gen_tf_pb.py 19.6 KB
Newer Older
Khalique's avatar
Khalique committed
1
2
import numpy as np
import tensorflow as tf
3
from tensorflow.core.framework import attr_value_pb2
Khalique's avatar
Khalique committed
4

Khalique's avatar
Khalique committed
5

Khalique's avatar
Khalique committed
6
7
8
9
def tf_test(op_test):
    def run_test():
        g1 = tf.Graph()
        op_test(g1)
Khalique's avatar
Khalique committed
10
11
12
13
14
        tf.io.write_graph(g1,
                          '.',
                          '{}.pb'.format(op_test.__name__),
                          as_text=False)

Khalique's avatar
Khalique committed
15
    return run_test
Khalique's avatar
Khalique committed
16

Khalique's avatar
Khalique committed
17

Khalique's avatar
Khalique committed
18
19
@tf_test
def add_test(g1):
Khalique's avatar
Khalique committed
20
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
21
22
23
24
25
26
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 2, 2, 3),
                                            name='0')
        g2_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 2, 2, 3),
                                            name='1')
Khalique's avatar
Khalique committed
27
28
        tf.add(g1_input, g2_input, name='add1')

Khalique's avatar
Khalique committed
29

kahmed10's avatar
kahmed10 committed
30
31
32
33
34
35
36
37
38
39
40
41
@tf_test
def addv2_test(g1):
    with g1.as_default():
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 2, 2, 3),
                                            name='0')
        g2_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 2, 2, 3),
                                            name='1')
        tf.raw_ops.AddV2(x=g1_input, y=g2_input, name='add1')


Khalique's avatar
Khalique committed
42
43
@tf_test
def add_bcast_test(g1):
Khalique's avatar
Khalique committed
44
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
45
46
        g1_input = tf.compat.v1.placeholder(tf.float32, shape=(2, 3), name='0')
        g2_input = tf.compat.v1.placeholder(tf.float32, shape=(2, 1), name='1')
Khalique's avatar
Khalique committed
47
48
        tf.math.add(g1_input, g2_input, name='add_bcast1')

Khalique's avatar
Khalique committed
49

50
51
52
@tf_test
def argmax_test(g1):
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
53
54
55
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(3, 4, 5, 6),
                                            name='0')
56
57
58
59
60
61
        tf.argmax(g1_input, axis=2, name='argmax1')


@tf_test
def argmin_test(g1):
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
62
63
64
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(3, 4, 5, 6),
                                            name='0')
65
66
67
        tf.argmin(g1_input, axis=2, name='argmin1')


Khalique's avatar
Khalique committed
68
69
@tf_test
def assert_less_equal_test(g1):
Khalique's avatar
Khalique committed
70
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
71
72
        g1_input = tf.compat.v1.placeholder(tf.float32, shape=(2, 3), name='0')
        g2_input = tf.compat.v1.placeholder(tf.float32, shape=(2, 3), name='1')
Khalique's avatar
Khalique committed
73
        with tf.control_dependencies(
kahmed10's avatar
kahmed10 committed
74
            [tf.compat.v1.assert_less_equal(g1_input, g2_input)]):
Khalique's avatar
Khalique committed
75
76
            tf.add(g1_input, g2_input, name='add1')

Khalique's avatar
Khalique committed
77

Khalique's avatar
Khalique committed
78
79
@tf_test
def batchmatmul_test(g1):
Khalique's avatar
Khalique committed
80
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
81
82
83
84
85
86
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 2, 8, 4),
                                            name='0')
        g2_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 2, 4, 8),
                                            name='1')
Khalique's avatar
Khalique committed
87
88
89
90
91
92
        tf.matmul(g1_input,
                  g2_input,
                  transpose_a=True,
                  transpose_b=True,
                  name='batchmatmul1')

