lowering.cpp 20.4 KB
Newer Older
Shucai Xiao's avatar
Shucai Xiao committed
1
#include <iterator>
Paul's avatar
Paul committed
2
3
4
#include <migraphx/gpu/lowering.hpp>
#include <migraphx/manage_ptr.hpp>
#include <migraphx/instruction.hpp>
5
6
7
8
9
10
11
12
#include <migraphx/make_op.hpp>

#include <migraphx/op/abs.hpp>
#include <migraphx/op/batch_norm_inference.hpp>
#include <migraphx/op/convolution.hpp>
#include <migraphx/op/deconvolution.hpp>
#include <migraphx/op/dot.hpp>
#include <migraphx/op/elu.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
13
#include <migraphx/op/if_op.hpp>
14
15
16
17
18
19
20
21
22
#include <migraphx/op/leaky_relu.hpp>
#include <migraphx/op/lrn.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/op/reshape.hpp>
#include <migraphx/op/quant_convolution.hpp>
#include <migraphx/op/quant_dot.hpp>

#include <migraphx/gpu/abs.hpp>
#include <migraphx/gpu/batch_norm_inference.hpp>
Paul's avatar
Paul committed
23
24
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/convolution.hpp>
kahmed10's avatar
kahmed10 committed
25
#include <migraphx/gpu/deconvolution.hpp>
26
#include <migraphx/gpu/device_name.hpp>
Khalique's avatar
Khalique committed
27
#include <migraphx/gpu/elu.hpp>
28
#include <migraphx/gpu/equal.hpp>
Paul's avatar
Paul committed
29
#include <migraphx/gpu/gemm.hpp>
30
#include <migraphx/gpu/greater.hpp>
31
#include <migraphx/gpu/int8_conv_pack.hpp>
32
#include <migraphx/gpu/leaky_relu.hpp>
33
#include <migraphx/gpu/less.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
34
35
36
#include <migraphx/gpu/logical_and.hpp>
#include <migraphx/gpu/logical_or.hpp>
#include <migraphx/gpu/logical_xor.hpp>
37
38
39
40
#include <migraphx/gpu/lrn.hpp>
#include <migraphx/gpu/miopen.hpp>
#include <migraphx/gpu/quant_convolution.hpp>
#include <migraphx/gpu/rocblas.hpp>
41
#include <migraphx/gpu/unary_not.hpp>
turneram's avatar
turneram committed
42
#include <migraphx/gpu/where.hpp>
43
#include <migraphx/gpu/compiler.hpp>
44
#include <migraphx/iterator_for.hpp>
45
#include <migraphx/program.hpp>
Paul's avatar
Paul committed
46
#include <utility>
47
#include <functional>
Khalique's avatar
Khalique committed
48
#include <algorithm>
Shucai Xiao's avatar
Shucai Xiao committed
49
#include <map>
Paul's avatar
Paul committed
50

Paul's avatar
Paul committed
51
namespace migraphx {
Paul's avatar
Paul committed
52
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
53
namespace gpu {
Paul's avatar
Paul committed
54
55
56

struct miopen_apply
{
Shucai Xiao's avatar
Shucai Xiao committed
57
    module* mod          = nullptr;
58
    const lowering* pass = nullptr;
Shucai Xiao's avatar
Shucai Xiao committed
59
    std::unordered_map<std::string, std::function<instruction_ref(instruction_ref)>> apply_map{};
Shucai Xiao's avatar
Shucai Xiao committed
60
    instruction_ref last{};
61
    std::unordered_map<instruction_ref, std::string> prog_output_names{};
Shucai Xiao's avatar
Shucai Xiao committed
62
63
    bool offload_copy   = false;
    bool int8_x4_format = true;
64
    bool compute_fp32   = false;
Paul's avatar
Paul committed
65

66
    context& get_context() const
67
68
69
70
71
72
    {
        assert(pass != nullptr);
        assert(pass->ctx != nullptr);
        return *pass->ctx;
    }

