
765
766
767
    shape_ts = helper.make_tensor(name='shape_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=shape_val.shape,
                                  vals=shape_val.flatten().astype(int))
Khalique's avatar
Khalique committed
768
769
770
771
772
773
774
775
776
    shape_const = helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=shape_ts,
    )
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 1, 1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4, 5])

Khalique's avatar
Khalique committed
777
778
779
780
781
782
    node = onnx.helper.make_node('Expand',
                                 inputs=['x', 'shape'],
                                 outputs=['y'])

    return ([shape_const, node], [x], [y])

Khalique's avatar
Khalique committed
783

Khalique's avatar
Khalique committed
784
@onnx_test
Khalique's avatar
Khalique committed
785
786
def flatten_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
Khalique's avatar
Khalique committed
787
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [6, 20])
Khalique's avatar
Khalique committed
788
789
    y2 = helper.make_tensor_value_info('3', TensorProto.FLOAT, [2, 60])

Khalique's avatar
Khalique committed
790
791
792
793
    node = onnx.helper.make_node('Flatten',
                                 inputs=['0'],
                                 axis=2,
                                 outputs=['2'])
Khalique's avatar
Khalique committed
794

Khalique's avatar
Khalique committed
795
796
797
    node2 = onnx.helper.make_node('Flatten', inputs=['0'], outputs=['3'])

    return ([node, node2], [x], [y, y2])
Khalique's avatar
Khalique committed
798

kahmed10's avatar
kahmed10 committed
799

Shucai Xiao's avatar
Shucai Xiao committed
800
801
802
803
804
805
806
807
808
809
810
811
@onnx_test
def floor_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Floor',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])
Khalique's avatar
Khalique committed
812

kahmed10's avatar
kahmed10 committed
813

Khalique's avatar
Khalique committed
814
@onnx_test
Khalique's avatar
Khalique committed
815
816
def gather_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4, 5, 6])
Khalique's avatar
Khalique committed
817
818
    i = helper.make_tensor_value_info('indices', TensorProto.INT32,
                                      [2, 3, 4, 5])
Khalique's avatar
Khalique committed
819
820
821
822
823
824
825
826
827
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4, 5])

    node = onnx.helper.make_node(
        'Gather',
        inputs=['data', 'indices'],
        outputs=['y'],
        axis=1,
    )

Khalique's avatar
Khalique committed
828
829
    return ([node], [x, i], [y])

Khalique's avatar
Khalique committed
830

Khalique's avatar
Khalique committed
831
@onnx_test
Khalique's avatar
Khalique committed
832
833
834
835
836
837
def gemm_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5, 7])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [11, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [])
    a = helper.make_tensor_value_info('3', TensorProto.FLOAT, [7, 11])

Khalique's avatar
Khalique committed
838
839
840
841
842
843
844
845
846
    node = onnx.helper.make_node('Gemm',
                                 inputs=['0', '1', '2'],
                                 outputs=['3'],
                                 alpha=2.0,
                                 beta=2.0,
                                 transA=1,
                                 transB=1)

    return ([node], [x, y, z], [a])
Khalique's avatar
Khalique committed
847
848


Khalique's avatar
Khalique committed
849
@onnx_test
Khalique's avatar
Khalique committed
850
851
852
853
854
855
def gemm_ex_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 1, 5, 6])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 5, 7])
    m3 = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 1, 6, 7])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 6, 7])

Khalique's avatar
Khalique committed
856
857
858
859
860
861
862
863
    node = onnx.helper.make_node('Gemm',
                                 inputs=['1', '2', '3'],
                                 outputs=['y'],
                                 alpha=0.5,
                                 beta=0.8,
                                 transA=1)

    return ([node], [m1, m2, m3], [y])
Khalique's avatar
Khalique committed
864
865


Khalique's avatar
Khalique committed
866
@onnx_test
Khalique's avatar
Khalique committed
867
868
869
870
871
872
def gemm_ex_brcst_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 1, 5, 6])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 5, 7])
    m3 = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 1, 6, 1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 6, 7])

