lowering.cpp 20.6 KB
Newer Older
Shucai Xiao's avatar
Shucai Xiao committed
1
#include <iterator>
Paul's avatar
Paul committed
2
3
4
#include <migraphx/gpu/lowering.hpp>
#include <migraphx/manage_ptr.hpp>
#include <migraphx/instruction.hpp>
5
6
7
8
9
10
11
12
#include <migraphx/make_op.hpp>

#include <migraphx/op/abs.hpp>
#include <migraphx/op/batch_norm_inference.hpp>
#include <migraphx/op/convolution.hpp>
#include <migraphx/op/deconvolution.hpp>
#include <migraphx/op/dot.hpp>
#include <migraphx/op/elu.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
13
#include <migraphx/op/if_op.hpp>
turneram's avatar
turneram committed
14
#include <migraphx/op/layernorm.hpp>
15
16
17
18
19
20
21
22
23
#include <migraphx/op/leaky_relu.hpp>
#include <migraphx/op/lrn.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/op/reshape.hpp>
#include <migraphx/op/quant_convolution.hpp>
#include <migraphx/op/quant_dot.hpp>

#include <migraphx/gpu/abs.hpp>
#include <migraphx/gpu/batch_norm_inference.hpp>
Paul's avatar
Paul committed
24
25
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/convolution.hpp>
kahmed10's avatar
kahmed10 committed
26
#include <migraphx/gpu/deconvolution.hpp>
27
#include <migraphx/gpu/device_name.hpp>
Khalique's avatar
Khalique committed
28
#include <migraphx/gpu/elu.hpp>
29
#include <migraphx/gpu/equal.hpp>
Paul's avatar
Paul committed
30
#include <migraphx/gpu/gemm.hpp>
31
#include <migraphx/gpu/greater.hpp>
32
#include <migraphx/gpu/int8_conv_pack.hpp>
turneram's avatar
turneram committed
33
#include <migraphx/gpu/layernorm.hpp>
34
#include <migraphx/gpu/leaky_relu.hpp>
35
#include <migraphx/gpu/less.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
36
37
38
#include <migraphx/gpu/logical_and.hpp>
#include <migraphx/gpu/logical_or.hpp>
#include <migraphx/gpu/logical_xor.hpp>
39
40
41
42
#include <migraphx/gpu/lrn.hpp>
#include <migraphx/gpu/miopen.hpp>
#include <migraphx/gpu/quant_convolution.hpp>
#include <migraphx/gpu/rocblas.hpp>
43
#include <migraphx/gpu/unary_not.hpp>
turneram's avatar
turneram committed
44
#include <migraphx/gpu/where.hpp>
45
#include <migraphx/gpu/compiler.hpp>
46
#include <migraphx/iterator_for.hpp>
47
#include <migraphx/program.hpp>
Paul's avatar
Paul committed
48
#include <utility>
49
#include <functional>
Khalique's avatar
Khalique committed
50
#include <algorithm>
Shucai Xiao's avatar
Shucai Xiao committed
51
#include <map>
Paul's avatar
Paul committed
52

Paul's avatar
Paul committed
53
namespace migraphx {
Paul's avatar
Paul committed
54
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
55
namespace gpu {
Paul's avatar
Paul committed
56
57
58

struct miopen_apply
{
Shucai Xiao's avatar
Shucai Xiao committed
59
    module* mod          = nullptr;
60
    const lowering* pass = nullptr;
Shucai Xiao's avatar
Shucai Xiao committed
61
    std::unordered_map<std::string, std::function<instruction_ref(instruction_ref)>> apply_map{};
Shucai Xiao's avatar
Shucai Xiao committed
62
    instruction_ref last{};
63
    std::unordered_map<instruction_ref, std::string> prog_output_names{};
Shucai Xiao's avatar
Shucai Xiao committed
64
65
    bool offload_copy   = false;
    bool int8_x4_format = true;
66
    bool compute_fp32   = false;
Paul's avatar
Paul committed
67

