"dist/vscode:/vscode.git/clone" did not exist on "a69db6dbb91b4c126abd730257854d8d3b28d998"
lowering.cpp 18.3 KB
Newer Older
Shucai Xiao's avatar
Shucai Xiao committed
1
#include <iterator>
Paul's avatar
Paul committed
2
3
4
#include <migraphx/gpu/lowering.hpp>
#include <migraphx/manage_ptr.hpp>
#include <migraphx/instruction.hpp>
5
6
7
8
9
10
11
12
#include <migraphx/make_op.hpp>

#include <migraphx/op/abs.hpp>
#include <migraphx/op/batch_norm_inference.hpp>
#include <migraphx/op/convolution.hpp>
#include <migraphx/op/deconvolution.hpp>
#include <migraphx/op/dot.hpp>
#include <migraphx/op/elu.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
13
#include <migraphx/op/if_op.hpp>
14
15
16
17
18
19
20
21
22
#include <migraphx/op/leaky_relu.hpp>
#include <migraphx/op/lrn.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/op/reshape.hpp>
#include <migraphx/op/quant_convolution.hpp>
#include <migraphx/op/quant_dot.hpp>

#include <migraphx/gpu/abs.hpp>
#include <migraphx/gpu/batch_norm_inference.hpp>
Paul's avatar
Paul committed
23
24
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/convolution.hpp>
kahmed10's avatar
kahmed10 committed
25
#include <migraphx/gpu/deconvolution.hpp>
Khalique's avatar
Khalique committed
26
#include <migraphx/gpu/elu.hpp>
27
#include <migraphx/gpu/equal.hpp>
Paul's avatar
Paul committed
28
#include <migraphx/gpu/gemm.hpp>
29
#include <migraphx/gpu/greater.hpp>
30
#include <migraphx/gpu/int8_conv_pack.hpp>
31
#include <migraphx/gpu/leaky_relu.hpp>
32
#include <migraphx/gpu/less.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
33
34
35
#include <migraphx/gpu/logical_and.hpp>
#include <migraphx/gpu/logical_or.hpp>
#include <migraphx/gpu/logical_xor.hpp>
36
37
38
39
#include <migraphx/gpu/lrn.hpp>
#include <migraphx/gpu/miopen.hpp>
#include <migraphx/gpu/quant_convolution.hpp>
#include <migraphx/gpu/rocblas.hpp>
40
#include <migraphx/gpu/unary_not.hpp>
turneram's avatar
turneram committed
41
#include <migraphx/gpu/where.hpp>
42
#include <migraphx/iterator_for.hpp>
43
#include <migraphx/program.hpp>
Paul's avatar
Paul committed
44
#include <utility>
45
#include <functional>
Khalique's avatar
Khalique committed
46
#include <algorithm>
Shucai Xiao's avatar
Shucai Xiao committed
47
#include <map>
Paul's avatar
Paul committed
48

Paul's avatar
Paul committed
49
namespace migraphx {
Paul's avatar
Paul committed
50
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
51
namespace gpu {
Paul's avatar
Paul committed
52
53
54

struct miopen_apply
{
Shucai Xiao's avatar
Shucai Xiao committed
55
    module* mod          = nullptr;
56
    const lowering* pass = nullptr;
Shucai Xiao's avatar
Shucai Xiao committed
57
    std::unordered_map<std::string, std::function<instruction_ref(instruction_ref)>> apply_map{};
Shucai Xiao's avatar
Shucai Xiao committed
58
    instruction_ref last{};
59
    std::unordered_map<instruction_ref, std::string> prog_output_names{};
Shucai Xiao's avatar
Shucai Xiao committed
60
61
    bool offload_copy   = false;
    bool int8_x4_format = true;
Paul's avatar
Paul committed
62

63
    context& get_context() const
64
65
66
67
68
69
    {
        assert(pass != nullptr);
        assert(pass->ctx != nullptr);
        return *pass->ctx;
    }

Paul's avatar
Paul committed
70
71
72
73
74
75
76
    void check_shape(shape x, instruction_ref i)
    {
        assert(x == i->get_shape());
        (void)x;
        (void)i;
    }

