gen_tf_pb.py 20.7 KB
Newer Older
Khalique's avatar
Khalique committed
1
2
import numpy as np
import tensorflow as tf
3
from tensorflow.core.framework import attr_value_pb2
Khalique's avatar
Khalique committed
4

Khalique's avatar
Khalique committed
5

Khalique's avatar
Khalique committed
6
7
8
9
def tf_test(op_test):
    def run_test():
        g1 = tf.Graph()
        op_test(g1)
Khalique's avatar
Khalique committed
10
11
12
13
14
        tf.io.write_graph(g1,
                          '.',
                          '{}.pb'.format(op_test.__name__),
                          as_text=False)

Khalique's avatar
Khalique committed
15
    return run_test
Khalique's avatar
Khalique committed
16

Khalique's avatar
Khalique committed
17

Khalique's avatar
Khalique committed
18
19
@tf_test
def add_test(g1):
Khalique's avatar
Khalique committed
20
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
21
22
23
24
25
26
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 2, 2, 3),
                                            name='0')
        g2_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 2, 2, 3),
                                            name='1')
Khalique's avatar
Khalique committed
27
28
        tf.add(g1_input, g2_input, name='add1')

Khalique's avatar
Khalique committed
29

kahmed10's avatar
kahmed10 committed
30
31
32
33
34
35
36
37
38
39
40
41
@tf_test
def addv2_test(g1):
    with g1.as_default():
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 2, 2, 3),
                                            name='0')
        g2_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 2, 2, 3),
                                            name='1')
        tf.raw_ops.AddV2(x=g1_input, y=g2_input, name='add1')


Khalique's avatar
Khalique committed
42
43
@tf_test
def add_bcast_test(g1):
Khalique's avatar
Khalique committed
44
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
45
46
        g1_input = tf.compat.v1.placeholder(tf.float32, shape=(2, 3), name='0')
        g2_input = tf.compat.v1.placeholder(tf.float32, shape=(2, 1), name='1')
Khalique's avatar
Khalique committed
47
48
        tf.math.add(g1_input, g2_input, name='add_bcast1')

Khalique's avatar
Khalique committed
49

50
51
52
@tf_test
def argmax_test(g1):
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
53
54
55
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(3, 4, 5, 6),
                                            name='0')
56
57
58
59
60
61
        tf.argmax(g1_input, axis=2, name='argmax1')


@tf_test
def argmin_test(g1):
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
62
63
64
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(3, 4, 5, 6),
                                            name='0')
65
66
67
        tf.argmin(g1_input, axis=2, name='argmin1')


Khalique's avatar
Khalique committed
68
69
@tf_test
def assert_less_equal_test(g1):
Khalique's avatar
Khalique committed
70
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
71
72
        g1_input = tf.compat.v1.placeholder(tf.float32, shape=(2, 3), name='0')
        g2_input = tf.compat.v1.placeholder(tf.float32, shape=(2, 3), name='1')
Khalique's avatar
Khalique committed
73
        with tf.control_dependencies(
kahmed10's avatar
kahmed10 committed
74
            [tf.compat.v1.assert_less_equal(g1_input, g2_input)]):
Khalique's avatar
Khalique committed
75
76
            tf.add(g1_input, g2_input, name='add1')

Khalique's avatar
Khalique committed
77

Khalique's avatar
Khalique committed
78
79
@tf_test
def batchmatmul_test(g1):
Khalique's avatar
Khalique committed
80
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
81
82
83
84
85
86
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 2, 8, 4),
                                            name='0')
        g2_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 2, 4, 8),
                                            name='1')
Khalique's avatar
Khalique committed
87
88
89
90
91
92
        tf.matmul(g1_input,
                  g2_input,
                  transpose_a=True,
                  transpose_b=True,
                  name='batchmatmul1')