68
    context& get_context() const
69
70
71
72
73
74
    {
        assert(pass != nullptr);
        assert(pass->ctx != nullptr);
        return *pass->ctx;
    }

Paul's avatar
Paul committed
75
76
77
78
79
80
81
    void check_shape(shape x, instruction_ref i)
    {
        assert(x == i->get_shape());
        (void)x;
        (void)i;
    }

82
83
    void create_output_names()
    {
Shucai Xiao's avatar
Shucai Xiao committed
84
        this->last = instruction::get_output_alias(std::prev(mod->end()));
85
86
        if(this->last->name() == "@return")
        {
87
            const auto& prog_outputs = last->inputs();
88
89
90
91
92
93
94
95
96
97
            std::vector<instruction_ref> outputs_alias(prog_outputs.size());

            std::transform(prog_outputs.begin(),
                           prog_outputs.end(),
                           outputs_alias.begin(),
                           [](const auto& i) { return instruction::get_output_alias(i); });

            std::size_t index = 0;
            for(auto ins : outputs_alias)
            {
Shucai Xiao's avatar
Shucai Xiao committed
98
                prog_output_names[ins] = mod->name() + ":#output_" + std::to_string(index++);
99
100
101
102
            }
        }
    }

103
104
105
106
107
108
    const std::unordered_set<std::string>& get_rocblas_fp32_archs()
    {
        static std::unordered_set<std::string> supported_archs{"gfx908", "gfx90a"};
        return supported_archs;
    }

109
110
    void init()
    {
Shucai Xiao's avatar
Shucai Xiao committed
111
        assert(mod != nullptr);
112
        assert(pass != nullptr);
113

Shucai Xiao's avatar
Shucai Xiao committed
114
#if ROCBLAS_VERSION_MAJOR >= 2 && ROCBLAS_VERSION_MINOR >= 38
115
116
117
118
        auto& ctx              = get_context();
        const auto device_name = trim(split_string(get_device_name(), ':').front());
        if(contains(get_rocblas_fp32_archs(), device_name))
            compute_fp32 = true;
Shucai Xiao's avatar
Shucai Xiao committed
119
120
121
122
123
        rocblas_gemm_flags flag;
        rocblas_query_int8_layout_flag(ctx.get_stream().get_rocblas(), &flag);
        int8_x4_format = (flag == rocblas_gemm_flags_pack_int8x4);
#endif

Shucai Xiao's avatar
Shucai Xiao committed
124
        offload_copy = (mod->name() == "main") ? pass->offload_copy : false;
125
        create_output_names();
Paul's avatar
Paul committed
126

127
128
129
130
131
132
133
134
135
136
137
138
        add_generic_op("acos");
        add_generic_op("acosh");
        add_generic_op("add");
        add_generic_op("asin");
        add_generic_op("asinh");
        add_generic_op("atan");
        add_generic_op("atanh");
        add_generic_op("ceil");
        add_generic_op("contiguous");
        add_generic_op("cos");
        add_generic_op("cosh");
        add_generic_op("div");
139
        add_generic_op("equal");
140
141
142
        add_generic_op("erf");
        add_generic_op("exp");
        add_generic_op("floor");
143
        add_generic_op("greater");
turneram's avatar
turneram committed
144
        add_generic_op("layernorm");
145
        add_generic_op("less");
146
        add_generic_op("log");
Shucai Xiao's avatar
Shucai Xiao committed
147
148
149
        add_generic_op("logical_and");
        add_generic_op("logical_or");
        add_generic_op("logical_xor");
150
151
152
        add_generic_op("max");
        add_generic_op("min");
        add_generic_op("mul");
153
        add_generic_op("not");
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
        add_generic_op("pow");
        add_generic_op("prelu");
        add_generic_op("recip");
        add_generic_op("relu");
        add_generic_op("round");
        add_generic_op("rsqrt");
        add_generic_op("sigmoid");
        add_generic_op("sign");
        add_generic_op("sin");
        add_generic_op("sinh");
        add_generic_op("sqdiff");
        add_generic_op("sqrt");
        add_generic_op("sub");
        add_generic_op("tan");
        add_generic_op("tanh");
turneram's avatar
turneram committed
169
        add_generic_op("where");
170

