gen_tf_pb.py 23.1 KB
Newer Older
1
2
3
# This script generates tf pb files for MIGraphX tf operator tests.
# To generate an individual pb file, you can use the following
# command: python -c "import gen_tf_pb; gen_tf_pb.{test_name}_test()"
Khalique's avatar
Khalique committed
4
5
import numpy as np
import tensorflow as tf
6
from tensorflow.core.framework import attr_value_pb2
Khalique's avatar
Khalique committed
7

Khalique's avatar
Khalique committed
8

Khalique's avatar
Khalique committed
9
10
11
12
def tf_test(op_test):
    def run_test():
        g1 = tf.Graph()
        op_test(g1)
Khalique's avatar
Khalique committed
13
14
15
16
17
        tf.io.write_graph(g1,
                          '.',
                          '{}.pb'.format(op_test.__name__),
                          as_text=False)

Khalique's avatar
Khalique committed
18
    return run_test
Khalique's avatar
Khalique committed
19

Khalique's avatar
Khalique committed
20

Khalique's avatar
Khalique committed
21
22
@tf_test
def add_test(g1):
Khalique's avatar
Khalique committed
23
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
24
25
26
27
28
29
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 2, 2, 3),
                                            name='0')
        g2_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 2, 2, 3),
                                            name='1')
Khalique's avatar
Khalique committed
30
31
        tf.add(g1_input, g2_input, name='add1')

Khalique's avatar
Khalique committed
32

kahmed10's avatar
kahmed10 committed
33
34
35
36
37
38
39
40
41
42
43
44
@tf_test
def addv2_test(g1):
    with g1.as_default():
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 2, 2, 3),
                                            name='0')
        g2_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 2, 2, 3),
                                            name='1')
        tf.raw_ops.AddV2(x=g1_input, y=g2_input, name='add1')


Khalique's avatar
Khalique committed
45
46
@tf_test
def add_bcast_test(g1):
Khalique's avatar
Khalique committed
47
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
48
49
        g1_input = tf.compat.v1.placeholder(tf.float32, shape=(2, 3), name='0')
        g2_input = tf.compat.v1.placeholder(tf.float32, shape=(2, 1), name='1')
Khalique's avatar
Khalique committed
50
51
        tf.math.add(g1_input, g2_input, name='add_bcast1')

Khalique's avatar
Khalique committed
52

53
54
55
@tf_test
def argmax_test(g1):
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
56
57
58
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(3, 4, 5, 6),
                                            name='0')
59
60
61
62
63
64
        tf.argmax(g1_input, axis=2, name='argmax1')


@tf_test
def argmin_test(g1):
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
65
66
67
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(3, 4, 5, 6),
                                            name='0')
68
69
70
        tf.argmin(g1_input, axis=2, name='argmin1')


Khalique's avatar
Khalique committed
71
72
@tf_test
def assert_less_equal_test(g1):
Khalique's avatar
Khalique committed
73
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
74
75
        g1_input = tf.compat.v1.placeholder(tf.float32, shape=(2, 3), name='0')
        g2_input = tf.compat.v1.placeholder(tf.float32, shape=(2, 3), name='1')
Khalique's avatar
Khalique committed
76
        with tf.control_dependencies(
kahmed10's avatar
kahmed10 committed
77
            [tf.compat.v1.assert_less_equal(g1_input, g2_input)]):
Khalique's avatar
Khalique committed
78
79
            tf.add(g1_input, g2_input, name='add1')

Khalique's avatar
Khalique committed
80

Khalique's avatar
Khalique committed
81
82
@tf_test
def batchmatmul_test(g1):
Khalique's avatar
Khalique committed
83
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
84
85
86
87
88
89
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 2, 8, 4),
                                            name='0')
        g2_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 2, 4, 8),
                                            name='1')
Khalique's avatar
Khalique committed
90
91
92
93
94
95
        tf.matmul(g1_input,
                  g2_input,
                  transpose_a=True,
                  transpose_b=True,
                  name='batchmatmul1')