Khalique's avatar
Khalique committed
873
874
875
876
877
878
879
880
    node = onnx.helper.make_node('Gemm',
                                 inputs=['1', '2', '3'],
                                 outputs=['y'],
                                 alpha=0.5,
                                 beta=0.8,
                                 transA=1)

    return ([node], [m1, m2, m3], [y])
Khalique's avatar
Khalique committed
881
882


Khalique's avatar
Khalique committed
883
@onnx_test
Khalique's avatar
Khalique committed
884
def globalavgpool_test():
Khalique's avatar
Khalique committed
885
886
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 1, 1])
Khalique's avatar
Khalique committed
887
888
889
890
891
892
893

    node = onnx.helper.make_node(
        'GlobalAveragePool',
        inputs=['0'],
        outputs=['1'],
    )

Khalique's avatar
Khalique committed
894
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
895

Khalique's avatar
Khalique committed
896

Khalique's avatar
Khalique committed
897
@onnx_test
Khalique's avatar
Khalique committed
898
def globalmaxpool_test():
Khalique's avatar
Khalique committed
899
900
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 1, 1])
Khalique's avatar
Khalique committed
901
902
903
904
905
906
907

    node = onnx.helper.make_node(
        'GlobalMaxPool',
        inputs=['0'],
        outputs=['1'],
    )

Khalique's avatar
Khalique committed
908
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
909

Khalique's avatar
Khalique committed
910

Khalique's avatar
Khalique committed
911
@onnx_test
Khalique's avatar
Khalique committed
912
913
914
915
916
917
918
919
920
921
922
923
def group_conv_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 4, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 1, 3, 3])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 4, 14, 14])

    node = onnx.helper.make_node(
        'Conv',
        inputs=['0', '1'],
        group=4,
        outputs=['2'],
    )

Khalique's avatar
Khalique committed
924
925
    return ([node], [x, y], [z])

Khalique's avatar
Khalique committed
926

Khalique's avatar
Khalique committed
927
@onnx_test
Khalique's avatar
Khalique committed
928
def imagescaler_test():
Khalique's avatar
Khalique committed
929
930
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 16, 16])
Khalique's avatar
Khalique committed
931

Khalique's avatar
Khalique committed
932
933
934
935
936
    node = onnx.helper.make_node('ImageScaler',
                                 inputs=['0'],
                                 outputs=['1'],
                                 bias=[0.01, 0.02, 0.03],
                                 scale=0.5)
Khalique's avatar
Khalique committed
937

Khalique's avatar
Khalique committed
938
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
939

Khalique's avatar
Khalique committed
940

Khalique's avatar
Khalique committed
941
@onnx_test
Khalique's avatar
Khalique committed
942
943
944
945
946
947
948
949
950
951
952
def implicit_add_bcast_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4, 1])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [2, 3, 4, 5])

    node = onnx.helper.make_node(
        'Add',
        inputs=['0', '1'],
        outputs=['2'],
    )

Khalique's avatar
Khalique committed
953
954
    return ([node], [x, y], [z])

Khalique's avatar
Khalique committed
955

Khalique's avatar
Khalique committed
956
@onnx_test
Khalique's avatar
Khalique committed
957
958
959
def implicit_pow_bcast_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4, 1])
Khalique's avatar
Khalique committed
960
961
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])
Khalique's avatar
Khalique committed
962
963
964
965
966
967
968

    node = onnx.helper.make_node(
        'Pow',
        inputs=['0', '1'],
        outputs=['out'],
    )

Khalique's avatar
Khalique committed
969
970
    return ([node], [arg0, arg1], [arg_out])

Khalique's avatar
Khalique committed
971

Khalique's avatar
Khalique committed
972
@onnx_test
Khalique's avatar
Khalique committed
973
974
975
def implicit_sub_bcast_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 5])
Khalique's avatar
Khalique committed
976
977
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])
Khalique's avatar
Khalique committed
978
979
980
981
982
983
984

    node = onnx.helper.make_node(
        'Sub',
        inputs=['0', '1'],
        outputs=['out'],
    )

Khalique's avatar
Khalique committed
985
986
    return ([node], [arg0, arg1], [arg_out])

Khalique's avatar
Khalique committed
987

988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
@onnx_test
def initializer_not_an_input():
    values = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])
    w = helper.make_tensor(name='w',
                           data_type=TensorProto.FLOAT,
                           dims=values.shape,
                           vals=values.flatten().astype(np.float))