Paul's avatar
Paul committed
73
74
75
76
77
78
79
    void check_shape(shape x, instruction_ref i)
    {
        assert(x == i->get_shape());
        (void)x;
        (void)i;
    }

80
81
    void create_output_names()
    {
Shucai Xiao's avatar
Shucai Xiao committed
82
        this->last = instruction::get_output_alias(std::prev(mod->end()));
83
84
        if(this->last->name() == "@return")
        {
85
            const auto& prog_outputs = last->inputs();
86
87
88
89
90
91
92
93
94
95
            std::vector<instruction_ref> outputs_alias(prog_outputs.size());

            std::transform(prog_outputs.begin(),
                           prog_outputs.end(),
                           outputs_alias.begin(),
                           [](const auto& i) { return instruction::get_output_alias(i); });

            std::size_t index = 0;
            for(auto ins : outputs_alias)
            {
Shucai Xiao's avatar
Shucai Xiao committed
96
                prog_output_names[ins] = mod->name() + ":#output_" + std::to_string(index++);
97
98
99
100
            }
        }
    }

101
102
103
104
105
106
    const std::unordered_set<std::string>& get_rocblas_fp32_archs()
    {
        static std::unordered_set<std::string> supported_archs{"gfx908", "gfx90a"};
        return supported_archs;
    }

107
108
    void init()
    {
Shucai Xiao's avatar
Shucai Xiao committed
109
        assert(mod != nullptr);
110
        assert(pass != nullptr);
111

Shucai Xiao's avatar
Shucai Xiao committed
112
#if ROCBLAS_VERSION_MAJOR >= 2 && ROCBLAS_VERSION_MINOR >= 38
113
114
115
116
        auto& ctx              = get_context();
        const auto device_name = trim(split_string(get_device_name(), ':').front());
        if(contains(get_rocblas_fp32_archs(), device_name))
            compute_fp32 = true;
Shucai Xiao's avatar
Shucai Xiao committed
117
118
119
120
121
        rocblas_gemm_flags flag;
        rocblas_query_int8_layout_flag(ctx.get_stream().get_rocblas(), &flag);
        int8_x4_format = (flag == rocblas_gemm_flags_pack_int8x4);
#endif

Shucai Xiao's avatar
Shucai Xiao committed
122
        offload_copy = (mod->name() == "main") ? pass->offload_copy : false;
123
        create_output_names();
Paul's avatar
Paul committed
124

125
126
127
128
129
130
131
132
133
134
135
136
        add_generic_op("acos");
        add_generic_op("acosh");
        add_generic_op("add");
        add_generic_op("asin");
        add_generic_op("asinh");
        add_generic_op("atan");
        add_generic_op("atanh");
        add_generic_op("ceil");
        add_generic_op("contiguous");
        add_generic_op("cos");
        add_generic_op("cosh");
        add_generic_op("div");
137
        add_generic_op("equal");
138
139
140
        add_generic_op("erf");
        add_generic_op("exp");
        add_generic_op("floor");
141
142
        add_generic_op("greater");
        add_generic_op("less");
143
        add_generic_op("log");
Shucai Xiao's avatar
Shucai Xiao committed
144
145
146
        add_generic_op("logical_and");
        add_generic_op("logical_or");
        add_generic_op("logical_xor");
147
148
149
        add_generic_op("max");
        add_generic_op("min");
        add_generic_op("mul");
150
        add_generic_op("not");
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
        add_generic_op("pow");
        add_generic_op("prelu");
        add_generic_op("recip");
        add_generic_op("relu");
        add_generic_op("round");
        add_generic_op("rsqrt");
        add_generic_op("sigmoid");
        add_generic_op("sign");
        add_generic_op("sin");
        add_generic_op("sinh");
        add_generic_op("sqdiff");
        add_generic_op("sqrt");
        add_generic_op("sub");
        add_generic_op("tan");
        add_generic_op("tanh");
turneram's avatar
turneram committed
166
        add_generic_op("where");
167

