lowering.cpp 15.2 KB
Newer Older
1
2
3
/*
 * The MIT License (MIT)
 *
Ted Themistokleous's avatar
Ted Themistokleous committed
4
 * Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
Shucai Xiao's avatar
Shucai Xiao committed
24
#include <iterator>
25
26
27
28
29
#include <utility>
#include <functional>
#include <algorithm>
#include <map>

Paul's avatar
Paul committed
30
31
#include <migraphx/manage_ptr.hpp>
#include <migraphx/instruction.hpp>
32
#include <migraphx/make_op.hpp>
33
34
#include <migraphx/instruction_ref.hpp>
#include <migraphx/stringutils.hpp>
35
36
37
#include <migraphx/pass_manager.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/program.hpp>
38
39

#include <migraphx/op/dot.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
40
#include <migraphx/op/if_op.hpp>
41
42
#include <migraphx/op/reshape.hpp>
#include <migraphx/op/quant_dot.hpp>
Ted Themistokleous's avatar
Ted Themistokleous committed
43
#include <migraphx/op/reshape_lazy.hpp>
44

Paul's avatar
Paul committed
45
#include <migraphx/gpu/context.hpp>
46
#include <migraphx/gpu/lowering.hpp>
47
#include <migraphx/gpu/device_name.hpp>
Paul's avatar
Paul committed
48
#include <migraphx/gpu/gemm.hpp>
49
50
#include <migraphx/gpu/miopen.hpp>
#include <migraphx/gpu/rocblas.hpp>
51
#include <migraphx/gpu/compiler.hpp>
Paul's avatar
Paul committed
52

Paul's avatar
Paul committed
53
namespace migraphx {
Paul's avatar
Paul committed
54
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
55
namespace gpu {
Paul's avatar
Paul committed
56
57
58

struct miopen_apply
{
59
60
61
    module* mod              = nullptr;
    module_pass_manager* mpm = nullptr;
    const lowering* pass     = nullptr;
Shucai Xiao's avatar
Shucai Xiao committed
62
    std::unordered_map<std::string, std::function<instruction_ref(instruction_ref)>> apply_map{};
Shucai Xiao's avatar
Shucai Xiao committed
63
    instruction_ref last{};
64
65
    bool offload_copy = false;
    bool compute_fp32 = false;
Paul's avatar
Paul committed
66

67
    context& get_context() const
68
69
70
71
72
73
    {
        assert(pass != nullptr);
        assert(pass->ctx != nullptr);
        return *pass->ctx;
    }

Paul's avatar
Paul committed
74
75
76
77
78
79
80
    void check_shape(shape x, instruction_ref i)
    {
        assert(x == i->get_shape());
        (void)x;
        (void)i;
    }

81
82
    void init()
    {
Shucai Xiao's avatar
Shucai Xiao committed
83
        assert(mod != nullptr);
84
        assert(pass != nullptr);
85

charlie's avatar
charlie committed
86
87
        // compute_fp32 = get_compute_fp32_flag();
        compute_fp32 = true;
88
        offload_copy = (mod == mpm->get_root_module()) ? pass->offload_copy : false;
Paul's avatar
Paul committed
89

90
91
92
93
        add_generic_op("contiguous");
        add_extend_op("argmax");
        add_extend_op("argmin");
        add_extend_op("logsoftmax");
Shucai Xiao's avatar
Shucai Xiao committed
94
        add_extend_op("lrn");
turneram's avatar
turneram committed
95
        add_extend_op("multinomial");
Shucai Xiao's avatar
Shucai Xiao committed
96
        add_extend_op("nonzero");
97
        add_extend_op("pooling");
98
        add_extend_op("prefix_scan_sum");
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
99
        add_extend_op("reverse");
100
101
102
        add_extend_op("rnn_var_sl_last_output");
        add_extend_op("rnn_var_sl_shift_output");
        add_extend_op("rnn_var_sl_shift_sequence");
103
        add_extend_op("scatter_none");
Shucai Xiao's avatar
Shucai Xiao committed
104
        add_extend_op("topk");
105

106
        add_convolution_op("convolution");
107
        add_convolution_op("convolution_backwards");
108
        add_convolution_op("quant_convolution");
Shucai Xiao's avatar
Shucai Xiao committed
109
110
        add_gemm_op<op::dot>("dot");
        add_gemm_op<op::quant_dot>("quant_dot");
Shucai Xiao's avatar
Shucai Xiao committed
111
        add_if_op();
Shucai Xiao's avatar
Shucai Xiao committed
112
        add_loop_op();
Shucai Xiao's avatar
Shucai Xiao committed
113
        add_neg_op();
114
        add_nms_op();
Charlie Lin's avatar
Charlie Lin committed
115
        add_select_module_op();
Ted Themistokleous's avatar
Ted Themistokleous committed
116
        add_reshape_lazy_op();
117
118
    }