    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [5, 2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [5, 4])

    node = onnx.helper.make_node(
        'Gemm',
        inputs=['x', 'w'],
        outputs=['y'],
    )

    return ([node], [x], [y], [w])


kahmed10's avatar
kahmed10 committed
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
@onnx_test
def instance_norm_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 2, 3, 3])
    scale = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2])
    bias = helper.make_tensor_value_info('2', TensorProto.FLOAT, [2])
    y = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 2, 3, 3])

    node = onnx.helper.make_node('InstanceNormalization',
                                 inputs=['0', '1', '2'],
                                 outputs=['3'])

    return ([node], [x, scale, bias], [y])


@onnx_test
def instance_norm_val_test():
    x = np.array([[[[0, 1, 2], [3, 4, 5], [6, 7, 8]],
                   [[0, 1, 2], [3, 4, 5], [6, 7, 8]]]])
    scale = np.array([1, 2])
    bias = np.array([0, 1])

    x_tensor = helper.make_tensor(name='x_tensor',
                                  data_type=TensorProto.FLOAT,
                                  dims=x.shape,
                                  vals=x.flatten().astype(np.float))
    scale_tensor = helper.make_tensor(name='scale_tensor',
                                      data_type=TensorProto.FLOAT,
                                      dims=scale.shape,
                                      vals=scale.flatten().astype(np.float))
    bias_tensor = helper.make_tensor(name='bias_tensor',
                                     data_type=TensorProto.FLOAT,
                                     dims=bias.shape,
                                     vals=bias.flatten().astype(np.float))

    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 3, 3])

    node = onnx.helper.make_node(
        'InstanceNormalization',
        inputs=['x_tensor', 'scale_tensor', 'bias_tensor'],
        outputs=['y'])

    return ([node], [], [y], [x_tensor, scale_tensor, bias_tensor])


Khalique's avatar
Khalique committed
1052
@onnx_test
Khalique's avatar
Khalique committed
1053
1054
1055
1056
def leaky_relu_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

Khalique's avatar
Khalique committed
1057
1058
1059
1060
    node = onnx.helper.make_node('LeakyRelu',
                                 inputs=['0'],
                                 outputs=['1'],
                                 alpha=0.01)
Khalique's avatar
Khalique committed
1061

Khalique's avatar
Khalique committed
1062
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1063

Khalique's avatar
Khalique committed
1064

Khalique's avatar
Khalique committed
1065
@onnx_test
Khalique's avatar
Khalique committed
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
def log_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Log',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1076
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1077

Khalique's avatar
Khalique committed
1078

Khalique's avatar
Khalique committed
1079
@onnx_test
Khalique's avatar
Khalique committed
1080
1081
1082
1083
def logsoftmax_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 5, 6])

Khalique's avatar
Khalique committed
1084
1085
1086
1087
    node = onnx.helper.make_node('LogSoftmax',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axis=1)
Khalique's avatar
Khalique committed
1088

Khalique's avatar
Khalique committed
1089
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1090

Khalique's avatar
Khalique committed
1091

Khalique's avatar
Khalique committed
1092
@onnx_test
Khalique's avatar
Khalique committed
1093
1094
1095
1096
def lrn_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 28, 24, 24])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 28, 24, 24])

Khalique's avatar
Khalique committed
1097
1098
1099
1100
1101
1102
1103
    node = onnx.helper.make_node('LRN',
                                 inputs=['0'],
                                 size=5,
                                 alpha=0.0001,
                                 beta=0.75,
                                 bias=1.0,
                                 outputs=['1'])
Khalique's avatar
Khalique committed
1104

Khalique's avatar
Khalique committed
1105
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1106

Khalique's avatar
Khalique committed
1107

Khalique's avatar
Khalique committed
1108
@onnx_test
Khalique's avatar
Khalique committed
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
def matmul_bmbm_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 6, 7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [5, 2, 1, 7, 8])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [5, 2, 3, 6, 8])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1120
1121
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
1122

Khalique's avatar
Khalique committed
1123
@onnx_test
Khalique's avatar
Khalique committed
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
def matmul_bmv_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 6, 7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [7])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 6])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1135
1136
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
1137

Khalique's avatar
Khalique committed
1138
@onnx_test
Khalique's avatar
Khalique committed
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
def matmul_mv_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [6, 7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [7])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [6])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1150
1151
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
1152

Khalique's avatar
Khalique committed
1153
@onnx_test
Khalique's avatar
Khalique committed
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
def matmul_vbm_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [5, 7, 8])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [5, 8])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1165
1166
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
1167