Shucai Xiao's avatar
Shucai Xiao committed
168
        add_extend_op("abs");
169
170
171
172
173
        add_extend_op("argmax");
        add_extend_op("argmin");
        add_extend_op("clip");
        add_extend_op("concat");
        add_extend_op("convert");
Shucai Xiao's avatar
Shucai Xiao committed
174
        add_extend_op("elu");
175
        add_extend_op("gather");
Shucai Xiao's avatar
Shucai Xiao committed
176
        add_extend_op("leaky_relu");
177
        add_extend_op("logsoftmax");
Shucai Xiao's avatar
Shucai Xiao committed
178
        add_extend_op("lrn");
turneram's avatar
turneram committed
179
        add_extend_op("multinomial");
Shucai Xiao's avatar
Shucai Xiao committed
180
        add_extend_op("nonzero");
181
        add_extend_op("pad");
182
        add_extend_op("pooling");
183
        add_extend_op("prefix_scan_sum");
184
185
186
187
188
        add_extend_op("reduce_max");
        add_extend_op("reduce_mean");
        add_extend_op("reduce_min");
        add_extend_op("reduce_prod");
        add_extend_op("reduce_sum");
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
189
        add_extend_op("reverse");
190
191
192
        add_extend_op("rnn_var_sl_last_output");
        add_extend_op("rnn_var_sl_shift_output");
        add_extend_op("rnn_var_sl_shift_sequence");
193
        add_extend_op("scatter_none");
194
        add_extend_op("softmax");
Shucai Xiao's avatar
Shucai Xiao committed
195
        add_extend_op("topk");
196

Shucai Xiao's avatar
Shucai Xiao committed
197
        add_batch_norm_inference_op();
198
        add_convolution_op();
kahmed10's avatar
kahmed10 committed
199
        add_deconvolution_op();
Shucai Xiao's avatar
Shucai Xiao committed
200
201
        add_gemm_op<op::dot>("dot");
        add_gemm_op<op::quant_dot>("quant_dot");
Shucai Xiao's avatar
Shucai Xiao committed
202
        add_if_op();
Shucai Xiao's avatar
Shucai Xiao committed
203
        add_loop_op();
Shucai Xiao's avatar
Shucai Xiao committed
204
        add_neg_op();
205
        add_nms_op();
Shucai Xiao's avatar
Shucai Xiao committed
206
        add_quant_convolution_op();
207
208
    }

209
210
    void copy_params()
    {
Shucai Xiao's avatar
Shucai Xiao committed
211
        if(not offload_copy)
212
            return;
213

Shucai Xiao's avatar
Shucai Xiao committed
214
        for(auto ins : iterator_for(*mod))
215
216
217
        {
            if(ins->name() != "@param")
                continue;
218

Shucai Xiao's avatar
Shucai Xiao committed
219
220
221
222
            // parameter no outputs, no need to insert copy to gpu
            if(ins->outputs().empty())
                continue;

223
224
            auto pos = std::next(ins);
            auto a   = insert_allocation(pos, ins->get_shape());
225
            auto c   = mod->insert_instruction(pos, make_op("hip::copy_to_gpu"), ins, a);
Shucai Xiao's avatar
Shucai Xiao committed
226
            mod->replace_instruction(ins, c);
227
        }
228
229

        // return instruction
Shucai Xiao's avatar
Shucai Xiao committed
230
        auto ret = std::prev(mod->end());
231
232
        if(ret->name() == "@return")
        {
233
            const auto& inputs = ret->inputs();
234
235
236

            // each input of ret need to be copied from gpu to host, and replace
            // output with copy output
237
            for(const auto& in : inputs)
238
            {
239
                auto p_output = mod->insert_instruction(ret, make_op("hip::copy_from_gpu"), in);
240
241
242
243
244
245
                instruction::replace_argument(ret, in, p_output);
            }
        }
        // else branch to handle legacy program without the return instruction
        else
        {
246
            mod->add_instruction(make_op("hip::copy_from_gpu"), ret);
247
        }
248
249
    }

