utils.py 12.9 KB
Newer Older
1
2
3
4
import collections
import fnmatch
import functools
import importlib.util
5
import inspect
6
7
import logging
import os
8
import pathlib
9
import re
10
import subprocess
11
12
import sys
from itertools import islice
Baber Abbasi's avatar
Baber Abbasi committed
13
14
15
16
17
from typing import (
    Any,
    Callable,
    List,
)
18

lintangsutawika's avatar
lintangsutawika committed
19
import numpy as np
20
import yaml
21
from jinja2 import BaseLoader, Environment, StrictUndefined
sdtblck's avatar
sdtblck committed
22

lintangsutawika's avatar
lintangsutawika committed
23

24
25
26
27
28
logging.basicConfig(
    format="%(asctime)s,%(msecs)03d %(levelname)-8s [%(filename)s:%(lineno)d] %(message)s",
    datefmt="%Y-%m-%d:%H:%M:%S",
    level=logging.INFO,
)
29
eval_logger = logging.getLogger("lm-eval")
sdtblck's avatar
sdtblck committed
30

31
SPACING = " " * 47
sdtblck's avatar
sdtblck committed
32
33


34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
def escaped_split(text, sep_char, maxsplit=-1):
    """Split text into a list on occurrences of the given separation
    character `sep_char`. The separation character may be escaped by a
    backslash to avoid splitting at that location.

    The separation character must be a string of size 1.

    If `maxsplit` is given, at most `maxsplit` splits are done (thus,
    the list will have at most `maxsplit + 1` elements). If `maxsplit`
    is not specified or less than 0, then there is no limit on the
    number of splits (all possible splits are made).
    """
    assert (
        len(sep_char) == 1
    ), "separation string must be a single character for escaped splitting"

    if maxsplit == 0:
        return text
    maxsplit = max(0, maxsplit)

    return re.split(r"(?<!\\)" + sep_char, text, maxsplit)


haileyschoelkopf's avatar
haileyschoelkopf committed
57
58
59
60
61
def handle_arg_string(arg):
    if arg.lower() == "true":
        return True
    elif arg.lower() == "false":
        return False
62
63
64
65
66
67
    elif arg.isnumeric():
        return int(arg)
    try:
        return float(arg)
    except ValueError:
        return arg
haileyschoelkopf's avatar
haileyschoelkopf committed
68
69


Jason Phang's avatar
gpt3  
Jason Phang committed
70
71
72
73
74
75
def simple_parse_args_string(args_string):
    """
    Parses something like
        args1=val1,arg2=val2
    Into a dictionary
    """
Jason Phang's avatar
Jason Phang committed
76
    args_string = args_string.strip()
Jason Phang's avatar
gpt3  
Jason Phang committed
77
78
    if not args_string:
        return {}
79
    arg_list = [arg for arg in args_string.split(",") if arg]
haileyschoelkopf's avatar
haileyschoelkopf committed
80
81
82
    args_dict = {
        k: handle_arg_string(v) for k, v in [arg.split("=") for arg in arg_list]
    }
Jason Phang's avatar
gpt3  
Jason Phang committed
83
    return args_dict
Leo Gao's avatar
Leo Gao committed
84

Fabrizio Milo's avatar
Fabrizio Milo committed
85

Leo Gao's avatar
Leo Gao committed
86
87
def join_iters(iters):
    for iter in iters:
Leo Gao's avatar
Leo Gao committed
88
        yield from iter
Leo Gao's avatar
Leo Gao committed
89
90


91
92
93
94
95
def group(arr, fn):
    res = collections.defaultdict(list)

    for ob in arr:
        res[fn(ob)].append(ob)
Fabrizio Milo's avatar
Fabrizio Milo committed
96

97
98
    return list(res.values())

Fabrizio Milo's avatar
Fabrizio Milo committed
99

gakada's avatar
gakada committed
100
101
102
# Returns a list containing all values of the source_list that
# match at least one of the patterns
def pattern_match(patterns, source_list):
103
    if isinstance(patterns, str):
104
105
        patterns = [patterns]

gakada's avatar
gakada committed
106
107
108
109
110
111
112
    task_names = set()
    for pattern in patterns:
        for matching in fnmatch.filter(source_list, pattern):
            task_names.add(matching)
    return sorted(list(task_names))


lintangsutawika's avatar
lintangsutawika committed
113
114
115
116
117
118
def softmax(x):
    """Compute softmax values for each sets of scores in x."""
    e_x = np.exp(x - np.max(x))
    return e_x / e_x.sum()


Leo Gao's avatar
Leo Gao committed
119
120
121
122
def general_detokenize(string):
    string = string.replace(" n't", "n't")
    string = string.replace(" )", ")")
    string = string.replace("( ", "(")
Fabrizio Milo's avatar
Fabrizio Milo committed
123
124
    string = string.replace('" ', '"')
    string = string.replace(' "', '"')
Leo Gao's avatar
Fix  
Leo Gao committed
125
    string = re.sub(r" (['.,])", r"\1", string)
126
127
128
    return string