Khalique's avatar
Khalique committed
93

Khalique's avatar
Khalique committed
94
95
@tf_test
def batchnorm_test(g1):
Khalique's avatar
Khalique committed
96
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 16, 16, 32),
                                            name='0')
        g1_scale = tf.constant(1.0, dtype=tf.float32, shape=[32], name='1')
        g1_offset = tf.compat.v1.placeholder(tf.float32, shape=(32), name='2')
        g1_mean = tf.compat.v1.placeholder(tf.float32, shape=(32), name='3')
        g1_variance = tf.compat.v1.placeholder(tf.float32,
                                               shape=(32),
                                               name='4')
        tf.compat.v1.nn.fused_batch_norm(x=g1_input,
                                         scale=g1_scale,
                                         offset=g1_offset,
                                         mean=g1_mean,
                                         variance=g1_variance,
                                         epsilon=0.00001,
                                         is_training=False,
                                         name='batchnorm1')


@tf_test
def batchnormv3_test(g1):
    with g1.as_default():
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 16, 16, 32),
                                            name='0')
Khalique's avatar
Khalique committed
122
        g1_scale = tf.constant(1.0, dtype=tf.float32, shape=[32], name='1')
kahmed10's avatar
kahmed10 committed
123
124
125
126
127
128
129
130
131
132
133
134
135
        g1_offset = tf.compat.v1.placeholder(tf.float32, shape=(32), name='2')
        g1_mean = tf.compat.v1.placeholder(tf.float32, shape=(32), name='3')
        g1_variance = tf.compat.v1.placeholder(tf.float32,
                                               shape=(32),
                                               name='4')
        tf.raw_ops.FusedBatchNormV3(x=g1_input,
                                    scale=g1_scale,
                                    offset=g1_offset,
                                    mean=g1_mean,
                                    variance=g1_variance,
                                    epsilon=0.00001,
                                    is_training=False,
                                    name='batchnorm1')
Khalique's avatar
Khalique committed
136

Khalique's avatar
Khalique committed
137

Khalique's avatar
Khalique committed
138
139
@tf_test
def biasadd_test(g1):
Khalique's avatar
Khalique committed
140
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
141
142
143
144
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 1, 1, 500),
                                            name='0')
        g2_input = tf.compat.v1.placeholder(tf.float32, shape=(500), name='1')
Khalique's avatar
Khalique committed
145
146
        tf.nn.bias_add(g1_input, g2_input, name='bias_add1')

Khalique's avatar
Khalique committed
147

kahmed10's avatar
kahmed10 committed
148
149
150
151
152
153
154
155
@tf_test
def biasadd_scalar_test(g1):
    with g1.as_default():
        g1_input = tf.compat.v1.placeholder(tf.float32, shape=(1, 1), name='0')
        g2_const = tf.constant(1.0, tf.float32, shape=(1, ), name='1')
        tf.nn.bias_add(g1_input, g2_const, name='bias_add1')


Khalique's avatar
Khalique committed
156
157
@tf_test
def cast_test(g1):
Khalique's avatar
Khalique committed
158
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
159
160
161
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 3, 16, 16),
                                            name='0')
Khalique's avatar
Khalique committed
162
163
        tf.cast(g1_input, dtype=tf.int32, name='cast1')

Khalique's avatar
Khalique committed
164

Khalique's avatar
Khalique committed
165
166
@tf_test
def concat_test(g1):
Khalique's avatar
Khalique committed
167
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
168
169
170
171
172
173
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(4, 7, 3),
                                            name='0')
        g2_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(4, 2, 3),
                                            name='1')
Khalique's avatar
Khalique committed
174
175
        tf.concat([g1_input, g2_input], axis=1, name='concat1')

Khalique's avatar
Khalique committed
176

Khalique's avatar
Khalique committed
177
178
@tf_test
def const_test(g1):
Khalique's avatar
Khalique committed
179
    with g1.as_default():
Khalique's avatar
Khalique committed
180
181
        tf.constant(1.0, dtype=tf.float32, name='constant1')

Khalique's avatar
Khalique committed
182

Khalique's avatar
Khalique committed
183
184
@tf_test
def conv_test(g1):
Khalique's avatar
Khalique committed
185
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
186
187
188
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 16, 16, 3),
                                            name='0')
Khalique's avatar
Khalique committed
189
190
191
192
193
194
        g1_weights = tf.constant(value=1.0,
                                 dtype=tf.float32,
                                 shape=(3, 3, 3, 32),
                                 name='1')
        tf.nn.conv2d(g1_input, g1_weights, [1, 1, 1, 1], "SAME", name='conv1')