119
    void copy_params() const
120
    {
Shucai Xiao's avatar
Shucai Xiao committed
121
        if(not offload_copy)
122
            return;
123

Shucai Xiao's avatar
Shucai Xiao committed
124
        for(auto ins : iterator_for(*mod))
125
126
127
        {
            if(ins->name() != "@param")
                continue;
128

Shucai Xiao's avatar
Shucai Xiao committed
129
130
131
132
            // parameter no outputs, no need to insert copy to gpu
            if(ins->outputs().empty())
                continue;

133
134
            auto pos = std::next(ins);
            auto a   = insert_allocation(pos, ins->get_shape());
135
            auto c   = mod->insert_instruction(pos, make_op("hip::copy_to_gpu"), ins, a);
Shucai Xiao's avatar
Shucai Xiao committed
136
            mod->replace_instruction(ins, c);
137
        }
138
139

        // return instruction
Shucai Xiao's avatar
Shucai Xiao committed
140
        auto ret = std::prev(mod->end());
141
142
        if(ret->name() == "@return")
        {
143
            const auto& inputs = ret->inputs();
144
145
146

            // each input of ret need to be copied from gpu to host, and replace
            // output with copy output
147
            for(const auto& in : inputs)
148
            {
149
                auto p_output = mod->insert_instruction(ret, make_op("hip::copy_from_gpu"), in);
150
151
152
153
154
155
                instruction::replace_argument(ret, in, p_output);
            }
        }
        // else branch to handle legacy program without the return instruction
        else
        {
156
            mod->add_instruction(make_op("hip::copy_from_gpu"), ret);
157
        }
158
159
    }

Paul's avatar
Paul committed
160
161
    void apply()
    {
162
        init();
Shucai Xiao's avatar
Shucai Xiao committed
163
        for(auto it = mod->begin(); it != mod->end(); it++)
Paul's avatar
Paul committed
164
        {
165
166
            auto s     = it->get_shape();
            auto attrs = it->get_operator().attributes();
167
            if(apply_map.count(it->name()) > 0)
168
            {
169
                check_shape(s, apply_map.at(it->name())(it));
Paul's avatar
Paul committed
170
            }
171
172
173
174
            else if(has_compiler_for(it->name()))
            {
                check_shape(s, insert_precompile_op(it));
            }
175
176
177
178
            else if(attrs.contains("target"))
            {
                check_shape(s, insert_custom_op(it, attrs));
            }
Paul's avatar
Paul committed
179
        }
180
        copy_params();
Paul's avatar
Paul committed
181
182
    }

183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
    instruction_ref insert_custom_op(instruction_ref ins, const value& attrs) const
    {
        const auto& custom_op = ins->get_operator();
        if(attrs.at("target") == "cpu")
        {
            auto s = ins->get_shape();
            std::vector<instruction_ref> cpu_inputs;
            auto inputs = ins->inputs();
            auto output = inputs.back();
            std::transform(
                inputs.begin(), inputs.end(), std::back_inserter(cpu_inputs), [&](auto in) {
                    return mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), in);
                });
            cpu_inputs.front() =
                mod->insert_instruction(ins, make_op("hip::sync_stream"), cpu_inputs);
            auto cpu_out = mod->insert_instruction(ins, custom_op, cpu_inputs);
            auto gpu_out =
                mod->insert_instruction(ins, make_op("hip::copy_to_gpu"), cpu_out, output);
            return mod->replace_instruction(ins, gpu_out);
        }
        return ins;
    }

206
    instruction_ref insert_precompile_op(instruction_ref ins) const
207
208
209
210
211
212
213
214
215
216
217
218
    {
        auto output                       = insert_allocation(ins, ins->get_shape());
        std::vector<instruction_ref> refs = ins->inputs();
        refs.push_back(output);

        return mod->replace_instruction(
            ins,
            make_op("gpu::precompile_op", {{"op", to_value(ins->get_operator())}}),
            refs,
            ins->module_inputs());
    }

219
    instruction_ref insert_allocation(instruction_ref ins, const shape& s) const
Paul's avatar
Paul committed
220
    {
221
        return mod->insert_instruction(ins, make_op("allocate", {{"shape", to_value(s)}}));
Paul's avatar
Paul committed
222
223
    }

224
225
    template <typename Op>
    void add_gemm_op(const std::string& name)
226
227
    {
        apply_map.emplace(name, [=](instruction_ref ins) {
228
            std::vector<instruction_ref> refs = ins->inputs();
229
230
231
            assert(refs.size() == 2);
            auto output = insert_allocation(ins, ins->get_shape());
            refs.push_back(output);
232
            return mod->replace_instruction(ins, rocblas_gemm<Op>{Op{}, 1, 0, compute_fp32}, refs);
233
234
235
        });
    }

