lowering.cpp 14.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
Shucai Xiao's avatar
Shucai Xiao committed
24
#include <iterator>
Paul's avatar
Paul committed
25
26
27
#include <migraphx/gpu/lowering.hpp>
#include <migraphx/manage_ptr.hpp>
#include <migraphx/instruction.hpp>
28
#include <migraphx/make_op.hpp>
29
30
#include <migraphx/instruction_ref.hpp>
#include <migraphx/stringutils.hpp>
31
32

#include <migraphx/op/dot.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
33
#include <migraphx/op/if_op.hpp>
34
35
36
#include <migraphx/op/reshape.hpp>
#include <migraphx/op/quant_dot.hpp>

Paul's avatar
Paul committed
37
#include <migraphx/gpu/context.hpp>
38
#include <migraphx/gpu/device_name.hpp>
Paul's avatar
Paul committed
39
#include <migraphx/gpu/gemm.hpp>
40
41
#include <migraphx/gpu/miopen.hpp>
#include <migraphx/gpu/rocblas.hpp>
42
#include <migraphx/gpu/compiler.hpp>
43
#include <migraphx/iterator_for.hpp>
44
#include <migraphx/program.hpp>
Paul's avatar
Paul committed
45
#include <utility>
46
#include <functional>
Khalique's avatar
Khalique committed
47
#include <algorithm>
Shucai Xiao's avatar
Shucai Xiao committed
48
#include <map>
Paul's avatar
Paul committed
49

Paul's avatar
Paul committed
50
namespace migraphx {
Paul's avatar
Paul committed
51
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
52
namespace gpu {
Paul's avatar
Paul committed
53
54
55

struct miopen_apply
{
Shucai Xiao's avatar
Shucai Xiao committed
56
    module* mod          = nullptr;
57
    const lowering* pass = nullptr;
Shucai Xiao's avatar
Shucai Xiao committed
58
    std::unordered_map<std::string, std::function<instruction_ref(instruction_ref)>> apply_map{};
Shucai Xiao's avatar
Shucai Xiao committed
59
    instruction_ref last{};
Shucai Xiao's avatar
Shucai Xiao committed
60
61
    bool offload_copy   = false;
    bool int8_x4_format = true;
62
    bool compute_fp32   = false;
Paul's avatar
Paul committed
63

64
    context& get_context() const
65
66
67
68
69
70
    {
        assert(pass != nullptr);
        assert(pass->ctx != nullptr);
        return *pass->ctx;
    }

Paul's avatar
Paul committed
71
72
73
74
75
76
77
    void check_shape(shape x, instruction_ref i)
    {
        assert(x == i->get_shape());
        (void)x;
        (void)i;
    }

78
79
    void init()
    {
Shucai Xiao's avatar
Shucai Xiao committed
80
        assert(mod != nullptr);
81
        assert(pass != nullptr);
82

83
84
85
        auto& ctx      = get_context();
        int8_x4_format = get_int8_x4_format(ctx);
        compute_fp32   = get_compute_fp32_flag();
86
        offload_copy   = (mod->name() == "main") ? pass->offload_copy : false;
Paul's avatar
Paul committed
87

88
89
90
91
92
        add_generic_op("contiguous");

        add_extend_op("argmax");
        add_extend_op("argmin");
        add_extend_op("logsoftmax");
Shucai Xiao's avatar
Shucai Xiao committed
93
        add_extend_op("lrn");
turneram's avatar
turneram committed
94
        add_extend_op("multinomial");
Shucai Xiao's avatar
Shucai Xiao committed
95
        add_extend_op("nonzero");
96
        add_extend_op("pooling");
97
        add_extend_op("prefix_scan_sum");
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
98
        add_extend_op("reverse");
99
100
101
        add_extend_op("rnn_var_sl_last_output");
        add_extend_op("rnn_var_sl_shift_output");
        add_extend_op("rnn_var_sl_shift_sequence");
102
        add_extend_op("scatter_none");
Shucai Xiao's avatar
Shucai Xiao committed
103
        add_extend_op("topk");
104

105
106
107
        add_convolution_op("convolution");
        add_convolution_op("deconvolution");
        add_convolution_op("quant_convolution");
Shucai Xiao's avatar
Shucai Xiao committed
108
109
        add_gemm_op<op::dot>("dot");
        add_gemm_op<op::quant_dot>("quant_dot");
Shucai Xiao's avatar
Shucai Xiao committed
110
        add_if_op();
Shucai Xiao's avatar
Shucai Xiao committed
111
        add_loop_op();
Shucai Xiao's avatar
Shucai Xiao committed
112
        add_neg_op();
113
        add_nms_op();
114
        //add_nonzero_op();
Charlie Lin's avatar
Charlie Lin committed
115
        add_select_module_op();
116
117
    }