Khalique's avatar
Khalique committed
195

kahmed10's avatar
kahmed10 committed
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
@tf_test
def conv_nchw_test(g1):
    with g1.as_default():
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 3, 16, 16),
                                            name='0')
        g1_weights = tf.constant(value=1.0,
                                 dtype=tf.float32,
                                 shape=(3, 3, 3, 32),
                                 name='1')
        tf.nn.conv2d(g1_input,
                     g1_weights, [1, 1, 1, 1],
                     "SAME",
                     data_format='NCHW',
                     name='conv1')


Khalique's avatar
Khalique committed
213
214
@tf_test
def depthwiseconv_test(g1):
Khalique's avatar
Khalique committed
215
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
216
217
218
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 16, 16, 3),
                                            name='0')
Khalique's avatar
Khalique committed
219
220
221
222
        g1_weights = tf.constant(value=1.0,
                                 dtype=tf.float32,
                                 shape=(3, 3, 3, 1),
                                 name='1')
kahmed10's avatar
kahmed10 committed
223
224
225
226
        tf.compat.v1.nn.depthwise_conv2d_native(g1_input,
                                                g1_weights, [1, 1, 1, 1],
                                                "SAME",
                                                name='depthwiseconv1')
Khalique's avatar
Khalique committed
227

Khalique's avatar
Khalique committed
228

Khalique's avatar
Khalique committed
229
230
@tf_test
def expanddims_test(g1):
Khalique's avatar
Khalique committed
231
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
232
233
234
235
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(2, 3, 4),
                                            name='0')
        tf.expand_dims(g1_input, axis=0, name='expanddims_neg')
Khalique's avatar
Khalique committed
236

Khalique's avatar
Khalique committed
237

Khalique's avatar
Khalique committed
238
239
@tf_test
def gather_test(g1):
Khalique's avatar
Khalique committed
240
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
241
        g1_input = tf.compat.v1.placeholder(tf.float32, shape=(2, 4), name='0')
Khalique's avatar
Khalique committed
242
243
        tf.gather(g1_input, [1, 1], axis=1, name='gather1')

Khalique's avatar
Khalique committed
244

Khalique's avatar
Khalique committed
245
246
@tf_test
def identity_test(g1):
Khalique's avatar
Khalique committed
247
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
248
249
250
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 3, 16, 16),
                                            name='0')
Khalique's avatar
Khalique committed
251
252
        tf.identity(g1_input, 'identity')

Khalique's avatar
Khalique committed
253

Khalique's avatar
Khalique committed
254
255
@tf_test
def matmul_test(g1):
Khalique's avatar
Khalique committed
256
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
257
258
        g1_input = tf.compat.v1.placeholder(tf.float32, shape=(8, 4), name='0')
        g2_input = tf.compat.v1.placeholder(tf.float32, shape=(4, 8), name='1')
Khalique's avatar
Khalique committed
259
260
261
262
263
264
        tf.matmul(g1_input,
                  g2_input,
                  transpose_a=True,
                  transpose_b=True,
                  name='matmul1')

Khalique's avatar
Khalique committed
265

Khalique's avatar
Khalique committed
266
267
@tf_test
def mean_test(g1):
Khalique's avatar
Khalique committed
268
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
269
270
271
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 3, 16, 16),
                                            name='0')
Khalique's avatar
Khalique committed
272
273
274
275
276
277
        tf.math.reduce_mean(g1_input, axis=(2, 3), keepdims=True, name='mean1')
        tf.math.reduce_mean(g1_input,
                            axis=(2, 3),
                            keepdims=False,
                            name='mean2')

Khalique's avatar
Khalique committed
278

Khalique's avatar
Khalique committed
279
280
@tf_test
def mean_test_nhwc(g1):
Khalique's avatar
Khalique committed
281
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
282
283
284
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 16, 16, 3),
                                            name='0')
Khalique's avatar
Khalique committed
285
286
287
288
289
290
        tf.math.reduce_mean(g1_input, axis=(1, 2), keepdims=True, name='mean1')
        tf.math.reduce_mean(g1_input,
                            axis=(1, 2),
                            keepdims=False,
                            name='mean2')

