evaluator.py 15.5 KB
Newer Older
Leo Gao's avatar
Leo Gao committed
1
2
import collections
import itertools
Leo Gao's avatar
Leo Gao committed
3
import random
4

Leo Gao's avatar
Leo Gao committed
5
import lm_eval.metrics
6
7
8
import lm_eval.models
import lm_eval.tasks
import lm_eval.base
Stephen Hogg's avatar
Stephen Hogg committed
9
from lm_eval.utils import positional_deprecated, run_task_tests
10
11
12
13
from lm_eval.models.gpt2 import HFLM

import numpy as np
import transformers
14

Fabrizio Milo's avatar
Fabrizio Milo committed
15

16
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
17
18
19
20
21
22
def simple_evaluate(
    model,
    model_args=None,
    tasks=[],
    num_fewshot=0,
    batch_size=None,
23
    max_batch_size=None,
Fabrizio Milo's avatar
Fabrizio Milo committed
24
25
26
27
28
29
30
    device=None,
    no_cache=False,
    limit=None,
    bootstrap_iters=100000,
    description_dict=None,
    check_integrity=False,
    decontamination_ngrams_path=None,
31
32
    write_out=False,
    output_base_path=None,
Fabrizio Milo's avatar
Fabrizio Milo committed
33
):
34
    """Instantiate and evaluate a model on a list of tasks.
35

36
37
38
    :param model: Union[str, LM]
        Name of model or LM object, see lm_eval.models.get_model
    :param model_args: Optional[str]
Fabrizio Milo's avatar
Fabrizio Milo committed
39
        String arguments for each model class, see LM.create_from_arg_string.
40
41
        Ignored if `model` argument is a LM object.
    :param tasks: list[Union[str, Task]]
Leo Gao's avatar
Leo Gao committed
42
        List of task names or Task objects. Task objects will be taken to have name task.EVAL_HARNESS_NAME if defined and type(task).__name__ otherwise.
43
44
    :param num_fewshot: int
        Number of examples in few-shot context
45
    :param batch_size: int or str, optional
46
        Batch size for model
47
48
    :param max_batch_size: int, optional
        Maximal batch size to try with automatic batch size detection
49
    :param device: str, optional
50
        PyTorch device (e.g. "cpu" or "cuda:0") for running models
51
    :param no_cache: bool
Leo Gao's avatar
Leo Gao committed
52
        Whether or not to cache
53
54
    :param limit: int or float, optional
        Limit the number of examples per task (only use this for testing), If <1, limit is a percentage of the total number of examples.
55
56
    :param bootstrap_iters:
        Number of iterations for bootstrap statistics
Jonathan Tow's avatar
Jonathan Tow committed
57
    :param description_dict: dict[str, str]
Fabrizio Milo's avatar
Fabrizio Milo committed
58
        Dictionary of custom task descriptions of the form: `task_name: description`
Stephen Hogg's avatar
Stephen Hogg committed
59
60
    :param check_integrity: bool
        Whether to run the relevant part of the test suite for the tasks
61
    :param write_out: bool
62
        If True, write details about prompts and logits to json for all tasks
63
    :param output_base_path: str, optional
64
        Directory to which detailed eval info will be written. Defaults to present working dir.
65
    :return
66
        Dictionary of results
67
    """
68
69
70
    random.seed(1234)
    np.random.seed(1234)

71
72
73
    assert tasks != [], "No tasks specified"

    if isinstance(model, str):
Fabrizio Milo's avatar
Fabrizio Milo committed
74
75
76
        if model_args is None:
            model_args = ""
        lm = lm_eval.models.get_model(model).create_from_arg_string(
77
            model_args, {"batch_size": batch_size, "max_batch_size": max_batch_size, "device": device}
Fabrizio Milo's avatar
Fabrizio Milo committed
78
        )
79
80
81
82
83
    elif isinstance(model, transformers.PreTrainedModel):
        lm = HFLM(
                pretrained=model,
                )
        no_cache = True
84
85
86
    else:
        assert isinstance(model, lm_eval.base.LM)
        lm = model
87
88

    if not no_cache:
89
        lm = lm_eval.base.CachingLM(
Fabrizio Milo's avatar
Fabrizio Milo committed
90
91
            lm,
            "lm_cache/"
92
            + (model if isinstance(model, str) else model.model.config._name_or_path)
Fabrizio Milo's avatar
Fabrizio Milo committed
93
94
95
            + "_"
            + model_args.replace("=", "-").replace(",", "_").replace("/", "-")
            + ".db",
96
        )
Fabrizio Milo's avatar
Fabrizio Milo committed
97

98
    task_dict = lm_eval.tasks.get_task_dict(tasks)
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
99