Khalique's avatar
Khalique committed
96

Khalique's avatar
Khalique committed
97
98
@tf_test
def batchnorm_test(g1):
Khalique's avatar
Khalique committed
99
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 16, 16, 32),
                                            name='0')
        g1_scale = tf.constant(1.0, dtype=tf.float32, shape=[32], name='1')
        g1_offset = tf.compat.v1.placeholder(tf.float32, shape=(32), name='2')
        g1_mean = tf.compat.v1.placeholder(tf.float32, shape=(32), name='3')
        g1_variance = tf.compat.v1.placeholder(tf.float32,
                                               shape=(32),
                                               name='4')
        tf.compat.v1.nn.fused_batch_norm(x=g1_input,
                                         scale=g1_scale,
                                         offset=g1_offset,
                                         mean=g1_mean,
                                         variance=g1_variance,
                                         epsilon=0.00001,
                                         is_training=False,
                                         name='batchnorm1')


@tf_test
def batchnormv3_test(g1):
    with g1.as_default():
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 16, 16, 32),
                                            name='0')
Khalique's avatar
Khalique committed
125
        g1_scale = tf.constant(1.0, dtype=tf.float32, shape=[32], name='1')
kahmed10's avatar
kahmed10 committed
126
127
128
129
130
131
132
133
134
135
136
137
138
        g1_offset = tf.compat.v1.placeholder(tf.float32, shape=(32), name='2')
        g1_mean = tf.compat.v1.placeholder(tf.float32, shape=(32), name='3')
        g1_variance = tf.compat.v1.placeholder(tf.float32,
                                               shape=(32),
                                               name='4')
        tf.raw_ops.FusedBatchNormV3(x=g1_input,
                                    scale=g1_scale,
                                    offset=g1_offset,
                                    mean=g1_mean,
                                    variance=g1_variance,
                                    epsilon=0.00001,
                                    is_training=False,
                                    name='batchnorm1')
Khalique's avatar
Khalique committed
139

Khalique's avatar
Khalique committed
140

Khalique's avatar
Khalique committed
141
142
@tf_test
def biasadd_test(g1):
Khalique's avatar
Khalique committed
143
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
144
145
146
147
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 1, 1, 500),
                                            name='0')
        g2_input = tf.compat.v1.placeholder(tf.float32, shape=(500), name='1')
Khalique's avatar
Khalique committed
148
149
        tf.nn.bias_add(g1_input, g2_input, name='bias_add1')

Khalique's avatar
Khalique committed
150

kahmed10's avatar
kahmed10 committed
151
152
153
154
155
156
157
158
@tf_test
def biasadd_scalar_test(g1):
    with g1.as_default():
        g1_input = tf.compat.v1.placeholder(tf.float32, shape=(1, 1), name='0')
        g2_const = tf.constant(1.0, tf.float32, shape=(1, ), name='1')
        tf.nn.bias_add(g1_input, g2_const, name='bias_add1')


Khalique's avatar
Khalique committed
159
160
@tf_test
def cast_test(g1):
Khalique's avatar
Khalique committed
161
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
162
163
164
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 3, 16, 16),
                                            name='0')
Khalique's avatar
Khalique committed
165
166
        tf.cast(g1_input, dtype=tf.int32, name='cast1')

Khalique's avatar
Khalique committed
167

Khalique's avatar
Khalique committed
168
169
@tf_test
def concat_test(g1):
Khalique's avatar
Khalique committed
170
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
171
172
173
174
175
176
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(4, 7, 3),
                                            name='0')
        g2_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(4, 2, 3),
                                            name='1')
Khalique's avatar
Khalique committed
177
178
        tf.concat([g1_input, g2_input], axis=1, name='concat1')