Shucai Xiao's avatar
Shucai Xiao committed
171
        add_extend_op("abs");
172
173
174
175
176
        add_extend_op("argmax");
        add_extend_op("argmin");
        add_extend_op("clip");
        add_extend_op("concat");
        add_extend_op("convert");
Shucai Xiao's avatar
Shucai Xiao committed
177
        add_extend_op("elu");
178
        add_extend_op("gather");
Shucai Xiao's avatar
Shucai Xiao committed
179
        add_extend_op("leaky_relu");
180
        add_extend_op("logsoftmax");
Shucai Xiao's avatar
Shucai Xiao committed
181
        add_extend_op("lrn");
turneram's avatar
turneram committed
182
        add_extend_op("multinomial");
Shucai Xiao's avatar
Shucai Xiao committed
183
        add_extend_op("nonzero");
184
        add_extend_op("pad");
185
        add_extend_op("pooling");
186
        add_extend_op("prefix_scan_sum");
187
188
189
190
191
        add_extend_op("reduce_max");
        add_extend_op("reduce_mean");
        add_extend_op("reduce_min");
        add_extend_op("reduce_prod");
        add_extend_op("reduce_sum");
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
192
        add_extend_op("reverse");
193
194
195
        add_extend_op("rnn_var_sl_last_output");
        add_extend_op("rnn_var_sl_shift_output");
        add_extend_op("rnn_var_sl_shift_sequence");
196
        add_extend_op("scatter_none");
197
        add_extend_op("softmax");
Shucai Xiao's avatar
Shucai Xiao committed
198
        add_extend_op("topk");
199

Shucai Xiao's avatar
Shucai Xiao committed
200
        add_batch_norm_inference_op();
201
        add_convolution_op();
kahmed10's avatar
kahmed10 committed
202
        add_deconvolution_op();
Shucai Xiao's avatar
Shucai Xiao committed
203
204
        add_gemm_op<op::dot>("dot");
        add_gemm_op<op::quant_dot>("quant_dot");
Shucai Xiao's avatar
Shucai Xiao committed
205
        add_if_op();
Shucai Xiao's avatar
Shucai Xiao committed
206
        add_loop_op();
Shucai Xiao's avatar
Shucai Xiao committed
207
        add_neg_op();
208
        add_nms_op();
Shucai Xiao's avatar
Shucai Xiao committed
209
        add_quant_convolution_op();
210
211
    }

212
213
    void copy_params()
    {
Shucai Xiao's avatar
Shucai Xiao committed
214
        if(not offload_copy)
215
            return;
216

Shucai Xiao's avatar
Shucai Xiao committed
217
        for(auto ins : iterator_for(*mod))
218
219
220
        {
            if(ins->name() != "@param")
                continue;
221

Shucai Xiao's avatar
Shucai Xiao committed
222
223
224
225
            // parameter no outputs, no need to insert copy to gpu
            if(ins->outputs().empty())
                continue;

226
227
            auto pos = std::next(ins);
            auto a   = insert_allocation(pos, ins->get_shape());
228
            auto c   = mod->insert_instruction(pos, make_op("hip::copy_to_gpu"), ins, a);
Shucai Xiao's avatar
Shucai Xiao committed
229
            mod->replace_instruction(ins, c);
230
        }
231
232

        // return instruction
Shucai Xiao's avatar
Shucai Xiao committed
233
        auto ret = std::prev(mod->end());
234
235
        if(ret->name() == "@return")
        {
236
            const auto& inputs = ret->inputs();
237
238
239

            // each input of ret need to be copied from gpu to host, and replace
            // output with copy output
240
            for(const auto& in : inputs)
241
            {
242
                auto p_output = mod->insert_instruction(ret, make_op("hip::copy_from_gpu"), in);
243
244
245
246
247
248
                instruction::replace_argument(ret, in, p_output);
            }
        }
        // else branch to handle legacy program without the return instruction
        else
        {
249
            mod->add_instruction(make_op("hip::copy_from_gpu"), ret);
250
        }
251
252
    }