236
    void add_convolution_op(const std::string& name)
237
    {
238
        apply_map.emplace(name, [=](instruction_ref ins) {
239
240
            operation conv = make_op("gpu::" + name, {{"op", ins->get_operator().to_value()}});
            auto output    = insert_allocation(ins, ins->get_shape());
241

242
243
244
245
246
            return mod->replace_instruction(ins,
                                            make_op("gpu::miopen_op", {{"op", to_value(conv)}}),
                                            ins->inputs().at(0),
                                            ins->inputs().at(1),
                                            output);
Shucai Xiao's avatar
Shucai Xiao committed
247
248
249
        });
    }

250
251
252
    // add_generic_op just constructs the operator with no fields whereas add_extend_op copies over
    // the fields Since it doesn't have fields its default constructed

253
254
255
    void add_generic_op(const std::string& name) { add_generic_op(name, "gpu::" + name); }

    void add_generic_op(const std::string& op_name, const std::string& gpu_name)
Paul's avatar
Paul committed
256
    {
257
        apply_map.emplace(op_name, [=](instruction_ref ins) {
258
259
260
            auto output                       = insert_allocation(ins, ins->get_shape());
            std::vector<instruction_ref> refs = ins->inputs();
            refs.push_back(output);
Paul's avatar
Paul committed
261

Shucai Xiao's avatar
Shucai Xiao committed
262
            return mod->replace_instruction(ins, make_op(gpu_name), refs);
263
        });
Paul's avatar
Paul committed
264
    }
Paul's avatar
Paul committed
265

266
267
268
    void add_extend_op(const std::string& name) { add_extend_op(name, "gpu::" + name); }

    void add_extend_op(const std::string& op_name, const std::string& gpu_name)
Khalique's avatar
Khalique committed
269
    {
270
271
        apply_map.emplace(op_name, [=](instruction_ref ins) {
            auto&& op                         = ins->get_operator();
272
273
274
            auto output                       = insert_allocation(ins, ins->get_shape());
            std::vector<instruction_ref> refs = ins->inputs();
            refs.push_back(output);
Paul's avatar
Paul committed
275

Shucai Xiao's avatar
Shucai Xiao committed
276
            return mod->replace_instruction(ins, make_op(gpu_name, op.to_value()), refs);
277
        });
Khalique's avatar
Khalique committed
278
279
    }

Shucai Xiao's avatar
Shucai Xiao committed
280
281
282
283
284
285
    // use 0 - input to represent neg
    void add_neg_op()
    {
        apply_map.emplace("neg", [=](instruction_ref ins) {
            auto s = ins->get_shape();
            std::vector<float> zeros(s.elements(), 0.0f);
Shucai Xiao's avatar
Shucai Xiao committed
286
            auto l0     = mod->add_literal(literal(s, zeros));
Shucai Xiao's avatar
Shucai Xiao committed
287
            auto output = insert_allocation(ins, s);
Shucai Xiao's avatar
Shucai Xiao committed
288
            return mod->replace_instruction(
289
                ins, make_op("gpu::sub"), l0, ins->inputs().front(), output);
Shucai Xiao's avatar
Shucai Xiao committed
290
291
        });
    }
Shucai Xiao's avatar
Shucai Xiao committed
292

Shucai Xiao's avatar
Shucai Xiao committed
293
    // add input and output argument for the if operator
Shucai Xiao's avatar
Shucai Xiao committed
294
295
296
297
    void add_if_op()
    {
        apply_map.emplace("if", [=](instruction_ref ins) {
            std::vector<instruction_ref> inputs = ins->inputs();
298
299
300
            auto cpu_cond =
                mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), inputs.front());
            auto sync_cond = mod->insert_instruction(ins, make_op("hip::sync_stream"), cpu_cond);
Shucai Xiao's avatar
Shucai Xiao committed
301
302
            inputs.front() = sync_cond;

303
            return mod->replace_instruction(ins, ins->get_operator(), inputs, ins->module_inputs());
Shucai Xiao's avatar
Shucai Xiao committed
304
305
        });
    }
Shucai Xiao's avatar
Shucai Xiao committed
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321