Khalique's avatar
Khalique committed
93

Khalique's avatar
Khalique committed
94
95
@tf_test
def batchnorm_test(g1):
Khalique's avatar
Khalique committed
96
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 16, 16, 32),
                                            name='0')
        g1_scale = tf.constant(1.0, dtype=tf.float32, shape=[32], name='1')
        g1_offset = tf.compat.v1.placeholder(tf.float32, shape=(32), name='2')
        g1_mean = tf.compat.v1.placeholder(tf.float32, shape=(32), name='3')
        g1_variance = tf.compat.v1.placeholder(tf.float32,
                                               shape=(32),
                                               name='4')
        tf.compat.v1.nn.fused_batch_norm(x=g1_input,
                                         scale=g1_scale,
                                         offset=g1_offset,
                                         mean=g1_mean,
                                         variance=g1_variance,
                                         epsilon=0.00001,
                                         is_training=False,
                                         name='batchnorm1')


@tf_test
def batchnormv3_test(g1):
    with g1.as_default():
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 16, 16, 32),
                                            name='0')
Khalique's avatar
Khalique committed
122
        g1_scale = tf.constant(1.0, dtype=tf.float32, shape=[32], name='1')
kahmed10's avatar
kahmed10 committed
123
124
125
126
127
128
129
130
131
132
133
134
135
        g1_offset = tf.compat.v1.placeholder(tf.float32, shape=(32), name='2')
        g1_mean = tf.compat.v1.placeholder(tf.float32, shape=(32), name='3')
        g1_variance = tf.compat.v1.placeholder(tf.float32,
                                               shape=(32),
                                               name='4')
        tf.raw_ops.FusedBatchNormV3(x=g1_input,
                                    scale=g1_scale,
                                    offset=g1_offset,
                                    mean=g1_mean,
                                    variance=g1_variance,
                                    epsilon=0.00001,
                                    is_training=False,
                                    name='batchnorm1')
Khalique's avatar
Khalique committed
136

Khalique's avatar
Khalique committed
137

Khalique's avatar
Khalique committed
138
139
@tf_test
def biasadd_test(g1):
Khalique's avatar
Khalique committed
140
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
141
142
143
144
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 1, 1, 500),
                                            name='0')
        g2_input = tf.compat.v1.placeholder(tf.float32, shape=(500), name='1')
Khalique's avatar
Khalique committed
145
146
        tf.nn.bias_add(g1_input, g2_input, name='bias_add1')

Khalique's avatar
Khalique committed
147

Khalique's avatar
Khalique committed
148
149
@tf_test
def cast_test(g1):
Khalique's avatar
Khalique committed
150
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
151
152
153
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 3, 16, 16),
                                            name='0')
Khalique's avatar
Khalique committed
154
155
        tf.cast(g1_input, dtype=tf.int32, name='cast1')

Khalique's avatar
Khalique committed
156

Khalique's avatar
Khalique committed
157
158
@tf_test
def concat_test(g1):
Khalique's avatar
Khalique committed
159
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
160
161
162
163
164
165
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(4, 7, 3),
                                            name='0')
        g2_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(4, 2, 3),
                                            name='1')
Khalique's avatar
Khalique committed
166
167
        tf.concat([g1_input, g2_input], axis=1, name='concat1')

Khalique's avatar
Khalique committed
168

Khalique's avatar
Khalique committed
169
170
@tf_test
def const_test(g1):
Khalique's avatar
Khalique committed
171
    with g1.as_default():
Khalique's avatar
Khalique committed
172
173
        tf.constant(1.0, dtype=tf.float32, name='constant1')

Khalique's avatar
Khalique committed
174

Khalique's avatar
Khalique committed
175
176
@tf_test
def conv_test(g1):
Khalique's avatar
Khalique committed
177
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
178
179
180
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 16, 16, 3),
                                            name='0')
Khalique's avatar
Khalique committed
181
182
183
184
185
186
        g1_weights = tf.constant(value=1.0,
                                 dtype=tf.float32,
                                 shape=(3, 3, 3, 32),
                                 name='1')
        tf.nn.conv2d(g1_input, g1_weights, [1, 1, 1, 1], "SAME", name='conv1')