Jason Phang's avatar
Jason Phang committed
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
def get_rolling_token_windows(token_list, prefix_token, max_seq_len, context_len):
    """
    - context_len allows for a rolling window context, allowing each prediction window to potentially
      condition on some context

    :param token_list: list
        List of tokens to be PREDICTED
    :param max_seq_len: int
        max_seq_len of model (or max_seq_len we want to use)
    :param context_len: int
        Amount of desired token context for prediction. Needs to be at least 1.
    :param prefix_token: token
        Dummy token like <eos> so the first token has something to condition on
    :return: generator
        Generator of tuples
            (input_tokens, pred_tokens)
        Note: Score only the last len(pred_tokens) logits of the LM
    """
    assert 1 <= context_len <= max_seq_len
    if not token_list:
        return
    # +1 offset, going from input->preds
    pred_len = max_seq_len - context_len + 1
    predicted = 0

    # Special handling for first window: predict all tokens
    first_seq_len = min(max_seq_len, len(token_list))
Fabrizio Milo's avatar
Fabrizio Milo committed
156
    yield ([prefix_token] + token_list[: first_seq_len - 1], token_list[:first_seq_len])
Jason Phang's avatar
Jason Phang committed
157
158
159
160
161
    predicted += first_seq_len

    while predicted < len(token_list):
        window_pred_len = min(len(token_list) - predicted, pred_len)
        window_end = predicted + window_pred_len
Leo Gao's avatar
Leo Gao committed
162

Jason Phang's avatar
Jason Phang committed
163
        yield (
lintangsutawika's avatar
lintangsutawika committed
164
165
            token_list[window_end - max_seq_len - 1 : window_end - 1],
            token_list[window_end - window_pred_len : window_end],
Jason Phang's avatar
Jason Phang committed
166
167
168
        )
        predicted += window_pred_len

Fabrizio Milo's avatar
Fabrizio Milo committed
169

Leo Gao's avatar
Leo Gao committed
170
def make_disjoint_window(pair):
Fabrizio Milo's avatar
Fabrizio Milo committed
171
    """Takes output from get_rolling_token_windows and makes the context not overlap with the continuation"""
Leo Gao's avatar
Leo Gao committed
172
    a, b = pair
173
    return a[: len(a) - (len(b) - 1)], b
Fabrizio Milo's avatar
Fabrizio Milo committed
174

Jason Phang's avatar
Jason Phang committed
175

176
class Reorderer:
baberabb's avatar
baberabb committed
177
178
179
180
181
182
183
    def __init__(self, arr: List[Any], fn: Callable) -> None:
        """Reorder an array according to some function

        Args:
            arr (List[Any]): The initial array
            fn (Callable[[Any], Any]): A function to determine the priority of elements
        """
184
185
186
        self.size = len(arr)
        arr = list(enumerate(arr))
        arr = group(arr, lambda x: fn(x[1]))
187
188
189
        # arr = [([y[0] for y in x], x[0][1]) for x in arr]
        # TODO: overhaul reorderer. It currently grouped requests by content but we don't want this
        arr = [([y[0]], x[0][1]) for x in arr for y in x]
190
191
192
        arr.sort(key=lambda x: fn(x[1]))

        self.arr = arr
Fabrizio Milo's avatar
Fabrizio Milo committed
193

194
    def get_reordered(self):
baberabb's avatar
baberabb committed
195
196
197
198
199
        """Gets the reordered array

        Returns:
            List[Any]: The reordered array
        """
200
        return [x[1] for x in self.arr]
Fabrizio Milo's avatar
Fabrizio Milo committed
201

202
    def get_original(self, newarr):
baberabb's avatar
baberabb committed
203
204
205
206
207
208
209
210
        """Restores the original order of a new array based on the old array's order

        Args:
            newarr (List[Any]): The array to be restored

        Returns:
            List[Any]: The array restored to the original order
        """
211
212
213
214
        res = [None] * self.size
        cov = [False] * self.size

        for (inds, _), v in zip(self.arr, newarr):
Fabrizio Milo's avatar
Fabrizio Milo committed
215
            for ind in inds:
216
217
                res[ind] = v
                cov[ind] = True
Fabrizio Milo's avatar
Fabrizio Milo committed
218