77
78
    void create_output_names()
    {
Shucai Xiao's avatar
Shucai Xiao committed
79
        this->last = instruction::get_output_alias(std::prev(mod->end()));
80
81
        if(this->last->name() == "@return")
        {
82
            const auto& prog_outputs = last->inputs();
83
84
85
86
87
88
89
90
91
92
            std::vector<instruction_ref> outputs_alias(prog_outputs.size());

            std::transform(prog_outputs.begin(),
                           prog_outputs.end(),
                           outputs_alias.begin(),
                           [](const auto& i) { return instruction::get_output_alias(i); });

            std::size_t index = 0;
            for(auto ins : outputs_alias)
            {
Shucai Xiao's avatar
Shucai Xiao committed
93
                prog_output_names[ins] = mod->name() + ":#output_" + std::to_string(index++);
94
95
96
97
            }
        }
    }

98
99
    void init()
    {
Shucai Xiao's avatar
Shucai Xiao committed
100
        assert(mod != nullptr);
101
        assert(pass != nullptr);
102

Shucai Xiao's avatar
Shucai Xiao committed
103
104
105
106
107
108
109
#if ROCBLAS_VERSION_MAJOR >= 2 && ROCBLAS_VERSION_MINOR >= 38
        auto& ctx = get_context();
        rocblas_gemm_flags flag;
        rocblas_query_int8_layout_flag(ctx.get_stream().get_rocblas(), &flag);
        int8_x4_format = (flag == rocblas_gemm_flags_pack_int8x4);
#endif

Shucai Xiao's avatar
Shucai Xiao committed
110
        offload_copy = (mod->name() == "main") ? pass->offload_copy : false;
111
        create_output_names();
Paul's avatar
Paul committed
112

113
114
115
116
117
118
119
120
121
122
123
124
        add_generic_op("acos");
        add_generic_op("acosh");
        add_generic_op("add");
        add_generic_op("asin");
        add_generic_op("asinh");
        add_generic_op("atan");
        add_generic_op("atanh");
        add_generic_op("ceil");
        add_generic_op("contiguous");
        add_generic_op("cos");
        add_generic_op("cosh");
        add_generic_op("div");
125
        add_generic_op("equal");
126
127
128
        add_generic_op("erf");
        add_generic_op("exp");
        add_generic_op("floor");
129
130
        add_generic_op("greater");
        add_generic_op("less");
131
        add_generic_op("log");
Shucai Xiao's avatar
Shucai Xiao committed
132
133
134
        add_generic_op("logical_and");
        add_generic_op("logical_or");
        add_generic_op("logical_xor");
135
136
137
        add_generic_op("max");
        add_generic_op("min");
        add_generic_op("mul");
138
        add_generic_op("not");
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
        add_generic_op("pow");
        add_generic_op("prelu");
        add_generic_op("recip");
        add_generic_op("relu");
        add_generic_op("round");
        add_generic_op("rsqrt");
        add_generic_op("sigmoid");
        add_generic_op("sign");
        add_generic_op("sin");
        add_generic_op("sinh");
        add_generic_op("sqdiff");
        add_generic_op("sqrt");
        add_generic_op("sub");
        add_generic_op("tan");
        add_generic_op("tanh");
turneram's avatar
turneram committed
154
        add_generic_op("where");
155

Shucai Xiao's avatar
Shucai Xiao committed
156
        add_extend_op("abs");
157
158
159
160
161
        add_extend_op("argmax");
        add_extend_op("argmin");
        add_extend_op("clip");
        add_extend_op("concat");
        add_extend_op("convert");
Shucai Xiao's avatar
Shucai Xiao committed
162
        add_extend_op("elu");
163
        add_extend_op("gather");
Shucai Xiao's avatar
Shucai Xiao committed
164
        add_extend_op("leaky_relu");
165
        add_extend_op("logsoftmax");
Shucai Xiao's avatar
Shucai Xiao committed
166
        add_extend_op("lrn");
167
        add_extend_op("pad");
168
        add_extend_op("pooling");
169
        add_extend_op("prefix_scan_sum");
170
171
172
173
174
        add_extend_op("reduce_max");
        add_extend_op("reduce_mean");
        add_extend_op("reduce_min");
        add_extend_op("reduce_prod");
        add_extend_op("reduce_sum");
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
175
        add_extend_op("reverse");
176
177
178
        add_extend_op("rnn_var_sl_last_output");
        add_extend_op("rnn_var_sl_shift_output");
        add_extend_op("rnn_var_sl_shift_sequence");
179
        add_extend_op("scatter");
180
        add_extend_op("softmax");
Shucai Xiao's avatar
Shucai Xiao committed
181
        add_extend_op("topk");
182