118
    void copy_params() const
119
    {
Shucai Xiao's avatar
Shucai Xiao committed
120
        if(not offload_copy)
121
            return;
122

Shucai Xiao's avatar
Shucai Xiao committed
123
        for(auto ins : iterator_for(*mod))
124
125
126
        {
            if(ins->name() != "@param")
                continue;
127

Shucai Xiao's avatar
Shucai Xiao committed
128
129
130
131
            // parameter no outputs, no need to insert copy to gpu
            if(ins->outputs().empty())
                continue;

132
133
            auto pos = std::next(ins);
            auto a   = insert_allocation(pos, ins->get_shape());
134
            auto c   = mod->insert_instruction(pos, make_op("hip::copy_to_gpu"), ins, a);
Shucai Xiao's avatar
Shucai Xiao committed
135
            mod->replace_instruction(ins, c);
136
        }
137
138

        // return instruction
Shucai Xiao's avatar
Shucai Xiao committed
139
        auto ret = std::prev(mod->end());
140
141
        if(ret->name() == "@return")
        {
142
            const auto& inputs = ret->inputs();
143
144
145

            // each input of ret need to be copied from gpu to host, and replace
            // output with copy output
146
            for(const auto& in : inputs)
147
            {
148
                auto p_output = mod->insert_instruction(ret, make_op("hip::copy_from_gpu"), in);
149
150
151
152
153
154
                instruction::replace_argument(ret, in, p_output);
            }
        }
        // else branch to handle legacy program without the return instruction
        else
        {
155
            mod->add_instruction(make_op("hip::copy_from_gpu"), ret);
156
        }
157
158
    }

Paul's avatar
Paul committed
159
160
    void apply()
    {
161
        init();
Shucai Xiao's avatar
Shucai Xiao committed
162
        for(auto it = mod->begin(); it != mod->end(); it++)
Paul's avatar
Paul committed
163
        {
164
165
            auto s     = it->get_shape();
            auto attrs = it->get_operator().attributes();
166
            if(apply_map.count(it->name()) > 0)
167
            {
168
                check_shape(s, apply_map.at(it->name())(it));
Paul's avatar
Paul committed
169
            }
170
171
172
173
            else if(has_compiler_for(it->name()))
            {
                check_shape(s, insert_precompile_op(it));
            }
174
175
176
177
            else if(attrs.contains("target"))
            {
                check_shape(s, insert_custom_op(it, attrs));
            }
Paul's avatar
Paul committed
178
        }
179
        copy_params();
Paul's avatar
Paul committed
180
181
    }

182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
    instruction_ref insert_custom_op(instruction_ref ins, const value& attrs) const
    {
        const auto& custom_op = ins->get_operator();
        if(attrs.at("target") == "cpu")
        {
            auto s = ins->get_shape();
            std::vector<instruction_ref> cpu_inputs;
            auto inputs = ins->inputs();
            auto output = inputs.back();
            std::transform(
                inputs.begin(), inputs.end(), std::back_inserter(cpu_inputs), [&](auto in) {
                    return mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), in);
                });
            cpu_inputs.front() =
                mod->insert_instruction(ins, make_op("hip::sync_stream"), cpu_inputs);
            auto cpu_out = mod->insert_instruction(ins, custom_op, cpu_inputs);
            auto gpu_out =
                mod->insert_instruction(ins, make_op("hip::copy_to_gpu"), cpu_out, output);
            return mod->replace_instruction(ins, gpu_out);
        }
        return ins;
    }

205
    instruction_ref insert_precompile_op(instruction_ref ins) const
206
207
208
209
210
211
212
213
214
215
216
217
    {
        auto output                       = insert_allocation(ins, ins->get_shape());
        std::vector<instruction_ref> refs = ins->inputs();
        refs.push_back(output);

        return mod->replace_instruction(
            ins,
            make_op("gpu::precompile_op", {{"op", to_value(ins->get_operator())}}),
            refs,
            ins->module_inputs());
    }

218
    instruction_ref insert_allocation(instruction_ref ins, const shape& s) const
Paul's avatar
Paul committed
219
    {
220
        return mod->insert_instruction(ins, make_op("allocate", {{"shape", to_value(s)}}));
Paul's avatar
Paul committed
221
222
    }