Khalique's avatar
Khalique committed
1168
@onnx_test
Khalique's avatar
Khalique committed
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
def matmul_vm_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [7, 8])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [8])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1180
1181
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
1182

Khalique's avatar
Khalique committed
1183
@onnx_test
Khalique's avatar
Khalique committed
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
def matmul_vv_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [7])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1195
1196
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
1197

Khalique's avatar
Khalique committed
1198
@onnx_test
Khalique's avatar
Khalique committed
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
def max_test():
    a = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    b = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])
    c = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node(
        'Max',
        inputs=['0', '1', '2'],
        outputs=['3'],
    )

Khalique's avatar
Khalique committed
1211
1212
    return ([node], [a, b, c], [y])

Khalique's avatar
Khalique committed
1213

1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
@onnx_test
def maxpool_notset_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 1, 1])

    node = onnx.helper.make_node('MaxPool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[6, 6],
                                 strides=[2, 2],
                                 pads=[0, 0, 1, 1],
                                 auto_pad='NOTSET')

    return ([node], [x], [y])


@onnx_test
def maxpool_same_upper_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

    node = onnx.helper.make_node('MaxPool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[2, 2],
                                 auto_pad='SAME_UPPER')

    return ([node], [x], [y])


Khalique's avatar
Khalique committed
1244
@onnx_test
Khalique's avatar
Khalique committed
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
def min_test():
    a = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    b = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])
    c = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node(
        'Min',
        inputs=['0', '1', '2'],
        outputs=['3'],
    )

Khalique's avatar
Khalique committed
1257
1258
    return ([node], [a, b, c], [y])

Khalique's avatar
Khalique committed
1259

Khalique's avatar
Khalique committed
1260
@onnx_test
Khalique's avatar
Khalique committed
1261
1262
1263
1264
def no_pad_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2, 2])

Khalique's avatar
Khalique committed
1265
1266
1267
1268
    node = onnx.helper.make_node('Pad',
                                 inputs=['0'],
                                 pads=[0, 0, 0, 0],
                                 outputs=['1'])
Khalique's avatar
Khalique committed
1269

Khalique's avatar
Khalique committed
1270
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1271

Khalique's avatar
Khalique committed
1272

Khalique's avatar
Khalique committed
1273
@onnx_test
Khalique's avatar
Khalique committed
1274
1275
1276
1277
def pad_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 4])

Khalique's avatar
Khalique committed
1278
1279
1280
1281
    node = onnx.helper.make_node('Pad',
                                 inputs=['0'],
                                 pads=[1, 1, 1, 1],
                                 outputs=['1'])
Khalique's avatar
Khalique committed
1282

Khalique's avatar
Khalique committed
1283
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1284

Khalique's avatar
Khalique committed
1285

Khalique's avatar
Khalique committed
1286
@onnx_test
Khalique's avatar
Khalique committed
1287
1288
1289
def pow_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2, 3, 4, 5])
Khalique's avatar
Khalique committed
1290
1291
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])
Khalique's avatar
Khalique committed
1292
1293
1294
1295
1296
1297
1298

    node = onnx.helper.make_node(
        'Pow',
        inputs=['0', '1'],
        outputs=['out'],
    )

Khalique's avatar
Khalique committed
1299
    return ([node], [arg0, arg1], [arg_out])
Khalique's avatar
Khalique committed
1300

kahmed10's avatar
kahmed10 committed
1301

Shucai Xiao's avatar
Shucai Xiao committed
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
@onnx_test
def reducel1_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 6])
    axes = [-2]

    node = onnx.helper.make_node('ReduceL1',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)

    return ([node], [x], [y])


@onnx_test
def reducel2_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 5])
    axes = [-1]

    node = onnx.helper.make_node('ReduceL2',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)

    return ([node], [x], [y])


@onnx_test
def reduce_log_sum_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 1, 5, 6])
    axes = [-3]

    node = onnx.helper.make_node('ReduceLogSum',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=1)

    return ([node], [x], [y])


@onnx_test
def reduce_log_sum_exp_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 5, 6])
    axes = [-4]

    node = onnx.helper.make_node('ReduceLogSumExp',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=1)

    return ([node], [x], [y])