183
184
        add_gemm_op<op::dot>("dot");
        add_gemm_op<op::quant_dot>("quant_dot");
185
        add_convolution_op();
kahmed10's avatar
kahmed10 committed
186
        add_deconvolution_op();
187
        add_quant_convolution_op();
188
        add_batch_norm_inference_op();
Shucai Xiao's avatar
Shucai Xiao committed
189
        add_neg_op();
Shucai Xiao's avatar
Shucai Xiao committed
190
        add_if_op();
Shucai Xiao's avatar
Shucai Xiao committed
191
        add_loop_op();
192
193
    }

194
195
    void copy_params()
    {
Shucai Xiao's avatar
Shucai Xiao committed
196
        if(not offload_copy)
197
            return;
198

Shucai Xiao's avatar
Shucai Xiao committed
199
        for(auto ins : iterator_for(*mod))
200
201
202
        {
            if(ins->name() != "@param")
                continue;
203

Shucai Xiao's avatar
Shucai Xiao committed
204
205
206
207
            // parameter no outputs, no need to insert copy to gpu
            if(ins->outputs().empty())
                continue;

208
209
            auto pos = std::next(ins);
            auto a   = insert_allocation(pos, ins->get_shape());
210
            auto c   = mod->insert_instruction(pos, make_op("hip::copy_to_gpu"), ins, a);
Shucai Xiao's avatar
Shucai Xiao committed
211
            mod->replace_instruction(ins, c);
212
        }
213
214

        // return instruction
Shucai Xiao's avatar
Shucai Xiao committed
215
        auto ret = std::prev(mod->end());
216
217
        if(ret->name() == "@return")
        {
218
            const auto& inputs = ret->inputs();
219
220
221

            // each input of ret need to be copied from gpu to host, and replace
            // output with copy output
222
            for(const auto& in : inputs)
223
            {
224
                auto p_output = mod->insert_instruction(ret, make_op("hip::copy_from_gpu"), in);
225
226
227
228
229
230
                instruction::replace_argument(ret, in, p_output);
            }
        }
        // else branch to handle legacy program without the return instruction
        else
        {
231
            mod->add_instruction(make_op("hip::copy_from_gpu"), ret);
232
        }
233
234
    }

Paul's avatar
Paul committed
235
236
    void apply()
    {
237
        init();
Shucai Xiao's avatar
Shucai Xiao committed
238
        for(auto it = mod->begin(); it != mod->end(); it++)
Paul's avatar
Paul committed
239
        {
Paul's avatar
Paul committed
240
            auto s = it->get_shape();
241
            if(apply_map.count(it->name()) > 0)
242
            {
243
                check_shape(s, apply_map.at(it->name())(it));
Paul's avatar
Paul committed
244
            }
Paul's avatar
Paul committed
245
        }
246

247
        copy_params();
Paul's avatar
Paul committed
248
249
    }

Paul's avatar
Paul committed
250
    instruction_ref insert_allocation(instruction_ref ins, const shape& s, std::string tag = "")
Paul's avatar
Paul committed
251
    {
252
        // Instruction's output is an input of the ret instruction
Shucai Xiao's avatar
Shucai Xiao committed
253
        if(offload_copy)
Paul's avatar
Paul committed
254
        {
255
256
            auto result = mod->insert_instruction(
                ins, make_op("hip::allocate", {{"shape", to_value(s)}, {"tag", std::move(tag)}}));
Paul's avatar
Paul committed
257
258
            return result;
        }
259
260
261
262

        auto ins_alias = instruction::get_output_alias(ins);
        if(last->name() == "@return" and tag.empty() and prog_output_names.count(ins_alias) > 0)
        {
Shucai Xiao's avatar
Shucai Xiao committed
263
            return mod->add_parameter(prog_output_names[ins_alias], s);
264
265
266
        }
        else if(ins == last and tag.empty())
        {
Shucai Xiao's avatar
Shucai Xiao committed
267
            return mod->add_parameter("output", s);
268
269
        }