Khalique's avatar
Khalique committed
179

Khalique's avatar
Khalique committed
180
181
@tf_test
def const_test(g1):
Khalique's avatar
Khalique committed
182
    with g1.as_default():
Khalique's avatar
Khalique committed
183
184
        tf.constant(1.0, dtype=tf.float32, name='constant1')

Khalique's avatar
Khalique committed
185

Khalique's avatar
Khalique committed
186
187
@tf_test
def conv_test(g1):
Khalique's avatar
Khalique committed
188
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
189
190
191
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 16, 16, 3),
                                            name='0')
Khalique's avatar
Khalique committed
192
193
194
195
196
197
        g1_weights = tf.constant(value=1.0,
                                 dtype=tf.float32,
                                 shape=(3, 3, 3, 32),
                                 name='1')
        tf.nn.conv2d(g1_input, g1_weights, [1, 1, 1, 1], "SAME", name='conv1')

Khalique's avatar
Khalique committed
198

kahmed10's avatar
kahmed10 committed
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
@tf_test
def conv_add_test(g1):
    with g1.as_default():
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 16, 16, 3),
                                            name='0')
        g1_weights = tf.constant(value=1.0,
                                 dtype=tf.float32,
                                 shape=(3, 3, 3, 32),
                                 name='1')
        conv = tf.nn.conv2d(g1_input,
                            g1_weights, [1, 1, 1, 1],
                            "SAME",
                            name='conv1')
        tf.add(conv, conv, name='add1')


kahmed10's avatar
kahmed10 committed
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
@tf_test
def conv_nchw_test(g1):
    with g1.as_default():
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 3, 16, 16),
                                            name='0')
        g1_weights = tf.constant(value=1.0,
                                 dtype=tf.float32,
                                 shape=(3, 3, 3, 32),
                                 name='1')
        tf.nn.conv2d(g1_input,
                     g1_weights, [1, 1, 1, 1],
                     "SAME",
                     data_format='NCHW',
                     name='conv1')


kahmed10's avatar
kahmed10 committed
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
@tf_test
def conv_relu_test(g1):
    with g1.as_default():
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 16, 16, 3),
                                            name='0')
        g1_weights = tf.constant(value=1.0,
                                 dtype=tf.float32,
                                 shape=(3, 3, 3, 32),
                                 name='1')
        conv = tf.nn.conv2d(g1_input,
                            g1_weights, [1, 1, 1, 1],
                            "SAME",
                            name='conv1')
        tf.nn.relu(conv, name='relu1')


@tf_test
def conv_relu6_test(g1):
    with g1.as_default():
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 16, 16, 3),
                                            name='0')
        g1_weights = tf.constant(value=1.0,
                                 dtype=tf.float32,
                                 shape=(3, 3, 3, 32),
                                 name='1')
        conv = tf.nn.conv2d(g1_input,
                            g1_weights, [1, 1, 1, 1],
                            "SAME",
                            name='conv1')
        tf.nn.relu6(conv, name='relu1')


Khalique's avatar
Khalique committed
267
268
@tf_test
def depthwiseconv_test(g1):
Khalique's avatar
Khalique committed
269
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
270
271
272
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 16, 16, 3),
                                            name='0')
Khalique's avatar
Khalique committed
273
274
275
276
        g1_weights = tf.constant(value=1.0,
                                 dtype=tf.float32,
                                 shape=(3, 3, 3, 1),
                                 name='1')
kahmed10's avatar
kahmed10 committed
277
278
279
280
        tf.compat.v1.nn.depthwise_conv2d_native(g1_input,
                                                g1_weights, [1, 1, 1, 1],
                                                "SAME",
                                                name='depthwiseconv1')
Khalique's avatar
Khalique committed
281

Khalique's avatar
Khalique committed
282

Khalique's avatar
Khalique committed
283
284
@tf_test
def expanddims_test(g1):
Khalique's avatar
Khalique committed
285
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
286
287
288
289
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(2, 3, 4),
                                            name='0')
        tf.expand_dims(g1_input, axis=0, name='expanddims_neg')
Khalique's avatar
Khalique committed
290