223
224
    template <typename Op>
    void add_gemm_op(const std::string& name)
225
226
    {
        apply_map.emplace(name, [=](instruction_ref ins) {
227
            std::vector<instruction_ref> refs = ins->inputs();
228
229
230
            assert(refs.size() == 2);
            auto output = insert_allocation(ins, ins->get_shape());
            refs.push_back(output);
Shucai Xiao's avatar
Shucai Xiao committed
231
            return mod->replace_instruction(
232
                ins, rocblas_gemm<Op>{Op{}, 1, 0, int8_x4_format, compute_fp32}, refs);
233
234
235
        });
    }

236
    void add_convolution_op(const std::string& name)
237
    {
238
        apply_map.emplace(name, [=](instruction_ref ins) {
239
240
241
242
            operation conv = make_op(
                "gpu::" + name,
                {{"op", ins->get_operator().to_value()}, {"int8_x4_format", int8_x4_format}});
            auto output = insert_allocation(ins, ins->get_shape());
243

244
245
246
247
248
            return mod->replace_instruction(ins,
                                            make_op("gpu::miopen_op", {{"op", to_value(conv)}}),
                                            ins->inputs().at(0),
                                            ins->inputs().at(1),
                                            output);
Shucai Xiao's avatar
Shucai Xiao committed
249
250
251
        });
    }

252
253
254
    // add_generic_op just constructs the operator with no fields whereas add_extend_op copies over
    // the fields Since it doesn't have fields its default constructed

255
256
257
    void add_generic_op(const std::string& name) { add_generic_op(name, "gpu::" + name); }

    void add_generic_op(const std::string& op_name, const std::string& gpu_name)
Paul's avatar
Paul committed
258
    {
259
        apply_map.emplace(op_name, [=](instruction_ref ins) {
260
261
262
            auto output                       = insert_allocation(ins, ins->get_shape());
            std::vector<instruction_ref> refs = ins->inputs();
            refs.push_back(output);
Paul's avatar
Paul committed
263

Shucai Xiao's avatar
Shucai Xiao committed
264
            return mod->replace_instruction(ins, make_op(gpu_name), refs);
265
        });
Paul's avatar
Paul committed
266
    }
Paul's avatar
Paul committed
267

268
269
270
    void add_extend_op(const std::string& name) { add_extend_op(name, "gpu::" + name); }

    void add_extend_op(const std::string& op_name, const std::string& gpu_name)
Khalique's avatar
Khalique committed
271
    {
272
273
        apply_map.emplace(op_name, [=](instruction_ref ins) {
            auto&& op                         = ins->get_operator();
274
275
276
            auto output                       = insert_allocation(ins, ins->get_shape());
            std::vector<instruction_ref> refs = ins->inputs();
            refs.push_back(output);
Paul's avatar
Paul committed
277

Shucai Xiao's avatar
Shucai Xiao committed
278
            return mod->replace_instruction(ins, make_op(gpu_name, op.to_value()), refs);
279
        });
Khalique's avatar
Khalique committed
280
281
    }

Shucai Xiao's avatar
Shucai Xiao committed
282
283
284
285
286
287
    // use 0 - input to represent neg
    void add_neg_op()
    {
        apply_map.emplace("neg", [=](instruction_ref ins) {
            auto s = ins->get_shape();
            std::vector<float> zeros(s.elements(), 0.0f);
Shucai Xiao's avatar
Shucai Xiao committed
288
            auto l0     = mod->add_literal(literal(s, zeros));
Shucai Xiao's avatar
Shucai Xiao committed
289
            auto output = insert_allocation(ins, s);
Shucai Xiao's avatar
Shucai Xiao committed
290
            return mod->replace_instruction(
291
                ins, make_op("gpu::sub"), l0, ins->inputs().front(), output);
Shucai Xiao's avatar
Shucai Xiao committed
292
293
        });
    }
Shucai Xiao's avatar
Shucai Xiao committed
294

Shucai Xiao's avatar
Shucai Xiao committed
295
    // add input and output argument for the if operator
Shucai Xiao's avatar
Shucai Xiao committed
296
297
298
299
    void add_if_op()
    {
        apply_map.emplace("if", [=](instruction_ref ins) {
            std::vector<instruction_ref> inputs = ins->inputs();
300
301
302
            auto cpu_cond =
                mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), inputs.front());
            auto sync_cond = mod->insert_instruction(ins, make_op("hip::sync_stream"), cpu_cond);
Shucai Xiao's avatar
Shucai Xiao committed
303
304
            inputs.front() = sync_cond;

305
            return mod->replace_instruction(ins, ins->get_operator(), inputs, ins->module_inputs());
Shucai Xiao's avatar
Shucai Xiao committed
306
307
        });
    }
Shucai Xiao's avatar
Shucai Xiao committed
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