Shucai Xiao's avatar
Shucai Xiao committed
1362
1363
1364
@onnx_test
def reducemax_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
Shucai Xiao's avatar
Shucai Xiao committed
1365
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 6])
Shucai Xiao's avatar
Shucai Xiao committed
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
    axes = [2]

    node = onnx.helper.make_node('ReduceMax',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)

    return ([node], [x], [y])

Khalique's avatar
Khalique committed
1376

Khalique's avatar
Khalique committed
1377
@onnx_test
Khalique's avatar
Khalique committed
1378
1379
1380
def reducemean_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4])
Khalique's avatar
Khalique committed
1381
    axes = [2, 3]
Khalique's avatar
Khalique committed
1382

Khalique's avatar
Khalique committed
1383
1384
1385
1386
1387
    node = onnx.helper.make_node('ReduceMean',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)
Khalique's avatar
Khalique committed
1388

Khalique's avatar
Khalique committed
1389
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1390

kahmed10's avatar
kahmed10 committed
1391

Khalique's avatar
Khalique committed
1392
@onnx_test
Khalique's avatar
Khalique committed
1393
1394
1395
def reducemean_keepdims_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 6])
Khalique's avatar
Khalique committed
1396
    axes = [2]
Khalique's avatar
Khalique committed
1397

Khalique's avatar
Khalique committed
1398
1399
1400
1401
1402
    node = onnx.helper.make_node('ReduceMean',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=1)
Khalique's avatar
Khalique committed
1403

Khalique's avatar
Khalique committed
1404
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1405

kahmed10's avatar
kahmed10 committed
1406

Shucai Xiao's avatar
Shucai Xiao committed
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
@onnx_test
def reducemin_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 1, 5, 1])
    axes = [1, 3]

    node = onnx.helper.make_node('ReduceMin',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=1)

    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1420

kahmed10's avatar
kahmed10 committed
1421

Khalique's avatar
Khalique committed
1422
@onnx_test
Shucai Xiao's avatar
Shucai Xiao committed
1423
def reduceprod_test():
Khalique's avatar
Khalique committed
1424
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
Shucai Xiao's avatar
Shucai Xiao committed
1425
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 6])
Khalique's avatar
Khalique committed
1426
    axes = [2]
Khalique's avatar
Khalique committed
1427

Shucai Xiao's avatar
Shucai Xiao committed
1428
    node = onnx.helper.make_node('ReduceProd',
Khalique's avatar
Khalique committed
1429
1430
1431
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
Shucai Xiao's avatar
Shucai Xiao committed
1432
                                 keepdims=1)
Khalique's avatar
Khalique committed
1433

Khalique's avatar
Khalique committed
1434
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1435

Khalique's avatar
Khalique committed
1436

Khalique's avatar
Khalique committed
1437
@onnx_test
Shucai Xiao's avatar
Shucai Xiao committed
1438
def reducesum_test():
Khalique's avatar
Khalique committed
1439
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
Shucai Xiao's avatar
Shucai Xiao committed
1440
1441
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 6])
    axes = [2]
Khalique's avatar
Khalique committed
1442

Khalique's avatar
Khalique committed
1443
1444
1445
1446
1447
    node = onnx.helper.make_node('ReduceSum',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)
Khalique's avatar
Khalique committed
1448

Khalique's avatar
Khalique committed
1449
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1450

Khalique's avatar
Khalique committed
1451

Khalique's avatar
Khalique committed
1452
@onnx_test
Khalique's avatar
Khalique committed
1453
1454
1455
def reducesum_keepdims_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 1])
Khalique's avatar
Khalique committed
1456
    axes = [2, 3]
Khalique's avatar
Khalique committed
1457

Khalique's avatar
Khalique committed
1458
1459
1460
1461
1462
    node = onnx.helper.make_node('ReduceSum',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=1)
Khalique's avatar
Khalique committed
1463

Khalique's avatar
Khalique committed
1464
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1465

Khalique's avatar
Khalique committed
1466

Shucai Xiao's avatar
Shucai Xiao committed
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
@onnx_test
def reducesum_multiaxis_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 1])
    axes = [2, 3]

    node = onnx.helper.make_node('ReduceSum',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)

    return ([node], [x], [y])


@onnx_test
def reducesum_square_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 6])
    axes = [-2]

    node = onnx.helper.make_node('ReduceSumSquare',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)

    return ([node], [x], [y])