Khalique's avatar
Khalique committed
291

Khalique's avatar
Khalique committed
292
293
@tf_test
def mul_test(g1):
Khalique's avatar
Khalique committed
294
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
295
296
297
298
299
300
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 1, 1, 16),
                                            name='0')
        g2_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 1, 1, 16),
                                            name='1')
Khalique's avatar
Khalique committed
301
302
        tf.multiply(g1_input, g2_input, name='mul1')

Khalique's avatar
Khalique committed
303

kahmed10's avatar
kahmed10 committed
304
305
306
307
308
309
@tf_test
def noop_test(g1):
    with g1.as_default():
        tf.raw_ops.NoOp(name='noop1')


kahmed10's avatar
kahmed10 committed
310
311
312
313
314
315
316
@tf_test
def onehot_test(g1):
    with g1.as_default():
        g1_input = tf.constant((1, 1, 1, 1, 1), dtype=tf.int32)
        tf.one_hot(g1_input, 2, name='onehot1')


Khalique's avatar
Khalique committed
317
318
@tf_test
def pack_test(g1):
Khalique's avatar
Khalique committed
319
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
320
321
322
        g1_input = tf.compat.v1.placeholder(tf.float32, shape=(2), name='0')
        g2_input = tf.compat.v1.placeholder(tf.float32, shape=(2), name='1')
        g3_input = tf.compat.v1.placeholder(tf.float32, shape=(2), name='2')
Khalique's avatar
Khalique committed
323
324
        tf.stack([g1_input, g2_input, g3_input], axis=1, name='pack1')

Khalique's avatar
Khalique committed
325

Khalique's avatar
Khalique committed
326
327
@tf_test
def pack_test_nhwc(g1):
Khalique's avatar
Khalique committed
328
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
329
330
331
332
333
334
335
336
337
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 1, 1, 2),
                                            name='0')
        g2_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 1, 1, 2),
                                            name='1')
        g3_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 1, 1, 2),
                                            name='2')
Khalique's avatar
Khalique committed
338
339
        tf.stack([g1_input, g2_input, g3_input], axis=3, name='pack1')

Khalique's avatar
Khalique committed
340

kahmed10's avatar
kahmed10 committed
341
342
343
344
345
346
347
348
349
@tf_test
def pad_test(g1):
    with g1.as_default():
        g1_input = tf.compat.v1.placeholder(tf.float32, shape=(2, 4), name='0')
        paddings = tf.constant([[1, 1], [2, 2]])

        tf.pad(g1_input, paddings, name='pad1')


Khalique's avatar
Khalique committed
350
351
@tf_test
def pooling_test(g1):
Khalique's avatar
Khalique committed
352
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 16, 16, 3),
                                            name='0')
        tf.compat.v1.nn.avg_pool(value=g1_input,
                                 ksize=(1, 2, 2, 1),
                                 strides=(1, 2, 2, 1),
                                 padding='VALID',
                                 data_format='NHWC',
                                 name='avg_pooling')
        tf.compat.v1.nn.max_pool(value=g1_input,
                                 ksize=(1, 2, 2, 1),
                                 strides=(1, 2, 2, 1),
                                 padding='VALID',
                                 data_format='NHWC',
                                 name='max_pooling')
Khalique's avatar
Khalique committed
368

Khalique's avatar
Khalique committed
369

Khalique's avatar
Khalique committed
370
371
@tf_test
def pow_test(g1):
Khalique's avatar
Khalique committed
372
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
373
374
375
376
377
378
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 2, 2, 3),
                                            name='0')
        g2_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 2, 2, 3),
                                            name='1')
Khalique's avatar
Khalique committed
379
380
        tf.pow(g1_input, g2_input, name='pow1')

Khalique's avatar
Khalique committed
381

Khalique's avatar
Khalique committed
382
383
@tf_test
def relu_test(g1):
Khalique's avatar
Khalique committed
384
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
385
386
387
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 3, 16, 16),
                                            name='0')
Khalique's avatar
Khalique committed
388
389
        tf.nn.relu(g1_input, 'relu')

Khalique's avatar
Khalique committed
390

Khalique's avatar
Khalique committed
391
392
@tf_test
def relu6_test(g1):
Khalique's avatar
Khalique committed
393
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
394
395
396
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 3, 16, 16),
                                            name='0')
Khalique's avatar
Khalique committed
397
398
        tf.nn.relu6(g1_input, 'relu6')