Khalique's avatar
Khalique committed
187

Khalique's avatar
Khalique committed
188
189
@tf_test
def depthwiseconv_test(g1):
Khalique's avatar
Khalique committed
190
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
191
192
193
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 16, 16, 3),
                                            name='0')
Khalique's avatar
Khalique committed
194
195
196
197
        g1_weights = tf.constant(value=1.0,
                                 dtype=tf.float32,
                                 shape=(3, 3, 3, 1),
                                 name='1')
kahmed10's avatar
kahmed10 committed
198
199
200
201
        tf.compat.v1.nn.depthwise_conv2d_native(g1_input,
                                                g1_weights, [1, 1, 1, 1],
                                                "SAME",
                                                name='depthwiseconv1')
Khalique's avatar
Khalique committed
202

Khalique's avatar
Khalique committed
203

Khalique's avatar
Khalique committed
204
205
@tf_test
def expanddims_test(g1):
Khalique's avatar
Khalique committed
206
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
207
208
209
210
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(2, 3, 4),
                                            name='0')
        tf.expand_dims(g1_input, axis=0, name='expanddims_neg')
Khalique's avatar
Khalique committed
211

Khalique's avatar
Khalique committed
212

Khalique's avatar
Khalique committed
213
214
@tf_test
def gather_test(g1):
Khalique's avatar
Khalique committed
215
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
216
        g1_input = tf.compat.v1.placeholder(tf.float32, shape=(2, 4), name='0')
Khalique's avatar
Khalique committed
217
218
        tf.gather(g1_input, [1, 1], axis=1, name='gather1')

Khalique's avatar
Khalique committed
219

Khalique's avatar
Khalique committed
220
221
@tf_test
def identity_test(g1):
Khalique's avatar
Khalique committed
222
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
223
224
225
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 3, 16, 16),
                                            name='0')
Khalique's avatar
Khalique committed
226
227
        tf.identity(g1_input, 'identity')

Khalique's avatar
Khalique committed
228

Khalique's avatar
Khalique committed
229
230
@tf_test
def matmul_test(g1):
Khalique's avatar
Khalique committed
231
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
232
233
        g1_input = tf.compat.v1.placeholder(tf.float32, shape=(8, 4), name='0')
        g2_input = tf.compat.v1.placeholder(tf.float32, shape=(4, 8), name='1')
Khalique's avatar
Khalique committed
234
235
236
237
238
239
        tf.matmul(g1_input,
                  g2_input,
                  transpose_a=True,
                  transpose_b=True,
                  name='matmul1')

Khalique's avatar
Khalique committed
240

Khalique's avatar
Khalique committed
241
242
@tf_test
def mean_test(g1):
Khalique's avatar
Khalique committed
243
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
244
245
246
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 3, 16, 16),
                                            name='0')
Khalique's avatar
Khalique committed
247
248
249
250
251
252
        tf.math.reduce_mean(g1_input, axis=(2, 3), keepdims=True, name='mean1')
        tf.math.reduce_mean(g1_input,
                            axis=(2, 3),
                            keepdims=False,
                            name='mean2')

Khalique's avatar
Khalique committed
253

Khalique's avatar
Khalique committed
254
255
@tf_test
def mean_test_nhwc(g1):
Khalique's avatar
Khalique committed
256
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
257
258
259
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 16, 16, 3),
                                            name='0')
Khalique's avatar
Khalique committed
260
261
262
263
264
265
        tf.math.reduce_mean(g1_input, axis=(1, 2), keepdims=True, name='mean1')
        tf.math.reduce_mean(g1_input,
                            axis=(1, 2),
                            keepdims=False,
                            name='mean2')