Paul's avatar
Paul committed
253
254
    void apply()
    {
255
        init();
Shucai Xiao's avatar
Shucai Xiao committed
256
        for(auto it = mod->begin(); it != mod->end(); it++)
Paul's avatar
Paul committed
257
        {
Paul's avatar
Paul committed
258
            auto s = it->get_shape();
259
            if(apply_map.count(it->name()) > 0)
260
            {
261
                check_shape(s, apply_map.at(it->name())(it));
Paul's avatar
Paul committed
262
            }
263
264
265
266
            else if(has_compiler_for(it->name()))
            {
                check_shape(s, insert_precompile_op(it));
            }
Paul's avatar
Paul committed
267
        }
268

269
        copy_params();
Paul's avatar
Paul committed
270
271
    }

272
273
274
275
276
277
278
279
280
281
282
283
284
    instruction_ref insert_precompile_op(instruction_ref ins)
    {
        auto output                       = insert_allocation(ins, ins->get_shape());
        std::vector<instruction_ref> refs = ins->inputs();
        refs.push_back(output);

        return mod->replace_instruction(
            ins,
            make_op("gpu::precompile_op", {{"op", to_value(ins->get_operator())}}),
            refs,
            ins->module_inputs());
    }

Paul's avatar
Paul committed
285
    instruction_ref insert_allocation(instruction_ref ins, const shape& s, std::string tag = "")
Paul's avatar
Paul committed
286
    {
287
        // Instruction's output is an input of the ret instruction
Shucai Xiao's avatar
Shucai Xiao committed
288
        if(offload_copy)
Paul's avatar
Paul committed
289
        {
290
291
            auto result = mod->insert_instruction(
                ins, make_op("hip::allocate", {{"shape", to_value(s)}, {"tag", std::move(tag)}}));
Paul's avatar
Paul committed
292
293
            return result;
        }
294
295
296
297

        auto ins_alias = instruction::get_output_alias(ins);
        if(last->name() == "@return" and tag.empty() and prog_output_names.count(ins_alias) > 0)
        {
Shucai Xiao's avatar
Shucai Xiao committed
298
            return mod->add_parameter(prog_output_names[ins_alias], s);
299
300
301
        }
        else if(ins == last and tag.empty())
        {
Shucai Xiao's avatar
Shucai Xiao committed
302
            return mod->add_parameter("output", s);
303
304
        }

305
306
        return mod->insert_instruction(
            ins, make_op("hip::allocate", {{"shape", to_value(s)}, {"tag", std::move(tag)}}));
Paul's avatar
Paul committed
307
308
    }

Shucai Xiao's avatar
Shucai Xiao committed
309
    void add_convolution_op()
Paul's avatar
Paul committed
310
    {
311
312
        apply_map.emplace("convolution", [=](instruction_ref ins) {
            auto&& op = any_cast<op::convolution>(ins->get_operator());
Paul's avatar
Paul committed
313

314
            auto conv = miopen_convolution{op, make_conv(op)};
315
            auto ws   = conv.find(get_context(), ins->get_shape(), to_shapes(ins->inputs()));
Paul's avatar
Paul committed
316

317
318
            auto workspace = insert_allocation(ins, ws, "workspace");
            auto output    = insert_allocation(ins, ins->get_shape());
kahmed10's avatar
kahmed10 committed
319

Shucai Xiao's avatar
Shucai Xiao committed
320
            return mod->replace_instruction(
kahmed10's avatar
kahmed10 committed
321
322
323
324
325
326
327
328
329
330
331
332
333
334
                ins, conv, ins->inputs().at(0), ins->inputs().at(1), workspace, output);
        });
    }

    void add_deconvolution_op()
    {
        apply_map.emplace("deconvolution", [=](instruction_ref ins) {
            auto&& op = any_cast<op::deconvolution>(ins->get_operator());

            auto conv = miopen_deconvolution{op, make_deconv(op)};
            auto ws   = conv.compile(get_context(), ins->get_shape(), to_shapes(ins->inputs()));

            auto workspace = insert_allocation(ins, ws, "workspace");
            auto output    = insert_allocation(ins, ins->get_shape());
Paul's avatar
Paul committed
335