Khalique's avatar
Khalique committed
399

Khalique's avatar
Khalique committed
400
401
@tf_test
def reshape_test(g1):
Khalique's avatar
Khalique committed
402
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
403
        g1_input = tf.compat.v1.placeholder(tf.float32, shape=(16), name='0')
Khalique's avatar
Khalique committed
404
405
        tf.reshape(g1_input, (1, 1, 1, 16), 'reshape')

Khalique's avatar
Khalique committed
406

Khalique's avatar
Khalique committed
407
408
@tf_test
def rsqrt_test(g1):
Khalique's avatar
Khalique committed
409
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
410
411
412
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 3, 16, 16),
                                            name='0')
Khalique's avatar
Khalique committed
413
414
        tf.math.rsqrt(g1_input, 'rsqrt')

Khalique's avatar
Khalique committed
415

416
417
418
@tf_test
def shape_test(g1):
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
419
420
421
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 3, 16, 16),
                                            name='0')
422
423
424
    g1.create_op(op_type='Shape', inputs=[g1_input])


Khalique's avatar
Khalique committed
425
426
@tf_test
def slice_test(g1):
Khalique's avatar
Khalique committed
427
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
428
429
430
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(5, 10),
                                            name='0')
Khalique's avatar
Khalique committed
431
432
        tf.slice(g1_input, [1, 0], [2, -1], name='slice1')

Khalique's avatar
Khalique committed
433

Khalique's avatar
Khalique committed
434
435
@tf_test
def softmax_test(g1):
Khalique's avatar
Khalique committed
436
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
437
        g1_input = tf.compat.v1.placeholder(tf.float32, shape=(1, 3), name='0')
Khalique's avatar
Khalique committed
438
439
        tf.nn.softmax(g1_input, name='softmax')

Khalique's avatar
Khalique committed
440

kahmed10's avatar
kahmed10 committed
441
442
443
@tf_test
def split_test(g1):
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
444
445
446
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(5, 30),
                                            name='0')
kahmed10's avatar
kahmed10 committed
447
448
449
450
451
452
453
454
        split0, split1, split2 = tf.split(g1_input, 3, 1, name='split')
        tf.concat([split0, split1], axis=1, name='concat1')
        tf.concat([split1, split2], axis=1, name='concat2')


@tf_test
def split_test_one_output(g1):
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
455
456
457
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(5, 30),
                                            name='0')
kahmed10's avatar
kahmed10 committed
458
459
460
461
462
463
        tf.split(g1_input, 1, 1, name='split')


@tf_test
def split_test_vector_as_input(g1):
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
464
465
466
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(5, 30),
                                            name='0')
kahmed10's avatar
kahmed10 committed
467
468
469
470
471
472
473
        split0, split1, split2 = tf.split(g1_input, [4, 15, 11],
                                          1,
                                          name='split')
        tf.concat([split0, split1], axis=1, name='concat1')
        tf.concat([split1, split2], axis=1, name='concat2')


Khalique's avatar
Khalique committed
474
475
@tf_test
def sqdiff_test(g1):
Khalique's avatar
Khalique committed
476
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
477
478
479
480
481
482
483
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 2, 2, 3),
                                            name='0')
        g2_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 2, 2, 3),
                                            name='1')
        tf.compat.v1.squared_difference(g1_input, g2_input, name='sqdiff')
Khalique's avatar
Khalique committed
484

Khalique's avatar
Khalique committed
485

Khalique's avatar
Khalique committed
486
487
@tf_test
def squeeze_test(g1):
Khalique's avatar
Khalique committed
488
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
489
490
491
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 2, 3, 1),
                                            name='0')
Khalique's avatar
Khalique committed
492
493
        tf.squeeze(g1_input, name='squeeze')

Khalique's avatar
Khalique committed
494

Khalique's avatar
Khalique committed
495
496
@tf_test
def stopgradient_test(g1):
Khalique's avatar
Khalique committed
497
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
498
499
500
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 3, 16, 16),
                                            name='0')
Khalique's avatar
Khalique committed
501
502
        tf.stop_gradient(g1_input, 'stopgradient')