Khalique's avatar
Khalique committed
266

Khalique's avatar
Khalique committed
267
268
@tf_test
def mul_test(g1):
Khalique's avatar
Khalique committed
269
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
270
271
272
273
274
275
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 1, 1, 16),
                                            name='0')
        g2_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 1, 1, 16),
                                            name='1')
Khalique's avatar
Khalique committed
276
277
        tf.multiply(g1_input, g2_input, name='mul1')

Khalique's avatar
Khalique committed
278

kahmed10's avatar
kahmed10 committed
279
280
281
282
283
284
@tf_test
def noop_test(g1):
    with g1.as_default():
        tf.raw_ops.NoOp(name='noop1')


kahmed10's avatar
kahmed10 committed
285
286
287
288
289
290
291
@tf_test
def onehot_test(g1):
    with g1.as_default():
        g1_input = tf.constant((1, 1, 1, 1, 1), dtype=tf.int32)
        tf.one_hot(g1_input, 2, name='onehot1')


Khalique's avatar
Khalique committed
292
293
@tf_test
def pack_test(g1):
Khalique's avatar
Khalique committed
294
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
295
296
297
        g1_input = tf.compat.v1.placeholder(tf.float32, shape=(2), name='0')
        g2_input = tf.compat.v1.placeholder(tf.float32, shape=(2), name='1')
        g3_input = tf.compat.v1.placeholder(tf.float32, shape=(2), name='2')
Khalique's avatar
Khalique committed
298
299
        tf.stack([g1_input, g2_input, g3_input], axis=1, name='pack1')

Khalique's avatar
Khalique committed
300

Khalique's avatar
Khalique committed
301
302
@tf_test
def pack_test_nhwc(g1):
Khalique's avatar
Khalique committed
303
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
304
305
306
307
308
309
310
311
312
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 1, 1, 2),
                                            name='0')
        g2_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 1, 1, 2),
                                            name='1')
        g3_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 1, 1, 2),
                                            name='2')
Khalique's avatar
Khalique committed
313
314
        tf.stack([g1_input, g2_input, g3_input], axis=3, name='pack1')

Khalique's avatar
Khalique committed
315

Khalique's avatar
Khalique committed
316
317
@tf_test
def pooling_test(g1):
Khalique's avatar
Khalique committed
318
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 16, 16, 3),
                                            name='0')
        tf.compat.v1.nn.avg_pool(value=g1_input,
                                 ksize=(1, 2, 2, 1),
                                 strides=(1, 2, 2, 1),
                                 padding='VALID',
                                 data_format='NHWC',
                                 name='avg_pooling')
        tf.compat.v1.nn.max_pool(value=g1_input,
                                 ksize=(1, 2, 2, 1),
                                 strides=(1, 2, 2, 1),
                                 padding='VALID',
                                 data_format='NHWC',
                                 name='max_pooling')
Khalique's avatar
Khalique committed
334

Khalique's avatar
Khalique committed
335

Khalique's avatar
Khalique committed
336
337
@tf_test
def pow_test(g1):
Khalique's avatar
Khalique committed
338
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
339
340
341
342
343
344
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 2, 2, 3),
                                            name='0')
        g2_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 2, 2, 3),
                                            name='1')
Khalique's avatar
Khalique committed
345
346
        tf.pow(g1_input, g2_input, name='pow1')

Khalique's avatar
Khalique committed
347

Khalique's avatar
Khalique committed
348
349
@tf_test
def relu_test(g1):
Khalique's avatar
Khalique committed
350
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
351
352
353
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 3, 16, 16),
                                            name='0')
Khalique's avatar
Khalique committed
354
355
        tf.nn.relu(g1_input, 'relu')

Khalique's avatar
Khalique committed
356

Khalique's avatar
Khalique committed
357
358
@tf_test
def relu6_test(g1):
Khalique's avatar
Khalique committed
359
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
360
361
362
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 3, 16, 16),
                                            name='0')
Khalique's avatar
Khalique committed
363
364
        tf.nn.relu6(g1_input, 'relu6')