    // replace the loop operator with gpu_loop operator
    void add_loop_op()
    {
        apply_map.emplace("loop", [=](instruction_ref ins) {
            std::vector<instruction_ref> inputs = ins->inputs();
            // copy max_iter from gpu to cpu
            auto cpu_max_iter =
                mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), inputs.at(0));
            auto cpu_cond =
                mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), inputs.at(1));
            auto synced_max_iter =
                mod->insert_instruction(ins, make_op("hip::sync_stream"), cpu_max_iter, cpu_cond);
            inputs.at(0)     = synced_max_iter;
            inputs.at(1)     = cpu_cond;
            auto copy_inputs = inputs;
322
323
324
325
            std::transform(copy_inputs.begin(),
                           copy_inputs.end(),
                           std::back_inserter(inputs),
                           [&](auto in) { return insert_allocation(ins, in->get_shape()); });
Shucai Xiao's avatar
Shucai Xiao committed
326
327
328
329
330

            auto mod_args = ins->module_inputs();
            auto output   = insert_allocation(ins, ins->get_shape());

            const auto* sub_mod = mod_args.front();
331
332
            auto cond_out       = insert_allocation(ins, sub_mod->get_output_shapes().front());

Shucai Xiao's avatar
Shucai Xiao committed
333
334
335
336
337
338
339
340
            // add cond and mod outputs to the argument list
            inputs.push_back(cond_out);
            inputs.push_back(output);

            return mod->replace_instruction(
                ins, make_op("gpu::loop", ins->get_operator().to_value()), inputs, mod_args);
        });
    }
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360

    void add_nms_op()
    {
        apply_map.emplace("nonmaxsuppression", [=](instruction_ref ins) {
            auto s      = ins->get_shape();
            auto output = insert_allocation(ins, s);
            std::vector<instruction_ref> cpu_inputs;
            auto inputs = ins->inputs();
            std::transform(
                inputs.begin(), inputs.end(), std::back_inserter(cpu_inputs), [&](auto in) {
                    return mod->insert_instruction(ins, make_op("hip::copy_from_gpu"), in);
                });
            cpu_inputs.front() =
                mod->insert_instruction(ins, make_op("hip::sync_stream"), cpu_inputs);
            auto cpu_out = mod->insert_instruction(ins, ins->get_operator(), cpu_inputs);
            auto gpu_out =
                mod->insert_instruction(ins, make_op("hip::copy_to_gpu"), cpu_out, output);
            return mod->replace_instruction(ins, gpu_out);
        });
    }
Charlie Lin's avatar
Charlie Lin committed
361
362

    /**
Charlie Lin's avatar
Charlie Lin committed
363
     * Adds dynamic allocation for submodule output parameter.
Charlie Lin's avatar
Charlie Lin committed
364
365
366
367
     */
    void add_select_module_op()
    {
        apply_map.emplace("select_module", [=](instruction_ref ins) {
Charlie Lin's avatar
Charlie Lin committed
368
369
            auto s                              = ins->get_shape();
            auto output                         = insert_allocation(ins, s);
Charlie Lin's avatar
Charlie Lin committed
370
            std::vector<instruction_ref> inputs = ins->inputs();
Charlie Lin's avatar
Charlie Lin committed
371
372
            inputs.push_back(output);
            return mod->replace_instruction(ins, ins->get_operator(), inputs, ins->module_inputs());
Charlie Lin's avatar
Charlie Lin committed
373
374
        });
    }
Ted Themistokleous's avatar
Ted Themistokleous committed
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400

    /**
     *  Adds reshape lazy to reshape ops that can be aliased instead of copied.
     *  `gpu::contiguous` are added before and after the reshape; these contiguous
     *  instructions can be removed by the eliminate_contiguous pass.
     */
    void add_reshape_lazy_op()
    {
        apply_map.emplace("reshape", [=](instruction_ref ins) {
            std::vector<instruction_ref> before_contiguous_args = ins->inputs();
            auto before_alloc = insert_allocation(ins, std::prev(ins)->get_shape());
            before_contiguous_args.push_back(before_alloc);
            auto before_contig =
                mod->insert_instruction(ins, make_op("gpu::contiguous"), {before_contiguous_args});

            auto new_lazy_reshape = mod->insert_instruction(
                ins,
                make_op("reshape_lazy", {{"dims", {ins->get_operator().to_value().at("dims")}}}),
                before_contig);

            std::vector<instruction_ref> after_contiguous_args = {new_lazy_reshape};
            auto after_alloc = insert_allocation(new_lazy_reshape, new_lazy_reshape->get_shape());
            after_contiguous_args.push_back(after_alloc);
            return mod->replace_instruction(ins, make_op("gpu::contiguous"), after_contiguous_args);
        });
    }
Paul's avatar
Paul committed
401
402
};

403
404
405
406
void lowering::apply(module_pass_manager& mpm) const
{
    miopen_apply{&mpm.get_module(), &mpm, this}.apply();
}
Shucai Xiao's avatar
Shucai Xiao committed
407

Paul's avatar
Paul committed
408
} // namespace gpu
Paul's avatar
Paul committed
409
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
410
} // namespace migraphx