Khalique's avatar
Khalique committed
1497
@onnx_test
Khalique's avatar
Khalique committed
1498
1499
1500
def reshape_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [4, 2, 3])
    x_shape = helper.make_tensor_value_info('1', TensorProto.INT64, [2])
Khalique's avatar
Khalique committed
1501
    x_shape_list = [3, 8]
Khalique's avatar
Khalique committed
1502
1503
1504
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3, 8])
    y2 = helper.make_tensor_value_info('3', TensorProto.FLOAT, [3, 8])

Khalique's avatar
Khalique committed
1505
    node = onnx.helper.make_node('Reshape', inputs=['0', '1'], outputs=['2'])
Khalique's avatar
Khalique committed
1506

Khalique's avatar
Khalique committed
1507
1508
1509
1510
1511
1512
1513
    node2 = onnx.helper.make_node('Reshape',
                                  inputs=['0'],
                                  shape=x_shape_list,
                                  outputs=['3'])

    return ([node, node2], [x, x_shape], [y, y2],
            [helper.make_tensor('1', TensorProto.INT64, [2], [3, 8])])
Khalique's avatar
Khalique committed
1514
1515


Khalique's avatar
Khalique committed
1516
@onnx_test
Khalique's avatar
Khalique committed
1517
1518
def reshape_non_standard_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3, 4])
Khalique's avatar
Khalique committed
1519
1520
    trans_x = helper.make_tensor_value_info('trans_x', TensorProto.FLOAT,
                                            [2, 4, 3])
Khalique's avatar
Khalique committed
1521
1522
1523
1524
1525
1526
1527
1528
1529
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 3, 2])

    trans = helper.make_node(
        'Transpose',
        inputs=['x'],
        outputs=['trans_x'],
        perm=[0, 2, 1],
    )

Khalique's avatar
Khalique committed
1530
1531
1532
1533
1534
1535
    res = onnx.helper.make_node('Reshape',
                                inputs=['trans_x'],
                                outputs=['y'],
                                shape=[4, 3, 2])

    return ([trans, res], [x], [y])
Khalique's avatar
Khalique committed
1536
1537


Khalique's avatar
Khalique committed
1538
@onnx_test
Khalique's avatar
Khalique committed
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
def shape_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [4])

    node = onnx.helper.make_node(
        'Shape',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1549
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1550

Khalique's avatar
Khalique committed
1551

Khalique's avatar
Khalique committed
1552
@onnx_test
Khalique's avatar
Khalique committed
1553
1554
def shape_gather_test():
    values = np.array([1])
kahmed10's avatar
kahmed10 committed
1555
    # value = helper.make_tensor_value_info('value', TensorProto.INT32, [1])
Khalique's avatar
Khalique committed
1556
1557
1558
1559
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [7, 3, 10])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [3])
    z = helper.make_tensor_value_info('z', TensorProto.FLOAT, [1])

Khalique's avatar
Khalique committed
1560
1561
1562
1563
    value_tensor = helper.make_tensor(name='const_tensor',
                                      data_type=TensorProto.INT32,
                                      dims=values.shape,
                                      vals=values.flatten().astype(int))
Khalique's avatar
Khalique committed
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584

    node_const = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['value'],
        value=value_tensor,
    )

    node_shape = onnx.helper.make_node(
        'Shape',
        inputs=['x'],
        outputs=['y'],
    )

    node_gather = helper.make_node(
        'Gather',
        inputs=['y', 'value'],
        outputs=['z'],
        axis=0,
    )

Khalique's avatar
Khalique committed
1585
1586
    return ([node_const, node_shape, node_gather], [x], [z])

Khalique's avatar
Khalique committed
1587

Khalique's avatar
Khalique committed
1588
@onnx_test
Khalique's avatar
Khalique committed
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
def sign_test():
    x = helper.make_tensor_value_info('x', TensorProto.DOUBLE, [10, 5])
    y = helper.make_tensor_value_info('y', TensorProto.DOUBLE, [10, 5])

    node = onnx.helper.make_node(
        'Sign',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1599
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1600

Khalique's avatar
Khalique committed
1601

Khalique's avatar
Khalique committed
1602
@onnx_test
Khalique's avatar
Khalique committed
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
def sin_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Sin',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1613
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1614

Khalique's avatar
Khalique committed
1615

Khalique's avatar
Khalique committed
1616
@onnx_test
Khalique's avatar
Khalique committed
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
def sinh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Sinh',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1627
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1628