Stephen Hogg's avatar
Stephen Hogg committed
100
    if check_integrity:
101
        run_task_tests(task_list=tasks)
Stephen Hogg's avatar
Stephen Hogg committed
102

103
104
105
106
107
    results = evaluate(
        lm=lm,
        task_dict=task_dict,
        num_fewshot=num_fewshot,
        limit=limit,
Niklas Muennighoff's avatar
Niklas Muennighoff committed
108
        bootstrap_iters=bootstrap_iters,
109
        description_dict=description_dict,
Fabrizio Milo's avatar
Fabrizio Milo committed
110
        decontamination_ngrams_path=decontamination_ngrams_path,
111
112
        write_out=write_out,
        output_base_path=output_base_path,
113
    )
114
115
116

    # add info about the model and few shot config
    results["config"] = {
117
        "model": (model if isinstance(model, str) else model.model.config._name_or_path),
118
119
120
        "model_args": model_args,
        "num_fewshot": num_fewshot,
        "batch_size": batch_size,
gk's avatar
gk committed
121
        "batch_sizes": list(lm.batch_sizes.values()) if hasattr(lm, "batch_sizes") else [],
122
123
124
        "device": device,
        "no_cache": no_cache,
        "limit": limit,
125
        "bootstrap_iters": bootstrap_iters,
Fabrizio Milo's avatar
Fabrizio Milo committed
126
        "description_dict": description_dict,
127
128
129
    }

    return results
Leo Gao's avatar
Leo Gao committed
130

Fabrizio Milo's avatar
Fabrizio Milo committed
131

132
decontaminate_suffix = "_decontaminate"
Leo Gao's avatar
Leo Gao committed
133

Fabrizio Milo's avatar
Fabrizio Milo committed
134

135
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
136
137
138
139
140
141
142
143
144
def evaluate(
    lm,
    task_dict,
    provide_description=None,
    num_fewshot=0,
    limit=None,
    bootstrap_iters=100000,
    description_dict=None,
    decontamination_ngrams_path=None,
145
146
    write_out=False,
    output_base_path=None,
Fabrizio Milo's avatar
Fabrizio Milo committed
147
):
148
149
150
151
152
    """Instantiate and evaluate a model on a list of tasks.

    :param lm: obj
        Language Model
    :param task_dict: dict[str, Task]
Leo Gao's avatar
Leo Gao committed
153
        Dictionary of tasks. Tasks will be taken to have name task.EVAL_HARNESS_NAME if defined and type(task).__name__ otherwise.
154
    :param provide_description: bool
Leo Gao's avatar
Leo Gao committed
155
        Not implemented, and this option is deprecated and will be removed in a future version in favor of a different description providing method
156
157
158
159
160
161
    :param num_fewshot: int
        Number of examples in few-shot context
    :param limit: int, optional
        Limit the number of examples per task (only use this for testing)
    :param bootstrap_iters:
        Number of iterations for bootstrap statistics
Jonathan Tow's avatar
Jonathan Tow committed
162
    :param description_dict: dict[str, str]
Fabrizio Milo's avatar
Fabrizio Milo committed
163
        Dictionary of custom task descriptions of the form: `task_name: description`
164
    :param write_out: bool
165
        If True, write all prompts, logits and metrics to json for offline analysis
166
    :param output_base_path: str, optional
167
        Directory to which detailed eval info will be written. Defaults to present working dir
168
169
170
    :return
        Dictionary of results
    """
Leo Gao's avatar
Leo Gao committed
171
172
    # TODO: completely refactor this entire function to not be a huge mess, ideally breaking it down into smaller pieces

173
174
    # TODO: todo: implement proper description-providing system
    assert not provide_description  # not implemented.
Leo Gao's avatar
Leo Gao committed
175
176
    if provide_description is not None:
        # nudge people to not specify it at all
Fabrizio Milo's avatar
Fabrizio Milo committed
177
178
179
        print(
            "WARNING: provide_description is deprecated and will be removed in a future version in favor of description_dict"
        )
180

Leo Gao's avatar
Leo Gao committed
181
    decontaminate = decontamination_ngrams_path is not None
182

183
184
185
    task_dict_items = [
        (name, task)
        for name, task in task_dict.items()
Fabrizio Milo's avatar
Fabrizio Milo committed
186
        if (task.has_validation_docs() or task.has_test_docs())
187
    ]
Leo Gao's avatar
Leo Gao committed
188
189

    results = collections.defaultdict(dict)
Leo Gao's avatar
Leo Gao committed
190
    versions = collections.defaultdict(dict)
Leo Gao's avatar
Leo Gao committed
191
192
193
194

    requests = collections.defaultdict(list)
    requests_origin = collections.defaultdict(list)

Fabrizio Milo's avatar
Fabrizio Milo committed
195
    overlaps = collections.defaultdict(list)  # {task_name: contaminated_docs}
196