270
271
        return mod->insert_instruction(
            ins, make_op("hip::allocate", {{"shape", to_value(s)}, {"tag", std::move(tag)}}));
Paul's avatar
Paul committed
272
273
    }

Shucai Xiao's avatar
Shucai Xiao committed
274
    void add_convolution_op()
Paul's avatar
Paul committed
275
    {
276
277
        apply_map.emplace("convolution", [=](instruction_ref ins) {
            auto&& op = any_cast<op::convolution>(ins->get_operator());
Paul's avatar
Paul committed
278

279
            auto conv = miopen_convolution{op, make_conv(op)};
280
            auto ws   = conv.find(get_context(), ins->get_shape(), to_shapes(ins->inputs()));
Paul's avatar
Paul committed
281

282
283
            auto workspace = insert_allocation(ins, ws, "workspace");
            auto output    = insert_allocation(ins, ins->get_shape());
kahmed10's avatar
kahmed10 committed
284

Shucai Xiao's avatar
Shucai Xiao committed
285
            return mod->replace_instruction(
kahmed10's avatar
kahmed10 committed
286
287
288
289
290
291
292
293
294
295
296
297
298
299
                ins, conv, ins->inputs().at(0), ins->inputs().at(1), workspace, output);
        });
    }

    void add_deconvolution_op()
    {
        apply_map.emplace("deconvolution", [=](instruction_ref ins) {
            auto&& op = any_cast<op::deconvolution>(ins->get_operator());

            auto conv = miopen_deconvolution{op, make_deconv(op)};
            auto ws   = conv.compile(get_context(), ins->get_shape(), to_shapes(ins->inputs()));

            auto workspace = insert_allocation(ins, ws, "workspace");
            auto output    = insert_allocation(ins, ins->get_shape());
Paul's avatar
Paul committed
300

Shucai Xiao's avatar
Shucai Xiao committed
301
            return mod->replace_instruction(
302
303
                ins, conv, ins->inputs().at(0), ins->inputs().at(1), workspace, output);
        });
Paul's avatar
Paul committed
304
305
    }

306
307
308
309
310
311
312
    template <class Op>
    void add_gemm_op(std::string name)
    {
        apply_map.emplace(name, [=](instruction_ref ins) {
            auto&& op                         = any_cast<Op>(ins->get_operator());
            auto beta                         = op.beta;
            std::vector<instruction_ref> refs = ins->inputs();
Shucai Xiao's avatar
Shucai Xiao committed
313
            if(refs.size() == 2)
314
315
            {
                auto output = insert_allocation(ins, ins->get_shape());
Shucai Xiao's avatar
Shucai Xiao committed
316
317
318
319
320
321
322
                beta        = 0;
                refs.push_back(output);
            }
            else
            {
                auto c_alias = instruction::get_output_alias(refs.back());
                if(ins == last or refs.back()->outputs().size() > 1 or c_alias->inputs().empty())
323
                {
324
325
326
327
                    auto output = insert_allocation(ins, ins->get_shape());
                    auto copy_out =
                        mod->insert_instruction(ins, make_op("hip::copy"), refs.back(), output);
                    refs.back() = copy_out;
328
329
                    refs.push_back(copy_out);
                }
Shucai Xiao's avatar
Shucai Xiao committed
330
331
332
333
                else
                {
                    refs.push_back(refs.back());
                }
334
335
            }

Shucai Xiao's avatar
Shucai Xiao committed
336
337
            return mod->replace_instruction(
                ins, rocblas_gemm<Op>{Op{op.alpha, beta}, int8_x4_format}, refs);
338
339
340
        });
    }

341
342
343
344
345
    void add_quant_convolution_op()
    {
        apply_map.emplace("quant_convolution", [=](instruction_ref ins) {
            auto&& op = any_cast<op::quant_convolution>(ins->get_operator());
            auto conv = miopen_quant_convolution{op, make_conv(op)};
346
            auto ws   = conv.compile(get_context(), ins->get_shape(), to_shapes(ins->inputs()));
347