Khalique's avatar
Khalique committed
291

Khalique's avatar
Khalique committed
292
293
@tf_test
def gather_test(g1):
Khalique's avatar
Khalique committed
294
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
295
        g1_input = tf.compat.v1.placeholder(tf.float32, shape=(2, 4), name='0')
Khalique's avatar
Khalique committed
296
297
        tf.gather(g1_input, [1, 1], axis=1, name='gather1')

Khalique's avatar
Khalique committed
298

Khalique's avatar
Khalique committed
299
300
@tf_test
def identity_test(g1):
Khalique's avatar
Khalique committed
301
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
302
303
304
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 3, 16, 16),
                                            name='0')
Khalique's avatar
Khalique committed
305
306
        tf.identity(g1_input, 'identity')

Khalique's avatar
Khalique committed
307

Khalique's avatar
Khalique committed
308
309
@tf_test
def matmul_test(g1):
Khalique's avatar
Khalique committed
310
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
311
312
        g1_input = tf.compat.v1.placeholder(tf.float32, shape=(8, 4), name='0')
        g2_input = tf.compat.v1.placeholder(tf.float32, shape=(4, 8), name='1')
Khalique's avatar
Khalique committed
313
314
315
316
317
318
        tf.matmul(g1_input,
                  g2_input,
                  transpose_a=True,
                  transpose_b=True,
                  name='matmul1')

Khalique's avatar
Khalique committed
319

Khalique's avatar
Khalique committed
320
321
@tf_test
def mean_test(g1):
Khalique's avatar
Khalique committed
322
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
323
324
325
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 3, 16, 16),
                                            name='0')
Khalique's avatar
Khalique committed
326
327
328
329
330
331
        tf.math.reduce_mean(g1_input, axis=(2, 3), keepdims=True, name='mean1')
        tf.math.reduce_mean(g1_input,
                            axis=(2, 3),
                            keepdims=False,
                            name='mean2')

Khalique's avatar
Khalique committed
332

Khalique's avatar
Khalique committed
333
334
@tf_test
def mean_test_nhwc(g1):
Khalique's avatar
Khalique committed
335
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
336
337
338
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 16, 16, 3),
                                            name='0')
Khalique's avatar
Khalique committed
339
340
341
342
343
        tf.math.reduce_mean(g1_input,
                            axis=(1, 2),
                            keepdims=False,
                            name='mean2')

Khalique's avatar
Khalique committed
344

Khalique's avatar
Khalique committed
345
346
@tf_test
def mul_test(g1):
Khalique's avatar
Khalique committed
347
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
348
349
350
351
352
353
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 1, 1, 16),
                                            name='0')
        g2_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 1, 1, 16),
                                            name='1')
Khalique's avatar
Khalique committed
354
355
        tf.multiply(g1_input, g2_input, name='mul1')

Khalique's avatar
Khalique committed
356

kahmed10's avatar
kahmed10 committed
357
358
359
360
361
362
363
364
365
366
@tf_test
def multi_output_test(g1):
    with g1.as_default():
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 3, 16, 16),
                                            name='0')
        tf.nn.relu(g1_input, 'relu')
        tf.tanh(g1_input, 'tanh')


kahmed10's avatar
kahmed10 committed
367
368
369
370
371
372
@tf_test
def noop_test(g1):
    with g1.as_default():
        tf.raw_ops.NoOp(name='noop1')


kahmed10's avatar
kahmed10 committed
373
374
375
376
377
378
379
@tf_test
def onehot_test(g1):
    with g1.as_default():
        g1_input = tf.constant((1, 1, 1, 1, 1), dtype=tf.int32)
        tf.one_hot(g1_input, 2, name='onehot1')