Khalique's avatar
Khalique committed
503

Khalique's avatar
Khalique committed
504
505
@tf_test
def stridedslice_test(g1):
Khalique's avatar
Khalique committed
506
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
507
508
509
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 1, 1, 10),
                                            name='0')
Khalique's avatar
Khalique committed
510
511
512
513
        tf.strided_slice(g1_input, [0, 0, 0, 0], [1, 1, 1, 5], [1, 1, 1, 1],
                         shrink_axis_mask=2,
                         name='stridedslice1')

Khalique's avatar
Khalique committed
514

Khalique's avatar
Khalique committed
515
516
@tf_test
def stridedslice_masks_test(g1):
Khalique's avatar
Khalique committed
517
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
518
519
520
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 3, 3, 10),
                                            name='0')
Khalique's avatar
Khalique committed
521
522
523
524
525
        tf.strided_slice(g1_input, [0, 1, 1, 0], [0, 0, 0, 0], [1, 1, 1, 1],
                         begin_mask=9,
                         end_mask=15,
                         name='stridedslice1')

Khalique's avatar
Khalique committed
526

Khalique's avatar
Khalique committed
527
528
@tf_test
def sub_test(g1):
Khalique's avatar
Khalique committed
529
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
530
531
532
533
534
535
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 2, 2, 3),
                                            name='0')
        g2_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 2, 2, 3),
                                            name='1')
Khalique's avatar
Khalique committed
536
537
        tf.subtract(g1_input, g2_input, name='sub1')

Khalique's avatar
Khalique committed
538

Khalique's avatar
Khalique committed
539
540
@tf_test
def tanh_test(g1):
Khalique's avatar
Khalique committed
541
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
542
543
544
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 3, 16, 16),
                                            name='0')
Khalique's avatar
Khalique committed
545
546
        tf.tanh(g1_input, 'tanh')

Khalique's avatar
Khalique committed
547

Khalique's avatar
Khalique committed
548
549
@tf_test
def transpose_test(g1):
Khalique's avatar
Khalique committed
550
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
551
552
553
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 3, 16, 16),
                                            name='0')
Khalique's avatar
Khalique committed
554
        tf.transpose(g1_input, perm=[0, 2, 3, 1], name='transpose')
555
556
557
558
559


@tf_test
def variable_batch_test(g1):
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
560
561
562
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(0, 3, 16, 16),
                                            name='0')
563
        tf.identity(g1_input, name='identity')
kahmed10's avatar
kahmed10 committed
564
565
566
567
568
569
570
571
572
573
574
575
576


if __name__ == '__main__':
    add_test()
    addv2_test()
    add_bcast_test()
    argmax_test()
    argmin_test()
    assert_less_equal_test()
    batchmatmul_test()
    batchnorm_test()
    batchnormv3_test()
    biasadd_test()
kahmed10's avatar
kahmed10 committed
577
    biasadd_scalar_test()
kahmed10's avatar
kahmed10 committed
578
579
580
581
    cast_test()
    concat_test()
    const_test()
    conv_test()
kahmed10's avatar
kahmed10 committed
582
    conv_nchw_test()
kahmed10's avatar
kahmed10 committed
583
584
585
586
587
588
589
590
591
    depthwiseconv_test()
    expanddims_test()
    gather_test()
    identity_test()
    matmul_test()
    mean_test()
    mean_test_nhwc()
    mul_test()
    noop_test()
kahmed10's avatar
kahmed10 committed
592
    onehot_test()
kahmed10's avatar
kahmed10 committed
593
594
    pack_test()
    pack_test_nhwc()
kahmed10's avatar
kahmed10 committed
595
    pad_test()
kahmed10's avatar
kahmed10 committed
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
    pooling_test()
    pow_test()
    relu_test()
    relu6_test()
    reshape_test()
    rsqrt_test()
    shape_test()
    slice_test()
    softmax_test()
    split_test()
    split_test_one_output()
    split_test_vector_as_input()
    sqdiff_test()
    squeeze_test()
    stopgradient_test()
    stridedslice_test()
    stridedslice_masks_test()
    sub_test()
    tanh_test()
    transpose_test()
    variable_batch_test()