Paul's avatar
Paul committed
250
251
    void apply()
    {
252
        init();
Shucai Xiao's avatar
Shucai Xiao committed
253
        for(auto it = mod->begin(); it != mod->end(); it++)
Paul's avatar
Paul committed
254
        {
Paul's avatar
Paul committed
255
            auto s = it->get_shape();
256
            if(apply_map.count(it->name()) > 0)
257
            {
258
                check_shape(s, apply_map.at(it->name())(it));
Paul's avatar
Paul committed
259
            }
260
261
262
263
            else if(has_compiler_for(it->name()))
            {
                check_shape(s, insert_precompile_op(it));
            }
Paul's avatar
Paul committed
264
        }
265

266
        copy_params();
Paul's avatar
Paul committed
267
268
    }

269
270
271
272
273
274
275
276
277
278
279
280
281
    instruction_ref insert_precompile_op(instruction_ref ins)
    {
        auto output                       = insert_allocation(ins, ins->get_shape());
        std::vector<instruction_ref> refs = ins->inputs();
        refs.push_back(output);

        return mod->replace_instruction(
            ins,
            make_op("gpu::precompile_op", {{"op", to_value(ins->get_operator())}}),
            refs,
            ins->module_inputs());
    }

Paul's avatar
Paul committed
282
    instruction_ref insert_allocation(instruction_ref ins, const shape& s, std::string tag = "")
Paul's avatar
Paul committed
283
    {
284
        // Instruction's output is an input of the ret instruction
Shucai Xiao's avatar
Shucai Xiao committed
285
        if(offload_copy)
Paul's avatar
Paul committed
286
        {
287
288
            auto result = mod->insert_instruction(
                ins, make_op("hip::allocate", {{"shape", to_value(s)}, {"tag", std::move(tag)}}));
Paul's avatar
Paul committed
289
290
            return result;
        }
291
292
293
294

        auto ins_alias = instruction::get_output_alias(ins);
        if(last->name() == "@return" and tag.empty() and prog_output_names.count(ins_alias) > 0)
        {
Shucai Xiao's avatar
Shucai Xiao committed
295
            return mod->add_parameter(prog_output_names[ins_alias], s);
296
297
298
        }
        else if(ins == last and tag.empty())
        {
Shucai Xiao's avatar
Shucai Xiao committed
299
            return mod->add_parameter("output", s);
300
301
        }

302
303
        return mod->insert_instruction(
            ins, make_op("hip::allocate", {{"shape", to_value(s)}, {"tag", std::move(tag)}}));
Paul's avatar
Paul committed
304
305
    }

Shucai Xiao's avatar
Shucai Xiao committed
306
    void add_convolution_op()
Paul's avatar
Paul committed
307
    {
308
309
        apply_map.emplace("convolution", [=](instruction_ref ins) {
            auto&& op = any_cast<op::convolution>(ins->get_operator());
Paul's avatar
Paul committed
310

311
            auto conv = miopen_convolution{op, make_conv(op)};
312
            auto ws   = conv.find(get_context(), ins->get_shape(), to_shapes(ins->inputs()));
Paul's avatar
Paul committed
313

314
315
            auto workspace = insert_allocation(ins, ws, "workspace");
            auto output    = insert_allocation(ins, ins->get_shape());
kahmed10's avatar
kahmed10 committed
316

Shucai Xiao's avatar
Shucai Xiao committed
317
            return mod->replace_instruction(
kahmed10's avatar
kahmed10 committed
318
319
320
321
322
323
324
325
326
327
328
329
330
331
                ins, conv, ins->inputs().at(0), ins->inputs().at(1), workspace, output);
        });
    }

    void add_deconvolution_op()
    {
        apply_map.emplace("deconvolution", [=](instruction_ref ins) {
            auto&& op = any_cast<op::deconvolution>(ins->get_operator());

            auto conv = miopen_deconvolution{op, make_deconv(op)};
            auto ws   = conv.compile(get_context(), ins->get_shape(), to_shapes(ins->inputs()));

            auto workspace = insert_allocation(ins, ws, "workspace");
            auto output    = insert_allocation(ins, ins->get_shape());
Paul's avatar
Paul committed
332