Khalique's avatar
Khalique committed
365

Khalique's avatar
Khalique committed
366
367
@tf_test
def reshape_test(g1):
Khalique's avatar
Khalique committed
368
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
369
        g1_input = tf.compat.v1.placeholder(tf.float32, shape=(16), name='0')
Khalique's avatar
Khalique committed
370
371
        tf.reshape(g1_input, (1, 1, 1, 16), 'reshape')

Khalique's avatar
Khalique committed
372

Khalique's avatar
Khalique committed
373
374
@tf_test
def rsqrt_test(g1):
Khalique's avatar
Khalique committed
375
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
376
377
378
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 3, 16, 16),
                                            name='0')
Khalique's avatar
Khalique committed
379
380
        tf.math.rsqrt(g1_input, 'rsqrt')

Khalique's avatar
Khalique committed
381

382
383
384
@tf_test
def shape_test(g1):
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
385
386
387
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 3, 16, 16),
                                            name='0')
388
389
390
    g1.create_op(op_type='Shape', inputs=[g1_input])


Khalique's avatar
Khalique committed
391
392
@tf_test
def slice_test(g1):
Khalique's avatar
Khalique committed
393
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
394
395
396
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(5, 10),
                                            name='0')
Khalique's avatar
Khalique committed
397
398
        tf.slice(g1_input, [1, 0], [2, -1], name='slice1')

Khalique's avatar
Khalique committed
399

Khalique's avatar
Khalique committed
400
401
@tf_test
def softmax_test(g1):
Khalique's avatar
Khalique committed
402
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
403
        g1_input = tf.compat.v1.placeholder(tf.float32, shape=(1, 3), name='0')
Khalique's avatar
Khalique committed
404
405
        tf.nn.softmax(g1_input, name='softmax')

Khalique's avatar
Khalique committed
406

kahmed10's avatar
kahmed10 committed
407
408
409
@tf_test
def split_test(g1):
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
410
411
412
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(5, 30),
                                            name='0')
kahmed10's avatar
kahmed10 committed
413
414
415
416
417
418
419
420
        split0, split1, split2 = tf.split(g1_input, 3, 1, name='split')
        tf.concat([split0, split1], axis=1, name='concat1')
        tf.concat([split1, split2], axis=1, name='concat2')


@tf_test
def split_test_one_output(g1):
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
421
422
423
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(5, 30),
                                            name='0')
kahmed10's avatar
kahmed10 committed
424
425
426
427
428
429
        tf.split(g1_input, 1, 1, name='split')


@tf_test
def split_test_vector_as_input(g1):
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
430
431
432
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(5, 30),
                                            name='0')
kahmed10's avatar
kahmed10 committed
433
434
435
436
437
438
439
        split0, split1, split2 = tf.split(g1_input, [4, 15, 11],
                                          1,
                                          name='split')
        tf.concat([split0, split1], axis=1, name='concat1')
        tf.concat([split1, split2], axis=1, name='concat2')


Khalique's avatar
Khalique committed
440
441
@tf_test
def sqdiff_test(g1):
Khalique's avatar
Khalique committed
442
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
443
444
445
446
447
448
449
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 2, 2, 3),
                                            name='0')
        g2_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 2, 2, 3),
                                            name='1')
        tf.compat.v1.squared_difference(g1_input, g2_input, name='sqdiff')
Khalique's avatar
Khalique committed
450

Khalique's avatar
Khalique committed
451

Khalique's avatar
Khalique committed
452
453
@tf_test
def squeeze_test(g1):
Khalique's avatar
Khalique committed
454
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
455
456
457
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 2, 3, 1),
                                            name='0')
Khalique's avatar
Khalique committed
458
459
        tf.squeeze(g1_input, name='squeeze')