219
        assert all(cov)
Fabrizio Milo's avatar
Fabrizio Milo committed
220

221
222
        return res

Fabrizio Milo's avatar
Fabrizio Milo committed
223

Ethan Smith's avatar
Ethan Smith committed
224
def make_table(result_dict, column: str = "results"):
225
    """Generate table of results."""
226
    from pytablewriter import LatexTableWriter, MarkdownTableWriter
227

lintangsutawika's avatar
lintangsutawika committed
228
    if column == "results":
lintangsutawika's avatar
lintangsutawika committed
229
230
231
        column_name = "Tasks"
    elif column == "groups":
        column_name = "Groups"
lintangsutawika's avatar
lintangsutawika committed
232

lintangsutawika's avatar
lintangsutawika committed
233
    all_headers = [
lintangsutawika's avatar
lintangsutawika committed
234
        column_name,
lintangsutawika's avatar
lintangsutawika committed
235
236
        "Version",
        "Filter",
237
        "n-shot",
lintangsutawika's avatar
lintangsutawika committed
238
239
240
241
242
        "Metric",
        "Value",
        "",
        "Stderr",
    ]
243

lintangsutawika's avatar
lintangsutawika committed
244
245
246
247
248
    md_writer = MarkdownTableWriter()
    latex_writer = LatexTableWriter()
    md_writer.headers = all_headers
    latex_writer.headers = all_headers

249
250
    values = []

lintangsutawika's avatar
lintangsutawika committed
251
    for k, dic in result_dict[column].items():
252
        version = result_dict["versions"][k]
253
        n = str(result_dict["n-shot"][k])
254
255
256
257

        if "alias" in dic:
            k = dic.pop("alias")

258
259
        for (mf), v in dic.items():
            m, _, f = mf.partition(",")
260
261
262
            if m.endswith("_stderr"):
                continue

263
264
            if m + "_stderr" + "," + f in dic:
                se = dic[m + "_stderr" + "," + f]
265
266
267
                if se != "N/A":
                    se = "%.4f" % se
                values.append([k, version, f, n, m, "%.4f" % v, "±", se])
268
            else:
269
                values.append([k, version, f, n, m, "%.4f" % v, "", ""])
270
271
272
273
274
275
276
277
278
279
280
            k = ""
            version = ""
    md_writer.value_matrix = values
    latex_writer.value_matrix = values

    # todo: make latex table look good
    # print(latex_writer.dumps())

    return md_writer.dumps()


281
282
def positional_deprecated(fn):
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
283
    A decorator to nudge users into passing only keyword args (`kwargs`) to the
284
285
    wrapped function, `fn`.
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
286

287
288
    @functools.wraps(fn)
    def _wrapper(*args, **kwargs):
Fabrizio Milo's avatar
Fabrizio Milo committed
289
290
291
        if len(args) != 1 if inspect.ismethod(fn) else 0:
            print(
                f"WARNING: using {fn.__name__} with positional arguments is "
292
                "deprecated and will be disallowed in a future version of "
Fabrizio Milo's avatar
Fabrizio Milo committed
293
294
                "lm-evaluation-harness!"
            )
295
        return fn(*args, **kwargs)
Fabrizio Milo's avatar
Fabrizio Milo committed
296

297
    return _wrapper
Stephen Hogg's avatar
Stephen Hogg committed
298

Fabrizio Milo's avatar
Fabrizio Milo committed
299

Stephen Hogg's avatar
Stephen Hogg committed
300
301
302
303
304
305
306
307
308
@positional_deprecated
def find_test_root(start_path: pathlib.Path) -> pathlib.Path:
    """
    Search upward in the directory tree to a maximum of three layers
    to find and return the package root (containing the 'tests' folder)
    """
    cur_path = start_path.resolve()
    max_layers = 3
    for _ in range(max_layers):
Fabrizio Milo's avatar
Fabrizio Milo committed
309
        if (cur_path / "tests" / "test_version_stable.py").exists():
Stephen Hogg's avatar
Stephen Hogg committed
310
311
312
            return cur_path
        else:
            cur_path = cur_path.parent.resolve()
Fabrizio Milo's avatar
Fabrizio Milo committed
313
314
315
316
    raise FileNotFoundError(
        f"Unable to find package root within {max_layers} upwards" + f"of {start_path}"
    )

Stephen Hogg's avatar
Stephen Hogg committed
317
318

@positional_deprecated
319
def run_task_tests(task_list: List[str]):
Stephen Hogg's avatar
Stephen Hogg committed
320
321
322
    """
    Find the package root and run the tests for the given tasks
    """
jon-tow's avatar
jon-tow committed
323
324
    import pytest

325
    package_root = find_test_root(start_path=pathlib.Path(__file__))
Fabrizio Milo's avatar
Fabrizio Milo committed
326
327
328
329
330
331
332
    task_string = " or ".join(task_list)
    args = [
        f"{package_root}/tests/test_version_stable.py",
        f"--rootdir={package_root}",
        "-k",
        f"{task_string}",
    ]
Stephen Hogg's avatar
Stephen Hogg committed
333
334
335
    sys.path.append(str(package_root))
    pytest_return_val = pytest.main(args)
    if pytest_return_val:
Fabrizio Milo's avatar
Fabrizio Milo committed
336
337
338
        raise ValueError(
            f"Not all tests for the specified tasks ({task_list}) ran successfully! Error code: {pytest_return_val}"
        )
339
340