Shucai Xiao's avatar
Shucai Xiao committed
336
            return mod->replace_instruction(
337
338
                ins, conv, ins->inputs().at(0), ins->inputs().at(1), workspace, output);
        });
Paul's avatar
Paul committed
339
340
    }

341
342
    template <typename Op>
    void add_gemm_op(const std::string& name)
343
344
    {
        apply_map.emplace(name, [=](instruction_ref ins) {
345
            std::vector<instruction_ref> refs = ins->inputs();
Shucai Xiao's avatar
Shucai Xiao committed
346
            if(refs.size() == 2)
347
348
            {
                auto output = insert_allocation(ins, ins->get_shape());
Shucai Xiao's avatar
Shucai Xiao committed
349
350
351
352
353
354
                refs.push_back(output);
            }
            else
            {
                auto c_alias = instruction::get_output_alias(refs.back());
                if(ins == last or refs.back()->outputs().size() > 1 or c_alias->inputs().empty())
355
                {
356
357
358
359
                    auto output = insert_allocation(ins, ins->get_shape());
                    auto copy_out =
                        mod->insert_instruction(ins, make_op("hip::copy"), refs.back(), output);
                    refs.back() = copy_out;
360
361
                    refs.push_back(copy_out);
                }
Shucai Xiao's avatar
Shucai Xiao committed
362
363
364
365
                else
                {
                    refs.push_back(refs.back());
                }
366
            }
Shucai Xiao's avatar
Shucai Xiao committed
367
            return mod->replace_instruction(
368
                ins, rocblas_gemm<Op>{Op{}, 1, 0, int8_x4_format, compute_fp32}, refs);
369
370
371
        });
    }

372
373
374
375
376
    void add_quant_convolution_op()
    {
        apply_map.emplace("quant_convolution", [=](instruction_ref ins) {
            auto&& op = any_cast<op::quant_convolution>(ins->get_operator());
            auto conv = miopen_quant_convolution{op, make_conv(op)};
377
            auto ws   = conv.compile(get_context(), ins->get_shape(), to_shapes(ins->inputs()));
378

Shucai Xiao's avatar
Shucai Xiao committed
379
            auto args      = ins->inputs();
380
            auto workspace = insert_allocation(ins, ws, "workspace");
Shucai Xiao's avatar
Shucai Xiao committed
381
382
            auto output    = insert_allocation(ins, ins->get_shape());

Shucai Xiao's avatar
Shucai Xiao committed
383
            return mod->replace_instruction(ins, conv, args[0], args[1], workspace, output);
Shucai Xiao's avatar
Shucai Xiao committed
384
385
386
        });
    }

387
388
389
    // add_generic_op just constructs the operator with no fields whereas add_extend_op copies over
    // the fields Since it doesn't have fields its default constructed

390
391
392
    void add_generic_op(const std::string& name) { add_generic_op(name, "gpu::" + name); }

    void add_generic_op(const std::string& op_name, const std::string& gpu_name)
Paul's avatar
Paul committed
393
    {
394
        apply_map.emplace(op_name, [=](instruction_ref ins) {
395
396
            auto output                       = insert_allocation(ins, ins->get_shape());
            std::vector<instruction_ref> refs = ins->inputs();
turneram's avatar
turneram committed
397
398
399
400
            if (op_name == "layernorm")
            {
                std::cout << "layernorm op" << std::endl;
            }
401
            refs.push_back(output);
Paul's avatar
Paul committed
402

Shucai Xiao's avatar
Shucai Xiao committed
403
            return mod->replace_instruction(ins, make_op(gpu_name), refs);
404
        });
Paul's avatar
Paul committed
405
    }
Paul's avatar
Paul committed
406