Khalique's avatar
Khalique committed
380
381
@tf_test
def pack_test(g1):
Khalique's avatar
Khalique committed
382
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
383
384
385
        g1_input = tf.compat.v1.placeholder(tf.float32, shape=(2), name='0')
        g2_input = tf.compat.v1.placeholder(tf.float32, shape=(2), name='1')
        g3_input = tf.compat.v1.placeholder(tf.float32, shape=(2), name='2')
Khalique's avatar
Khalique committed
386
387
        tf.stack([g1_input, g2_input, g3_input], axis=1, name='pack1')

Khalique's avatar
Khalique committed
388

Khalique's avatar
Khalique committed
389
390
@tf_test
def pack_test_nhwc(g1):
Khalique's avatar
Khalique committed
391
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
392
393
394
395
396
397
398
399
400
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 1, 1, 2),
                                            name='0')
        g2_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 1, 1, 2),
                                            name='1')
        g3_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 1, 1, 2),
                                            name='2')
Khalique's avatar
Khalique committed
401
402
        tf.stack([g1_input, g2_input, g3_input], axis=3, name='pack1')

Khalique's avatar
Khalique committed
403

kahmed10's avatar
kahmed10 committed
404
405
406
407
408
409
410
411
412
@tf_test
def pad_test(g1):
    with g1.as_default():
        g1_input = tf.compat.v1.placeholder(tf.float32, shape=(2, 4), name='0')
        paddings = tf.constant([[1, 1], [2, 2]])

        tf.pad(g1_input, paddings, name='pad1')


Khalique's avatar
Khalique committed
413
414
@tf_test
def pooling_test(g1):
Khalique's avatar
Khalique committed
415
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 16, 16, 3),
                                            name='0')
        tf.compat.v1.nn.avg_pool(value=g1_input,
                                 ksize=(1, 2, 2, 1),
                                 strides=(1, 2, 2, 1),
                                 padding='VALID',
                                 data_format='NHWC',
                                 name='avg_pooling')
        tf.compat.v1.nn.max_pool(value=g1_input,
                                 ksize=(1, 2, 2, 1),
                                 strides=(1, 2, 2, 1),
                                 padding='VALID',
                                 data_format='NHWC',
                                 name='max_pooling')
Khalique's avatar
Khalique committed
431

Khalique's avatar
Khalique committed
432

Khalique's avatar
Khalique committed
433
434
@tf_test
def pow_test(g1):
Khalique's avatar
Khalique committed
435
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
436
437
438
439
440
441
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 2, 2, 3),
                                            name='0')
        g2_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 2, 2, 3),
                                            name='1')
Khalique's avatar
Khalique committed
442
443
        tf.pow(g1_input, g2_input, name='pow1')

Khalique's avatar
Khalique committed
444

Khalique's avatar
Khalique committed
445
446
@tf_test
def relu_test(g1):
Khalique's avatar
Khalique committed
447
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
448
449
450
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 3, 16, 16),
                                            name='0')
Khalique's avatar
Khalique committed
451
452
        tf.nn.relu(g1_input, 'relu')

Khalique's avatar
Khalique committed
453

Khalique's avatar
Khalique committed
454
455
@tf_test
def relu6_test(g1):
Khalique's avatar
Khalique committed
456
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
457
458
459
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 3, 16, 16),
                                            name='0')
Khalique's avatar
Khalique committed
460
461
        tf.nn.relu6(g1_input, 'relu6')

Khalique's avatar
Khalique committed
462

Khalique's avatar
Khalique committed
463
464
@tf_test
def reshape_test(g1):
Khalique's avatar
Khalique committed
465
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
466
        g1_input = tf.compat.v1.placeholder(tf.float32, shape=(16), name='0')
Khalique's avatar
Khalique committed
467
468
        tf.reshape(g1_input, (1, 1, 1, 16), 'reshape')

Khalique's avatar
Khalique committed
469

Khalique's avatar
Khalique committed
470
471
@tf_test
def rsqrt_test(g1):
Khalique's avatar
Khalique committed
472
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
473
474
475
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 3, 16, 16),
                                            name='0')
Khalique's avatar
Khalique committed
476
477
        tf.math.rsqrt(g1_input, 'rsqrt')