Shucai Xiao's avatar
Shucai Xiao committed
348
            auto args      = ins->inputs();
349
            auto workspace = insert_allocation(ins, ws, "workspace");
Shucai Xiao's avatar
Shucai Xiao committed
350
351
            auto output    = insert_allocation(ins, ins->get_shape());

Shucai Xiao's avatar
Shucai Xiao committed
352
            return mod->replace_instruction(ins, conv, args[0], args[1], workspace, output);
Shucai Xiao's avatar
Shucai Xiao committed
353
354
355
        });
    }

356
357
358
    void add_generic_op(const std::string& name) { add_generic_op(name, "gpu::" + name); }

    void add_generic_op(const std::string& op_name, const std::string& gpu_name)
Paul's avatar
Paul committed
359
    {
360
        apply_map.emplace(op_name, [=](instruction_ref ins) {
361
362
363
            auto output                       = insert_allocation(ins, ins->get_shape());
            std::vector<instruction_ref> refs = ins->inputs();
            refs.push_back(output);
Paul's avatar
Paul committed
364

Shucai Xiao's avatar
Shucai Xiao committed
365
            return mod->replace_instruction(ins, make_op(gpu_name), refs);
366
        });
Paul's avatar
Paul committed
367
    }
Paul's avatar
Paul committed
368

369
370
371
    void add_extend_op(const std::string& name) { add_extend_op(name, "gpu::" + name); }

    void add_extend_op(const std::string& op_name, const std::string& gpu_name)
Khalique's avatar
Khalique committed
372
    {
373
374
        apply_map.emplace(op_name, [=](instruction_ref ins) {
            auto&& op                         = ins->get_operator();
375
376
377
            auto output                       = insert_allocation(ins, ins->get_shape());
            std::vector<instruction_ref> refs = ins->inputs();
            refs.push_back(output);
Paul's avatar
Paul committed
378

Shucai Xiao's avatar
Shucai Xiao committed
379
            return mod->replace_instruction(ins, make_op(gpu_name, op.to_value()), refs);
380
        });
Khalique's avatar
Khalique committed
381
382
    }

Shucai Xiao's avatar
Shucai Xiao committed
383
    void add_batch_norm_inference_op()
384
    {
385
386
387
388
        apply_map.emplace("batch_norm_inference", [=](instruction_ref ins) {
            auto&& op       = any_cast<op::batch_norm_inference>(ins->get_operator());
            auto output     = insert_allocation(ins, ins->get_shape());
            shape old_shape = ins->inputs().at(1)->get_shape();
Shucai Xiao's avatar
Shucai Xiao committed
389
390
391
392
393
394
395
396
397
398
399
400
401
402
            auto input      = ins->inputs()[0];
            auto input_lens = input->get_shape().lens();
            std::vector<int64_t> rsp_lens(input_lens.size(), 1);
            // for per_activation case, also need to reshape input
            if(op.bn_mode == op::batch_norm_inference::per_activation)
            {
                std::copy(input_lens.begin() + 1, input_lens.end(), rsp_lens.begin() + 1);
            }
            else
            {
                rsp_lens[1] = static_cast<int64_t>(old_shape.elements());
            }

            auto reshape_op = op::reshape{rsp_lens};
403
404
            std::vector<instruction_ref> reshapes;
            std::transform(ins->inputs().begin() + 1,
Shucai Xiao's avatar
Shucai Xiao committed
405
406
                           ins->inputs().end(),
                           std::back_inserter(reshapes),
Shucai Xiao's avatar
Shucai Xiao committed
407
                           [&](auto i) { return mod->insert_instruction(ins, reshape_op, i); });
Shucai Xiao's avatar
Shucai Xiao committed
408

Shucai Xiao's avatar
Shucai Xiao committed
409
410
411
412
413
414
415
416
            return mod->replace_instruction(ins,
                                            miopen_batch_norm_inference{op},
                                            input,
                                            reshapes[0],
                                            reshapes[1],
                                            reshapes[2],
                                            reshapes[3],
                                            output);
Shucai Xiao's avatar
Shucai Xiao committed
417

418
        });
419
    }
Shucai Xiao's avatar
Shucai Xiao committed
420
421
422
423
424
425
426