Shucai Xiao's avatar
Shucai Xiao committed
333
            return mod->replace_instruction(
334
335
                ins, conv, ins->inputs().at(0), ins->inputs().at(1), workspace, output);
        });
Paul's avatar
Paul committed
336
337
    }

338
339
    template <typename Op>
    void add_gemm_op(const std::string& name)
340
341
    {
        apply_map.emplace(name, [=](instruction_ref ins) {
342
            std::vector<instruction_ref> refs = ins->inputs();
Shucai Xiao's avatar
Shucai Xiao committed
343
            if(refs.size() == 2)
344
345
            {
                auto output = insert_allocation(ins, ins->get_shape());
Shucai Xiao's avatar
Shucai Xiao committed
346
347
348
349
350
351
                refs.push_back(output);
            }
            else
            {
                auto c_alias = instruction::get_output_alias(refs.back());
                if(ins == last or refs.back()->outputs().size() > 1 or c_alias->inputs().empty())
352
                {
353
354
355
356
                    auto output = insert_allocation(ins, ins->get_shape());
                    auto copy_out =
                        mod->insert_instruction(ins, make_op("hip::copy"), refs.back(), output);
                    refs.back() = copy_out;
357
358
                    refs.push_back(copy_out);
                }
Shucai Xiao's avatar
Shucai Xiao committed
359
360
361
362
                else
                {
                    refs.push_back(refs.back());
                }
363
            }
Shucai Xiao's avatar
Shucai Xiao committed
364
            return mod->replace_instruction(
365
                ins, rocblas_gemm<Op>{Op{}, 1, 0, int8_x4_format, compute_fp32}, refs);
366
367
368
        });
    }

369
370
371
372
373
    void add_quant_convolution_op()
    {
        apply_map.emplace("quant_convolution", [=](instruction_ref ins) {
            auto&& op = any_cast<op::quant_convolution>(ins->get_operator());
            auto conv = miopen_quant_convolution{op, make_conv(op)};
374
            auto ws   = conv.compile(get_context(), ins->get_shape(), to_shapes(ins->inputs()));
375

Shucai Xiao's avatar
Shucai Xiao committed
376
            auto args      = ins->inputs();
377
            auto workspace = insert_allocation(ins, ws, "workspace");
Shucai Xiao's avatar
Shucai Xiao committed
378
379
            auto output    = insert_allocation(ins, ins->get_shape());

Shucai Xiao's avatar
Shucai Xiao committed
380
            return mod->replace_instruction(ins, conv, args[0], args[1], workspace, output);
Shucai Xiao's avatar
Shucai Xiao committed
381
382
383
        });
    }

384
385
386
    // add_generic_op just constructs the operator with no fields whereas add_extend_op copies over
    // the fields Since it doesn't have fields its default constructed

387
388
389
    void add_generic_op(const std::string& name) { add_generic_op(name, "gpu::" + name); }

    void add_generic_op(const std::string& op_name, const std::string& gpu_name)
Paul's avatar
Paul committed
390
    {
391
        apply_map.emplace(op_name, [=](instruction_ref ins) {
392
393
394
            auto output                       = insert_allocation(ins, ins->get_shape());
            std::vector<instruction_ref> refs = ins->inputs();
            refs.push_back(output);
Paul's avatar
Paul committed
395

Shucai Xiao's avatar
Shucai Xiao committed
396
            return mod->replace_instruction(ins, make_op(gpu_name), refs);
397
        });
Paul's avatar
Paul committed
398
    }
Paul's avatar
Paul committed
399