407
408
409
    void add_extend_op(const std::string& name) { add_extend_op(name, "gpu::" + name); }

    void add_extend_op(const std::string& op_name, const std::string& gpu_name)
Khalique's avatar
Khalique committed
410
    {
411
412
        apply_map.emplace(op_name, [=](instruction_ref ins) {
            auto&& op                         = ins->get_operator();
413
414
415
            auto output                       = insert_allocation(ins, ins->get_shape());
            std::vector<instruction_ref> refs = ins->inputs();
            refs.push_back(output);
Paul's avatar
Paul committed
416

Shucai Xiao's avatar
Shucai Xiao committed
417
            return mod->replace_instruction(ins, make_op(gpu_name, op.to_value()), refs);
418
        });
Khalique's avatar
Khalique committed
419
420
    }

Shucai Xiao's avatar
Shucai Xiao committed
421
    void add_batch_norm_inference_op()
422
    {
423
424
425
426
        apply_map.emplace("batch_norm_inference", [=](instruction_ref ins) {
            auto&& op       = any_cast<op::batch_norm_inference>(ins->get_operator());
            auto output     = insert_allocation(ins, ins->get_shape());
            shape old_shape = ins->inputs().at(1)->get_shape();
Shucai Xiao's avatar
Shucai Xiao committed
427
428
429
430
431
432
433
434
435
436
437
438
439
440
            auto input      = ins->inputs()[0];
            auto input_lens = input->get_shape().lens();
            std::vector<int64_t> rsp_lens(input_lens.size(), 1);
            // for per_activation case, also need to reshape input
            if(op.bn_mode == op::batch_norm_inference::per_activation)
            {
                std::copy(input_lens.begin() + 1, input_lens.end(), rsp_lens.begin() + 1);
            }
            else
            {
                rsp_lens[1] = static_cast<int64_t>(old_shape.elements());
            }

            auto reshape_op = op::reshape{rsp_lens};
441
442
            std::vector<instruction_ref> reshapes;
            std::transform(ins->inputs().begin() + 1,
Shucai Xiao's avatar
Shucai Xiao committed
443
444
                           ins->inputs().end(),
                           std::back_inserter(reshapes),
Shucai Xiao's avatar
Shucai Xiao committed
445
                           [&](auto i) { return mod->insert_instruction(ins, reshape_op, i); });
Shucai Xiao's avatar
Shucai Xiao committed
446

Shucai Xiao's avatar
Shucai Xiao committed
447
448
449
450
451
452
453
454
            return mod->replace_instruction(ins,
                                            miopen_batch_norm_inference{op},
                                            input,
                                            reshapes[0],
                                            reshapes[1],
                                            reshapes[2],
                                            reshapes[3],
                                            output);
455
        });
456
    }
Shucai Xiao's avatar
Shucai Xiao committed
457
458
459
460
461
462
463

    // use 0 - input to represent neg
    void add_neg_op()
    {
        apply_map.emplace("neg", [=](instruction_ref ins) {
            auto s = ins->get_shape();
            std::vector<float> zeros(s.elements(), 0.0f);
Shucai Xiao's avatar
Shucai Xiao committed
464
            auto l0     = mod->add_literal(literal(s, zeros));
Shucai Xiao's avatar
Shucai Xiao committed
465
            auto output = insert_allocation(ins, s);
Shucai Xiao's avatar
Shucai Xiao committed
466
            return mod->replace_instruction(
467
                ins, make_op("gpu::sub"), l0, ins->inputs().front(), output);
Shucai Xiao's avatar
Shucai Xiao committed
468
469
        });
    }
Shucai Xiao's avatar
Shucai Xiao committed
470