Khalique's avatar
Khalique committed
478

479
480
481
@tf_test
def shape_test(g1):
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
482
483
484
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 3, 16, 16),
                                            name='0')
485
486
487
    g1.create_op(op_type='Shape', inputs=[g1_input])


Khalique's avatar
Khalique committed
488
489
@tf_test
def slice_test(g1):
Khalique's avatar
Khalique committed
490
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
491
492
493
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(5, 10),
                                            name='0')
Khalique's avatar
Khalique committed
494
495
        tf.slice(g1_input, [1, 0], [2, -1], name='slice1')

Khalique's avatar
Khalique committed
496

Khalique's avatar
Khalique committed
497
498
@tf_test
def softmax_test(g1):
Khalique's avatar
Khalique committed
499
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
500
        g1_input = tf.compat.v1.placeholder(tf.float32, shape=(1, 3), name='0')
Khalique's avatar
Khalique committed
501
502
        tf.nn.softmax(g1_input, name='softmax')

Khalique's avatar
Khalique committed
503

kahmed10's avatar
kahmed10 committed
504
505
506
@tf_test
def split_test(g1):
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
507
508
509
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(5, 30),
                                            name='0')
kahmed10's avatar
kahmed10 committed
510
511
512
513
514
515
516
517
        split0, split1, split2 = tf.split(g1_input, 3, 1, name='split')
        tf.concat([split0, split1], axis=1, name='concat1')
        tf.concat([split1, split2], axis=1, name='concat2')


@tf_test
def split_test_one_output(g1):
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
518
519
520
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(5, 30),
                                            name='0')
kahmed10's avatar
kahmed10 committed
521
522
523
524
525
526
        tf.split(g1_input, 1, 1, name='split')


@tf_test
def split_test_vector_as_input(g1):
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
527
528
529
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(5, 30),
                                            name='0')
kahmed10's avatar
kahmed10 committed
530
531
532
533
534
535
536
        split0, split1, split2 = tf.split(g1_input, [4, 15, 11],
                                          1,
                                          name='split')
        tf.concat([split0, split1], axis=1, name='concat1')
        tf.concat([split1, split2], axis=1, name='concat2')


Khalique's avatar
Khalique committed
537
538
@tf_test
def sqdiff_test(g1):
Khalique's avatar
Khalique committed
539
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
540
541
542
543
544
545
546
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 2, 2, 3),
                                            name='0')
        g2_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 2, 2, 3),
                                            name='1')
        tf.compat.v1.squared_difference(g1_input, g2_input, name='sqdiff')
Khalique's avatar
Khalique committed
547

Khalique's avatar
Khalique committed
548

Khalique's avatar
Khalique committed
549
550
@tf_test
def squeeze_test(g1):
Khalique's avatar
Khalique committed
551
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
552
553
554
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 2, 3, 1),
                                            name='0')
Khalique's avatar
Khalique committed
555
556
        tf.squeeze(g1_input, name='squeeze')

Khalique's avatar
Khalique committed
557

Khalique's avatar
Khalique committed
558
559
@tf_test
def stopgradient_test(g1):
Khalique's avatar
Khalique committed
560
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
561
562
563
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 3, 16, 16),
                                            name='0')
Khalique's avatar
Khalique committed
564
565
        tf.stop_gradient(g1_input, 'stopgradient')

Khalique's avatar
Khalique committed
566

Khalique's avatar
Khalique committed
567
568
@tf_test
def stridedslice_test(g1):
Khalique's avatar
Khalique committed
569
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
570
571
572
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 1, 1, 10),
                                            name='0')
Khalique's avatar
Khalique committed
573
574
575
576
        tf.strided_slice(g1_input, [0, 0, 0, 0], [1, 1, 1, 5], [1, 1, 1, 1],
                         shrink_axis_mask=2,
                         name='stridedslice1')