400
401
402
    void add_extend_op(const std::string& name) { add_extend_op(name, "gpu::" + name); }

    void add_extend_op(const std::string& op_name, const std::string& gpu_name)
Khalique's avatar
Khalique committed
403
    {
404
405
        apply_map.emplace(op_name, [=](instruction_ref ins) {
            auto&& op                         = ins->get_operator();
406
407
408
            auto output                       = insert_allocation(ins, ins->get_shape());
            std::vector<instruction_ref> refs = ins->inputs();
            refs.push_back(output);
Paul's avatar
Paul committed
409

Shucai Xiao's avatar
Shucai Xiao committed
410
            return mod->replace_instruction(ins, make_op(gpu_name, op.to_value()), refs);
411
        });
Khalique's avatar
Khalique committed
412
413
    }

Shucai Xiao's avatar
Shucai Xiao committed
414
    void add_batch_norm_inference_op()
415
    {
416
417
418
419
        apply_map.emplace("batch_norm_inference", [=](instruction_ref ins) {
            auto&& op       = any_cast<op::batch_norm_inference>(ins->get_operator());
            auto output     = insert_allocation(ins, ins->get_shape());
            shape old_shape = ins->inputs().at(1)->get_shape();
Shucai Xiao's avatar
Shucai Xiao committed
420
421
422
423
424
425
426
427
428
429
430
431
432
433
            auto input      = ins->inputs()[0];
            auto input_lens = input->get_shape().lens();
            std::vector<int64_t> rsp_lens(input_lens.size(), 1);
            // for per_activation case, also need to reshape input
            if(op.bn_mode == op::batch_norm_inference::per_activation)
            {
                std::copy(input_lens.begin() + 1, input_lens.end(), rsp_lens.begin() + 1);
            }
            else
            {
                rsp_lens[1] = static_cast<int64_t>(old_shape.elements());
            }

            auto reshape_op = op::reshape{rsp_lens};
434
435
            std::vector<instruction_ref> reshapes;
            std::transform(ins->inputs().begin() + 1,
Shucai Xiao's avatar
Shucai Xiao committed
436
437
                           ins->inputs().end(),
                           std::back_inserter(reshapes),
Shucai Xiao's avatar
Shucai Xiao committed
438
                           [&](auto i) { return mod->insert_instruction(ins, reshape_op, i); });
Shucai Xiao's avatar
Shucai Xiao committed
439

Shucai Xiao's avatar
Shucai Xiao committed
440
441
442
443
444
445
446
447
            return mod->replace_instruction(ins,
                                            miopen_batch_norm_inference{op},
                                            input,
                                            reshapes[0],
                                            reshapes[1],
                                            reshapes[2],
                                            reshapes[3],
                                            output);
448
        });
449
    }
Shucai Xiao's avatar
Shucai Xiao committed
450
451
452
453
454
455
456

    // use 0 - input to represent neg
    void add_neg_op()
    {
        apply_map.emplace("neg", [=](instruction_ref ins) {
            auto s = ins->get_shape();
            std::vector<float> zeros(s.elements(), 0.0f);
Shucai Xiao's avatar
Shucai Xiao committed
457
            auto l0     = mod->add_literal(literal(s, zeros));
Shucai Xiao's avatar
Shucai Xiao committed
458
            auto output = insert_allocation(ins, s);
Shucai Xiao's avatar
Shucai Xiao committed
459
            return mod->replace_instruction(
460
                ins, make_op("gpu::sub"), l0, ins->inputs().front(), output);
Shucai Xiao's avatar
Shucai Xiao committed
461
462
        });
    }
Shucai Xiao's avatar
Shucai Xiao committed
463