Khalique's avatar
Khalique committed
1629

Khalique's avatar
Khalique committed
1630
@onnx_test
Khalique's avatar
Khalique committed
1631
1632
1633
1634
def slice_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 2])

Khalique's avatar
Khalique committed
1635
1636
1637
1638
1639
1640
    node = onnx.helper.make_node('Slice',
                                 inputs=['0'],
                                 axes=[0, 1],
                                 starts=[1, 0],
                                 ends=[2, 2],
                                 outputs=['1'])
Khalique's avatar
Khalique committed
1641

Khalique's avatar
Khalique committed
1642
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1643

Khalique's avatar
Khalique committed
1644

Khalique's avatar
Khalique committed
1645
@onnx_test
Khalique's avatar
Khalique committed
1646
1647
1648
1649
def softmax_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3])

Khalique's avatar
Khalique committed
1650
    node = onnx.helper.make_node('Softmax', inputs=['0'], outputs=['1'])
Khalique's avatar
Khalique committed
1651

Khalique's avatar
Khalique committed
1652
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1653

Khalique's avatar
Khalique committed
1654

Khalique's avatar
Khalique committed
1655
@onnx_test
Khalique's avatar
Khalique committed
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
def sqrt_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10, 15])

    node = onnx.helper.make_node(
        'Sqrt',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1666
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1667

Khalique's avatar
Khalique committed
1668

Khalique's avatar
Khalique committed
1669
@onnx_test
Khalique's avatar
Khalique committed
1670
def squeeze_unsqueeze_test():
Khalique's avatar
Khalique committed
1671
1672
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                      [1, 3, 1, 1, 2, 1])
Khalique's avatar
Khalique committed
1673
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 2])
Khalique's avatar
Khalique committed
1674
1675
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT,
                                      [1, 1, 3, 1, 2, 1])
Khalique's avatar
Khalique committed
1676

Khalique's avatar
Khalique committed
1677
1678
1679
1680
    node = onnx.helper.make_node('Squeeze',
                                 inputs=['0'],
                                 axes=[0, 2, 3, 5],
                                 outputs=['1'])
Khalique's avatar
Khalique committed
1681

Khalique's avatar
Khalique committed
1682
1683
1684
1685
1686
1687
    node2 = onnx.helper.make_node('Unsqueeze',
                                  inputs=['1'],
                                  axes=[0, 1, 3, 5],
                                  outputs=['2'])

    return ([node, node2], [x], [z])
Khalique's avatar
Khalique committed
1688
1689


Khalique's avatar
Khalique committed
1690
@onnx_test
Khalique's avatar
Khalique committed
1691
1692
1693
def sub_bcast_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4])
Khalique's avatar
Khalique committed
1694
1695
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])
Khalique's avatar
Khalique committed
1696
1697
1698
1699
1700

    node = onnx.helper.make_node(
        'Sub',
        inputs=['0', '1'],
        outputs=['out'],
Khalique's avatar
Khalique committed
1701
1702
        broadcast=1,
        axis=1,
Khalique's avatar
Khalique committed
1703
1704
    )

Khalique's avatar
Khalique committed
1705
1706
    return ([node], [arg0, arg1], [arg_out])

Khalique's avatar
Khalique committed
1707

Khalique's avatar
Khalique committed
1708
@onnx_test
Khalique's avatar
Khalique committed
1709
1710
def sub_scalar_test():
    values = np.array([1])
Khalique's avatar
Khalique committed
1711
1712
1713
1714
1715
1716
1717
1718
1719
    arg_node = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                             [2, 3, 4, 5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])

    values_tensor = helper.make_tensor(name='const',
                                       data_type=TensorProto.FLOAT,
                                       dims=values.shape,
                                       vals=values.flatten().astype(float))
Khalique's avatar
Khalique committed
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733

    arg_const = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['arg_const'],
        value=values_tensor,
    )

    node = onnx.helper.make_node(
        'Sub',
        inputs=['0', 'arg_const'],
        outputs=['out'],
    )

Khalique's avatar
Khalique committed
1734
1735
    return ([arg_const, node], [arg_node], [arg_out])

Khalique's avatar
Khalique committed
1736

Khalique's avatar
Khalique committed
1737
@onnx_test
Khalique's avatar
Khalique committed
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
def sum_test():
    a = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    b = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])
    c = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('3', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node(
        'Sum',
        inputs=['0', '1', '2'],
        outputs=['3'],
    )