Khalique's avatar
Khalique committed
577

Khalique's avatar
Khalique committed
578
579
@tf_test
def stridedslice_masks_test(g1):
Khalique's avatar
Khalique committed
580
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
581
582
583
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 3, 3, 10),
                                            name='0')
Khalique's avatar
Khalique committed
584
585
586
587
588
        tf.strided_slice(g1_input, [0, 1, 1, 0], [0, 0, 0, 0], [1, 1, 1, 1],
                         begin_mask=9,
                         end_mask=15,
                         name='stridedslice1')

Khalique's avatar
Khalique committed
589

Khalique's avatar
Khalique committed
590
591
@tf_test
def sub_test(g1):
Khalique's avatar
Khalique committed
592
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
593
594
595
596
597
598
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 2, 2, 3),
                                            name='0')
        g2_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 2, 2, 3),
                                            name='1')
Khalique's avatar
Khalique committed
599
600
        tf.subtract(g1_input, g2_input, name='sub1')

Khalique's avatar
Khalique committed
601

Khalique's avatar
Khalique committed
602
603
@tf_test
def tanh_test(g1):
Khalique's avatar
Khalique committed
604
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
605
606
607
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 3, 16, 16),
                                            name='0')
Khalique's avatar
Khalique committed
608
609
        tf.tanh(g1_input, 'tanh')

Khalique's avatar
Khalique committed
610

Khalique's avatar
Khalique committed
611
612
@tf_test
def transpose_test(g1):
Khalique's avatar
Khalique committed
613
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
614
615
616
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 3, 16, 16),
                                            name='0')
Khalique's avatar
Khalique committed
617
        tf.transpose(g1_input, perm=[0, 2, 3, 1], name='transpose')
618
619
620
621
622


@tf_test
def variable_batch_test(g1):
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
623
624
625
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(0, 3, 16, 16),
                                            name='0')
626
        tf.identity(g1_input, name='identity')
kahmed10's avatar
kahmed10 committed
627
628
629
630
631
632
633
634
635
636
637
638
639


if __name__ == '__main__':
    add_test()
    addv2_test()
    add_bcast_test()
    argmax_test()
    argmin_test()
    assert_less_equal_test()
    batchmatmul_test()
    batchnorm_test()
    batchnormv3_test()
    biasadd_test()
kahmed10's avatar
kahmed10 committed
640
    biasadd_scalar_test()
kahmed10's avatar
kahmed10 committed
641
642
643
644
    cast_test()
    concat_test()
    const_test()
    conv_test()
kahmed10's avatar
kahmed10 committed
645
    conv_add_test()
kahmed10's avatar
kahmed10 committed
646
    conv_nchw_test()
kahmed10's avatar
kahmed10 committed
647
648
    conv_relu_test()
    conv_relu6_test()
kahmed10's avatar
kahmed10 committed
649
650
651
652
653
654
655
656
    depthwiseconv_test()
    expanddims_test()
    gather_test()
    identity_test()
    matmul_test()
    mean_test()
    mean_test_nhwc()
    mul_test()
kahmed10's avatar
kahmed10 committed
657
    multi_output_test()
kahmed10's avatar
kahmed10 committed
658
    noop_test()
kahmed10's avatar
kahmed10 committed
659
    onehot_test()
kahmed10's avatar
kahmed10 committed
660
661
    pack_test()
    pack_test_nhwc()
kahmed10's avatar
kahmed10 committed
662
    pad_test()
kahmed10's avatar
kahmed10 committed
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
    pooling_test()
    pow_test()
    relu_test()
    relu6_test()
    reshape_test()
    rsqrt_test()
    shape_test()
    slice_test()
    softmax_test()
    split_test()
    split_test_one_output()
    split_test_vector_as_input()
    sqdiff_test()
    squeeze_test()
    stopgradient_test()
    stridedslice_test()
    stridedslice_masks_test()
    sub_test()
    tanh_test()
    transpose_test()
    variable_batch_test()