Shucai Xiao's avatar
Shucai Xiao committed
464
    // add input and output argument for the if operator
Shucai Xiao's avatar
Shucai Xiao committed
465
466
467
468
    void add_if_op()
    {
        apply_map.emplace("if", [=](instruction_ref ins) {
            std::vector<instruction_ref> inputs = ins->inputs();
469
470
471
            auto cpu_cond =
                mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), inputs.front());
            auto sync_cond = mod->insert_instruction(ins, make_op("hip::sync_stream"), cpu_cond);
Shucai Xiao's avatar
Shucai Xiao committed
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
            inputs.front() = sync_cond;

            std::vector<module_ref> mod_args = ins->module_inputs();
            std::map<std::string, shape> name_shapes;
            for(const auto& smod : mod_args)
            {
                auto ps = smod->get_parameter_shapes();
                name_shapes.insert(ps.begin(), ps.end());
            }

            bool ins_output_allocated = false;
            for(auto& pn : name_shapes)
            {
                const auto& s = pn.second;
                instruction_ref output{};
                if(s == ins->get_shape() and not ins_output_allocated)
                {
                    output               = insert_allocation(ins, s);
                    ins_output_allocated = true;
                }
                else
                {
494
495
                    output = mod->insert_instruction(
                        ins, make_op("hip::allocate", {{"shape", to_value(s)}}));
Shucai Xiao's avatar
Shucai Xiao committed
496
497
498
499
500
501
502
                }
                inputs.push_back(output);
            }

            return mod->replace_instruction(ins, ins->get_operator(), inputs, mod_args);
        });
    }
Shucai Xiao's avatar
Shucai Xiao committed
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540

    // replace the loop operator with gpu_loop operator
    void add_loop_op()
    {
        apply_map.emplace("loop", [=](instruction_ref ins) {
            std::vector<instruction_ref> inputs = ins->inputs();
            // copy max_iter from gpu to cpu
            auto cpu_max_iter =
                mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), inputs.at(0));
            auto cpu_cond =
                mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), inputs.at(1));
            auto synced_max_iter =
                mod->insert_instruction(ins, make_op("hip::sync_stream"), cpu_max_iter, cpu_cond);
            inputs.at(0)     = synced_max_iter;
            inputs.at(1)     = cpu_cond;
            auto copy_inputs = inputs;
            std::transform(
                copy_inputs.begin(), copy_inputs.end(), std::back_inserter(inputs), [&](auto in) {
                    return mod->insert_instruction(
                        ins, make_op("hip::allocate", {{"shape", to_value(in->get_shape())}}));
                });

            auto mod_args = ins->module_inputs();
            auto output   = insert_allocation(ins, ins->get_shape());

            const auto* sub_mod = mod_args.front();
            auto cond_out       = mod->insert_instruction(
                ins,
                make_op("hip::allocate",
                        {{"shape", to_value(sub_mod->get_output_shapes().front())}}));
            // add cond and mod outputs to the argument list
            inputs.push_back(cond_out);
            inputs.push_back(output);

            return mod->replace_instruction(
                ins, make_op("gpu::loop", ins->get_operator().to_value()), inputs, mod_args);
        });
    }
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560

    void add_nms_op()
    {
        apply_map.emplace("nonmaxsuppression", [=](instruction_ref ins) {
            auto s      = ins->get_shape();
            auto output = insert_allocation(ins, s);
            std::vector<instruction_ref> cpu_inputs;
            auto inputs = ins->inputs();
            std::transform(
                inputs.begin(), inputs.end(), std::back_inserter(cpu_inputs), [&](auto in) {
                    return mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), in);
                });
            cpu_inputs.front() =
                mod->insert_instruction(ins, make_op("hip::sync_stream"), cpu_inputs);
            auto cpu_out = mod->insert_instruction(ins, ins->get_operator(), cpu_inputs);
            auto gpu_out =
                mod->insert_instruction(ins, make_op("hip::copy_to_gpu"), cpu_out, output);
            return mod->replace_instruction(ins, gpu_out);
        });
    }
Paul's avatar
Paul committed
561
562
};

Shucai Xiao's avatar
Shucai Xiao committed
563
void lowering::apply(module& m) const { miopen_apply{&m, this}.apply(); }
Shucai Xiao's avatar
Shucai Xiao committed
564

Paul's avatar
Paul committed
565
} // namespace gpu
Paul's avatar
Paul committed
566
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
567
} // namespace migraphx