Khalique's avatar
Khalique committed
1750
1751
    return ([node], [a, b, c], [y])

Khalique's avatar
Khalique committed
1752

Khalique's avatar
Khalique committed
1753
@onnx_test
Khalique's avatar
Khalique committed
1754
1755
1756
1757
1758
def tan_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
Khalique's avatar
Khalique committed
1759
1760
1761
1762
        'Tan',
        inputs=['x'],
        outputs=['y'],
    )
Khalique's avatar
Khalique committed
1763

Khalique's avatar
Khalique committed
1764
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1765

Khalique's avatar
Khalique committed
1766

Khalique's avatar
Khalique committed
1767
@onnx_test
Khalique's avatar
Khalique committed
1768
1769
1770
1771
1772
def tanh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1])

    node = onnx.helper.make_node(
Khalique's avatar
Khalique committed
1773
1774
1775
1776
        'Tanh',
        inputs=['x'],
        outputs=['y'],
    )
Khalique's avatar
Khalique committed
1777

Khalique's avatar
Khalique committed
1778
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1779

Khalique's avatar
Khalique committed
1780

Khalique's avatar
Khalique committed
1781
@onnx_test
Khalique's avatar
Khalique committed
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
def transpose_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 2, 2, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 2, 2])

    node = onnx.helper.make_node(
        'Transpose',
        perm=[0, 3, 1, 2],
        inputs=['0'],
        outputs=['1'],
    )

Khalique's avatar
Khalique committed
1793
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1794

Khalique's avatar
Khalique committed
1795

Khalique's avatar
Khalique committed
1796
1797
1798
@onnx_test
def transpose_gather_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 5, 4, 6])
Khalique's avatar
Khalique committed
1799
1800
1801
1802
    i = helper.make_tensor_value_info('indices', TensorProto.INT32,
                                      [2, 4, 3, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT,
                                      [3, 2, 3, 4, 5, 4, 5, 6])
Khalique's avatar
Khalique committed
1803
1804
1805
1806
1807
1808
1809
1810

    td = onnx.helper.make_node(
        'Transpose',
        inputs=['data'],
        outputs=['tdata'],
        perm=[0, 2, 1, 3],
    )

Khalique's avatar
Khalique committed
1811
1812
1813
1814
    ti = onnx.helper.make_node('Transpose',
                               inputs=['indices'],
                               outputs=['tindices'],
                               perm=[0, 2, 1, 3])
Khalique's avatar
Khalique committed
1815
1816
1817
1818
1819
1820
1821
1822

    node = onnx.helper.make_node(
        'Gather',
        inputs=['tdata', 'tindices'],
        outputs=['y'],
        axis=1,
    )

Khalique's avatar
Khalique committed
1823
    return ([td, ti, node], [x, i], [y])
Khalique's avatar
Khalique committed
1824

Khalique's avatar
Khalique committed
1825

Khalique's avatar
Khalique committed
1826
@onnx_test
Khalique's avatar
Khalique committed
1827
1828
1829
def unknown_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4])
1830
1831
1832

    helper.make_tensor_value_info('2', TensorProto.FLOAT, [2, 3, 4, 5])

Khalique's avatar
Khalique committed
1833
1834
    a = helper.make_tensor_value_info('3', TensorProto.FLOAT, [2, 3, 4, 5])

Khalique's avatar
Khalique committed
1835
    node = onnx.helper.make_node('Unknown', inputs=['0', '1'], outputs=['2'])
Khalique's avatar
Khalique committed
1836

Khalique's avatar
Khalique committed
1837
    node2 = onnx.helper.make_node('Unknown', inputs=['2'], outputs=['3'])
Khalique's avatar
Khalique committed
1838

Khalique's avatar
Khalique committed
1839
    return ([node, node2], [x, y], [a])
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862


@onnx_test
def variable_batch_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                      [None, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT,
                                      [None, 3, 16, 16])

    node = onnx.helper.make_node('Identity', inputs=['0'], outputs=['1'])

    return ([node], [x], [y])


@onnx_test
def variable_batch_leq_zero_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [0, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [-1, 3, 16, 16])

    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [-1, 3, 16, 16])
    node = onnx.helper.make_node('Add', inputs=['0', '1'], outputs=['2'])

    return ([node], [x, y], [z])