341
342
343
344
345
346
def get_git_commit_hash():
    """
    Gets the git commit hash of your current repo (if it exists).
    Source: https://github.com/EleutherAI/gpt-neox/blob/b608043be541602170bfcfb8ec9bf85e8a0799e0/megatron/neox_arguments/neox_args.py#L42
    """
    try:
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
347
        git_hash = subprocess.check_output(["git", "describe", "--always"]).strip()
348
        git_hash = git_hash.decode()
349
350
    except subprocess.CalledProcessError or FileNotFoundError:
        # FileNotFoundError occurs when git not installed on system
351
352
353
354
        git_hash = None
    return git_hash


355
356
357
def ignore_constructor(loader, node):
    return node

lintangsutawika's avatar
lintangsutawika committed
358

359
360
361
362
363
364
365
def import_function(loader, node):
    function_name = loader.construct_scalar(node)
    yaml_path = os.path.dirname(loader.name)

    *module_name, function_name = function_name.split(".")
    if isinstance(module_name, list):
        module_name = ".".join(module_name)
lintangsutawika's avatar
lintangsutawika committed
366
    module_path = os.path.normpath(os.path.join(yaml_path, "{}.py".format(module_name)))
lintangsutawika's avatar
lintangsutawika committed
367

368
369
370
    spec = importlib.util.spec_from_file_location(module_name, module_path)
    module = importlib.util.module_from_spec(spec)
    spec.loader.exec_module(module)
lintangsutawika's avatar
lintangsutawika committed
371

372
373
    function = getattr(module, function_name)
    return function
374
375


376
def load_yaml_config(yaml_path=None, yaml_config=None, yaml_dir=None, mode="full"):
377
    if mode == "simple":
378
        constructor_fn = ignore_constructor
379
    elif mode == "full":
380
        constructor_fn = import_function
381

382
    # Add the import_function constructor to the YAML loader
383
    yaml.add_constructor("!function", constructor_fn)
384
385
386
    if yaml_config is None:
        with open(yaml_path, "rb") as file:
            yaml_config = yaml.full_load(file)
lintangsutawika's avatar
lintangsutawika committed
387

lintangsutawika's avatar
lintangsutawika committed
388
389
    if yaml_dir is None:
        yaml_dir = os.path.dirname(yaml_path)
390
391
392
393
394
395
396

    assert yaml_dir is not None

    if "include" in yaml_config:
        include_path = yaml_config["include"]
        del yaml_config["include"]

397
        if isinstance(include_path, str):
398
399
400
401
402
403
404
405
406
407
408
409
410
            include_path = [include_path]

        # Load from the last one first
        include_path.reverse()
        final_yaml_config = {}
        for path in include_path:
            # Assumes that path is a full path.
            # If not found, assume the included yaml
            # is in the same dir as the original yaml
            if not os.path.isfile(path):
                path = os.path.join(yaml_dir, path)

            try:
411
                included_yaml_config = load_yaml_config(yaml_path=path, mode=mode)
412
413
414
415
416
417
418
419
                final_yaml_config.update(included_yaml_config)
            except Exception as ex:
                # If failed to load, ignore
                raise ex

        final_yaml_config.update(yaml_config)
        return final_yaml_config
    return yaml_config
lintangsutawika's avatar
lintangsutawika committed
420
421


Ethan Smith's avatar
Ethan Smith committed
422
def regex_replace(string, pattern, repl, count: int = 0):
423
424
    """Implements the `re.sub` function as a custom Jinja filter."""
    return re.sub(pattern, repl, string, count=count)
lintangsutawika's avatar
lintangsutawika committed
425

lintangsutawika's avatar
lintangsutawika committed
426

427
env = Environment(loader=BaseLoader, undefined=StrictUndefined)
428
env.filters["regex_replace"] = regex_replace
429
430


baberabb's avatar
baberabb committed
431
def apply_template(template: str, doc: dict) -> str:
432
433
    rtemplate = env.from_string(template)
    return rtemplate.render(**doc)
434
435


436
437
438
439
def create_iterator(raw_iterator, rank, world_size, limit=None):
    """
    Method for creating a (potentially) sliced and limited
    iterator from a raw document iterator. Used for splitting data
440
441
442
    among ranks in multigpu setting or only pulling a sample of documents
    """
    return islice(raw_iterator, rank, limit, world_size)
443
444


haileyschoelkopf's avatar
haileyschoelkopf committed
445
# Multi-token stopping criteria
baberabb's avatar
baberabb committed
446
447
448


# from more_itertools