    // replace the loop operator with gpu_loop operator
    void add_loop_op()
    {
        apply_map.emplace("loop", [=](instruction_ref ins) {
            std::vector<instruction_ref> inputs = ins->inputs();
            // copy max_iter from gpu to cpu
            auto cpu_max_iter =
                mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), inputs.at(0));
            auto cpu_cond =
                mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), inputs.at(1));
            auto synced_max_iter =
                mod->insert_instruction(ins, make_op("hip::sync_stream"), cpu_max_iter, cpu_cond);
            inputs.at(0)     = synced_max_iter;
            inputs.at(1)     = cpu_cond;
            auto copy_inputs = inputs;
324
325
326
327
            std::transform(copy_inputs.begin(),
                           copy_inputs.end(),
                           std::back_inserter(inputs),
                           [&](auto in) { return insert_allocation(ins, in->get_shape()); });
Shucai Xiao's avatar
Shucai Xiao committed
328
329
330
331
332

            auto mod_args = ins->module_inputs();
            auto output   = insert_allocation(ins, ins->get_shape());

            const auto* sub_mod = mod_args.front();
333
334
            auto cond_out       = insert_allocation(ins, sub_mod->get_output_shapes().front());

Shucai Xiao's avatar
Shucai Xiao committed
335
336
337
338
339
340
341
342
            // add cond and mod outputs to the argument list
            inputs.push_back(cond_out);
            inputs.push_back(output);

            return mod->replace_instruction(
                ins, make_op("gpu::loop", ins->get_operator().to_value()), inputs, mod_args);
        });
    }
343
344
345
346
347
348
349
350
351
352
353
354
355
356

    void add_nms_op()
    {
        apply_map.emplace("nonmaxsuppression", [=](instruction_ref ins) {
            auto s      = ins->get_shape();
            auto output = insert_allocation(ins, s);
            std::vector<instruction_ref> cpu_inputs;
            auto inputs = ins->inputs();
            std::transform(
                inputs.begin(), inputs.end(), std::back_inserter(cpu_inputs), [&](auto in) {
                    return mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), in);
                });
            cpu_inputs.front() =
                mod->insert_instruction(ins, make_op("hip::sync_stream"), cpu_inputs);
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
            auto cpu_out = mod->insert_instruction(ins, ins->get_operator(), cpu_inputs);
            auto gpu_out =
                mod->insert_instruction(ins, make_op("hip::copy_to_gpu"), cpu_out, output);
            return mod->replace_instruction(ins, gpu_out);
        });
    }

    void add_nonzero_op()
    {
        apply_map.emplace("nonzero", [=](instruction_ref ins) {
            auto s      = ins->get_shape();
            auto output = insert_allocation(ins, s);
            std::vector<instruction_ref> cpu_inputs;
            auto inputs = ins->inputs();
            std::transform(
                inputs.begin(), inputs.end(), std::back_inserter(cpu_inputs), [&](auto in) {
                    return mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), in);
                });
            cpu_inputs.front() =
                mod->insert_instruction(ins, make_op("hip::sync_stream"), cpu_inputs);
377
378
379
380
381
382
            auto cpu_out = mod->insert_instruction(ins, ins->get_operator(), cpu_inputs);
            auto gpu_out =
                mod->insert_instruction(ins, make_op("hip::copy_to_gpu"), cpu_out, output);
            return mod->replace_instruction(ins, gpu_out);
        });
    }
Charlie Lin's avatar
Charlie Lin committed
383
384

    /**
Charlie Lin's avatar
Charlie Lin committed
385
     * Adds dynamic allocation for submodule output parameter.
Charlie Lin's avatar
Charlie Lin committed
386
387
388
389
     */
    void add_select_module_op()
    {
        apply_map.emplace("select_module", [=](instruction_ref ins) {
Charlie Lin's avatar
Charlie Lin committed
390
391
            auto s                              = ins->get_shape();
            auto output                         = insert_allocation(ins, s);
Charlie Lin's avatar
Charlie Lin committed
392
            std::vector<instruction_ref> inputs = ins->inputs();
Charlie Lin's avatar
Charlie Lin committed
393
394
            inputs.push_back(output);
            return mod->replace_instruction(ins, ins->get_operator(), inputs, ins->module_inputs());
Charlie Lin's avatar
Charlie Lin committed
395
396
        });
    }
Paul's avatar
Paul committed
397
398
};

Shucai Xiao's avatar
Shucai Xiao committed
399
void lowering::apply(module& m) const { miopen_apply{&m, this}.apply(); }
Shucai Xiao's avatar
Shucai Xiao committed
400

Paul's avatar
Paul committed
401
} // namespace gpu
Paul's avatar
Paul committed
402
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
403
} // namespace migraphx