    // use 0 - input to represent neg
    void add_neg_op()
    {
        apply_map.emplace("neg", [=](instruction_ref ins) {
            auto s = ins->get_shape();
            std::vector<float> zeros(s.elements(), 0.0f);
Shucai Xiao's avatar
Shucai Xiao committed
427
            auto l0     = mod->add_literal(literal(s, zeros));
Shucai Xiao's avatar
Shucai Xiao committed
428
            auto output = insert_allocation(ins, s);
Shucai Xiao's avatar
Shucai Xiao committed
429
            return mod->replace_instruction(
430
                ins, make_op("gpu::sub"), l0, ins->inputs().front(), output);
Shucai Xiao's avatar
Shucai Xiao committed
431
432
        });
    }
Shucai Xiao's avatar
Shucai Xiao committed
433

Shucai Xiao's avatar
Shucai Xiao committed
434
    // add input and output argument for the if operator
Shucai Xiao's avatar
Shucai Xiao committed
435
436
437
438
    void add_if_op()
    {
        apply_map.emplace("if", [=](instruction_ref ins) {
            std::vector<instruction_ref> inputs = ins->inputs();
439
440
441
            auto cpu_cond =
                mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), inputs.front());
            auto sync_cond = mod->insert_instruction(ins, make_op("hip::sync_stream"), cpu_cond);
Shucai Xiao's avatar
Shucai Xiao committed
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
            inputs.front() = sync_cond;

            std::vector<module_ref> mod_args = ins->module_inputs();
            std::map<std::string, shape> name_shapes;
            for(const auto& smod : mod_args)
            {
                auto ps = smod->get_parameter_shapes();
                name_shapes.insert(ps.begin(), ps.end());
            }

            bool ins_output_allocated = false;
            for(auto& pn : name_shapes)
            {
                const auto& s = pn.second;
                instruction_ref output{};
                if(s == ins->get_shape() and not ins_output_allocated)
                {
                    output               = insert_allocation(ins, s);
                    ins_output_allocated = true;
                }
                else
                {
464
465
                    output = mod->insert_instruction(
                        ins, make_op("hip::allocate", {{"shape", to_value(s)}}));
Shucai Xiao's avatar
Shucai Xiao committed
466
467
468
469
470
471
472
                }
                inputs.push_back(output);
            }

            return mod->replace_instruction(ins, ins->get_operator(), inputs, mod_args);
        });
    }
Shucai Xiao's avatar
Shucai Xiao committed
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510

    // replace the loop operator with gpu_loop operator
    void add_loop_op()
    {
        apply_map.emplace("loop", [=](instruction_ref ins) {
            std::vector<instruction_ref> inputs = ins->inputs();
            // copy max_iter from gpu to cpu
            auto cpu_max_iter =
                mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), inputs.at(0));
            auto cpu_cond =
                mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), inputs.at(1));
            auto synced_max_iter =
                mod->insert_instruction(ins, make_op("hip::sync_stream"), cpu_max_iter, cpu_cond);
            inputs.at(0)     = synced_max_iter;
            inputs.at(1)     = cpu_cond;
            auto copy_inputs = inputs;
            std::transform(
                copy_inputs.begin(), copy_inputs.end(), std::back_inserter(inputs), [&](auto in) {
                    return mod->insert_instruction(
                        ins, make_op("hip::allocate", {{"shape", to_value(in->get_shape())}}));
                });

            auto mod_args = ins->module_inputs();
            auto output   = insert_allocation(ins, ins->get_shape());

            const auto* sub_mod = mod_args.front();
            auto cond_out       = mod->insert_instruction(
                ins,
                make_op("hip::allocate",
                        {{"shape", to_value(sub_mod->get_output_shapes().front())}}));
            // add cond and mod outputs to the argument list
            inputs.push_back(cond_out);
            inputs.push_back(output);

            return mod->replace_instruction(
                ins, make_op("gpu::loop", ins->get_operator().to_value()), inputs, mod_args);
        });
    }
Paul's avatar
Paul committed
511
512
};

Shucai Xiao's avatar
Shucai Xiao committed
513
void lowering::apply(module& m) const { miopen_apply{&m, this}.apply(); }
Shucai Xiao's avatar
Shucai Xiao committed
514

Paul's avatar
Paul committed
515
} // namespace gpu
Paul's avatar
Paul committed
516
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
517
} // namespace migraphx