Shucai Xiao's avatar
Shucai Xiao committed
471
    // add input and output argument for the if operator
Shucai Xiao's avatar
Shucai Xiao committed
472
473
474
475
    void add_if_op()
    {
        apply_map.emplace("if", [=](instruction_ref ins) {
            std::vector<instruction_ref> inputs = ins->inputs();
476
477
478
            auto cpu_cond =
                mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), inputs.front());
            auto sync_cond = mod->insert_instruction(ins, make_op("hip::sync_stream"), cpu_cond);
Shucai Xiao's avatar
Shucai Xiao committed
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
            inputs.front() = sync_cond;

            std::vector<module_ref> mod_args = ins->module_inputs();
            std::map<std::string, shape> name_shapes;
            for(const auto& smod : mod_args)
            {
                auto ps = smod->get_parameter_shapes();
                name_shapes.insert(ps.begin(), ps.end());
            }

            bool ins_output_allocated = false;
            for(auto& pn : name_shapes)
            {
                const auto& s = pn.second;
                instruction_ref output{};
                if(s == ins->get_shape() and not ins_output_allocated)
                {
                    output               = insert_allocation(ins, s);
                    ins_output_allocated = true;
                }
                else
                {
501
502
                    output = mod->insert_instruction(
                        ins, make_op("hip::allocate", {{"shape", to_value(s)}}));
Shucai Xiao's avatar
Shucai Xiao committed
503
504
505
506
507
508
509
                }
                inputs.push_back(output);
            }

            return mod->replace_instruction(ins, ins->get_operator(), inputs, mod_args);
        });
    }
Shucai Xiao's avatar
Shucai Xiao committed
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547

    // replace the loop operator with gpu_loop operator
    void add_loop_op()
    {
        apply_map.emplace("loop", [=](instruction_ref ins) {
            std::vector<instruction_ref> inputs = ins->inputs();
            // copy max_iter from gpu to cpu
            auto cpu_max_iter =
                mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), inputs.at(0));
            auto cpu_cond =
                mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), inputs.at(1));
            auto synced_max_iter =
                mod->insert_instruction(ins, make_op("hip::sync_stream"), cpu_max_iter, cpu_cond);
            inputs.at(0)     = synced_max_iter;
            inputs.at(1)     = cpu_cond;
            auto copy_inputs = inputs;
            std::transform(
                copy_inputs.begin(), copy_inputs.end(), std::back_inserter(inputs), [&](auto in) {
                    return mod->insert_instruction(
                        ins, make_op("hip::allocate", {{"shape", to_value(in->get_shape())}}));
                });

            auto mod_args = ins->module_inputs();
            auto output   = insert_allocation(ins, ins->get_shape());

            const auto* sub_mod = mod_args.front();
            auto cond_out       = mod->insert_instruction(
                ins,
                make_op("hip::allocate",
                        {{"shape", to_value(sub_mod->get_output_shapes().front())}}));
            // add cond and mod outputs to the argument list
            inputs.push_back(cond_out);
            inputs.push_back(output);

            return mod->replace_instruction(
                ins, make_op("gpu::loop", ins->get_operator().to_value()), inputs, mod_args);
        });
    }
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567

    void add_nms_op()
    {
        apply_map.emplace("nonmaxsuppression", [=](instruction_ref ins) {
            auto s      = ins->get_shape();
            auto output = insert_allocation(ins, s);
            std::vector<instruction_ref> cpu_inputs;
            auto inputs = ins->inputs();
            std::transform(
                inputs.begin(), inputs.end(), std::back_inserter(cpu_inputs), [&](auto in) {
                    return mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), in);
                });
            cpu_inputs.front() =
                mod->insert_instruction(ins, make_op("hip::sync_stream"), cpu_inputs);
            auto cpu_out = mod->insert_instruction(ins, ins->get_operator(), cpu_inputs);
            auto gpu_out =
                mod->insert_instruction(ins, make_op("hip::copy_to_gpu"), cpu_out, output);
            return mod->replace_instruction(ins, gpu_out);
        });
    }
Paul's avatar
Paul committed
568
569
};

Shucai Xiao's avatar
Shucai Xiao committed
570
void lowering::apply(module& m) const { miopen_apply{&m, this}.apply(); }
Shucai Xiao's avatar
Shucai Xiao committed
571

Paul's avatar
Paul committed
572
} // namespace gpu
Paul's avatar
Paul committed
573
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
574
} // namespace migraphx