Khalique's avatar
Khalique committed
460

Khalique's avatar
Khalique committed
461
462
@tf_test
def stopgradient_test(g1):
Khalique's avatar
Khalique committed
463
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
464
465
466
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 3, 16, 16),
                                            name='0')
Khalique's avatar
Khalique committed
467
468
        tf.stop_gradient(g1_input, 'stopgradient')

Khalique's avatar
Khalique committed
469

Khalique's avatar
Khalique committed
470
471
@tf_test
def stridedslice_test(g1):
Khalique's avatar
Khalique committed
472
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
473
474
475
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 1, 1, 10),
                                            name='0')
Khalique's avatar
Khalique committed
476
477
478
479
        tf.strided_slice(g1_input, [0, 0, 0, 0], [1, 1, 1, 5], [1, 1, 1, 1],
                         shrink_axis_mask=2,
                         name='stridedslice1')

Khalique's avatar
Khalique committed
480

Khalique's avatar
Khalique committed
481
482
@tf_test
def stridedslice_masks_test(g1):
Khalique's avatar
Khalique committed
483
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
484
485
486
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 3, 3, 10),
                                            name='0')
Khalique's avatar
Khalique committed
487
488
489
490
491
        tf.strided_slice(g1_input, [0, 1, 1, 0], [0, 0, 0, 0], [1, 1, 1, 1],
                         begin_mask=9,
                         end_mask=15,
                         name='stridedslice1')

Khalique's avatar
Khalique committed
492

Khalique's avatar
Khalique committed
493
494
@tf_test
def sub_test(g1):
Khalique's avatar
Khalique committed
495
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
496
497
498
499
500
501
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 2, 2, 3),
                                            name='0')
        g2_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 2, 2, 3),
                                            name='1')
Khalique's avatar
Khalique committed
502
503
        tf.subtract(g1_input, g2_input, name='sub1')

Khalique's avatar
Khalique committed
504

Khalique's avatar
Khalique committed
505
506
@tf_test
def tanh_test(g1):
Khalique's avatar
Khalique committed
507
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
508
509
510
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 3, 16, 16),
                                            name='0')
Khalique's avatar
Khalique committed
511
512
        tf.tanh(g1_input, 'tanh')

Khalique's avatar
Khalique committed
513

Khalique's avatar
Khalique committed
514
515
@tf_test
def transpose_test(g1):
Khalique's avatar
Khalique committed
516
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
517
518
519
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(1, 3, 16, 16),
                                            name='0')
Khalique's avatar
Khalique committed
520
        tf.transpose(g1_input, perm=[0, 2, 3, 1], name='transpose')
521
522
523
524
525


@tf_test
def variable_batch_test(g1):
    with g1.as_default():
kahmed10's avatar
kahmed10 committed
526
527
528
        g1_input = tf.compat.v1.placeholder(tf.float32,
                                            shape=(0, 3, 16, 16),
                                            name='0')
529
        tf.identity(g1_input, name='identity')
kahmed10's avatar
kahmed10 committed
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579


if __name__ == '__main__':
    add_test()
    addv2_test()
    add_bcast_test()
    argmax_test()
    argmin_test()
    assert_less_equal_test()
    batchmatmul_test()
    batchnorm_test()
    batchnormv3_test()
    biasadd_test()
    cast_test()
    concat_test()
    const_test()
    conv_test()
    depthwiseconv_test()
    expanddims_test()
    gather_test()
    identity_test()
    matmul_test()
    mean_test()
    mean_test_nhwc()
    mul_test()
    onehot_test()
    noop_test()
    pack_test()
    pack_test_nhwc()
    pooling_test()
    pow_test()
    relu_test()
    relu6_test()
    reshape_test()
    rsqrt_test()
    shape_test()
    slice_test()
    softmax_test()
    split_test()
    split_test_one_output()
    split_test_vector_as_input()
    sqdiff_test()
    squeeze_test()
    stopgradient_test()
    stridedslice_test()
    stridedslice_masks_test()
    sub_test()
    tanh_test()
    transpose_test()
    variable_batch_test()