197
198
199
200
    # If we ever run into issues where the eval tasks don't fit in memory and we can't afford a machine with bigger
    # memory, we can always modify this plumbing to support that, but I didn't want to include it just yet because
    # over-engineering is bad (or we could make it write the requests to disk and then read them back out again
    #  - probably using an sqlite db because of all the moving parts we have
Leo Gao's avatar
Leo Gao committed
201
202
203

    # TODO: we need unit tests & sanity checks or something to ensure that the return of `validation_docs` is stable
    docs = {}
Julen Etxaniz's avatar
Julen Etxaniz committed
204
    write_out_info = {}
Leo Gao's avatar
Leo Gao committed
205

206
207
    docs_for_decontamination = collections.defaultdict(list)

208
    # get lists of each type of request
Leo Gao's avatar
Leo Gao committed
209
    for task_name, task in task_dict_items:
Leo Gao's avatar
Leo Gao committed
210
        versions[task_name] = task.VERSION
211
        # default to test doc, fall back to val doc if validation unavailable
Leo Gao's avatar
Leo Gao committed
212
213
        # TODO: the test-fallback-to-val system isn't final, we should revisit it at some point
        if task.has_test_docs():
Leo Gao's avatar
Leo Gao committed
214
            task_doc_func = task.test_docs
Fabrizio Milo's avatar
Fabrizio Milo committed
215
            task_set = "test"  # Required for caching in the decontamination
Leo Gao's avatar
Leo Gao committed
216
        elif task.has_validation_docs():
Fabrizio Milo's avatar
Fabrizio Milo committed
217
            task_set = "val"  # Required for caching in the decontamination
Leo Gao's avatar
Leo Gao committed
218
            task_doc_func = task.validation_docs
219
220
        else:
            raise RuntimeError("Task has neither test_docs nor validation_docs")
Leo Gao's avatar
Leo Gao committed
221

Leo Gao's avatar
Leo Gao committed
222
223
224
225
        # deterministically shuffle docs and chop off the first `limit` because sometimes docs are in some kind of order
        task_docs = list(task_doc_func())
        rnd = random.Random()
        rnd.seed(42)
Jason Phang's avatar
Jason Phang committed
226
        rnd.shuffle(task_docs)
227
228
        print(f"Task: {task_name}; number of docs: {len(task_docs)}")

229
        if write_out:
230
            prompt_details = []
Leo Gao's avatar
Leo Gao committed
231

Fabrizio Milo's avatar
Fabrizio Milo committed
232
233
234
235
236
        description = (
            description_dict[task_name]
            if description_dict and task_name in description_dict
            else ""
        )
237
238
        if limit is not None:
            limit = int(len(task_docs) * limit) if limit < 1.0 else int(limit)
239

Leo Gao's avatar
Leo Gao committed
240
        for doc_id, doc in enumerate(itertools.islice(task_docs, 0, limit)):
241
            if decontaminate and task.should_decontaminate():
Fabrizio Milo's avatar
Fabrizio Milo committed
242
243
244
                docs_for_decontamination[(task_name, task_set)].append(
                    task.doc_to_decontamination_query(doc)
                )
245

Leo Gao's avatar
Leo Gao committed
246
247
            docs[(task_name, doc_id)] = doc
            ctx = task.fewshot_context(
Fabrizio Milo's avatar
Fabrizio Milo committed
248
                doc=doc, num_fewshot=num_fewshot, rnd=rnd, description=description
Leo Gao's avatar
Leo Gao committed
249
250
            )
            reqs = task.construct_requests(doc, ctx)
251

252
            if write_out:
253
254
255
256
257
258
259
260
261
                prompt_details.append({"doc_id": doc_id})

            # print the prompt for the first few documents
            if doc_id < 1:
                print(
                    f"Task: {task_name}; document {doc_id}; context prompt (starting on next line):\n{ctx}\n(end of prompt on previous line)"
                )
                print("Requests:", reqs)

262
263
            if not isinstance(reqs, (list, tuple)):
                reqs = [reqs]
Leo Gao's avatar
Leo Gao committed
264
            for i, req in enumerate(reqs):
Leo Gao's avatar
Leo Gao committed
265
                requests[req.request_type].append(req)
Leo Gao's avatar
Leo Gao committed
266
267
                # i: index in requests for a single task instance
                # doc_id: unique id that we can get back to a doc using `docs`
Leo Gao's avatar
Leo Gao committed
268
                requests_origin[req.request_type].append((i, task_name, doc, doc_id))
Leo Gao's avatar
Leo Gao committed
269

270
                if write_out:
271
272
273
274
                    prompt_details[-1][f"prompt_{i}"] = "".join(
                        (map(lambda x: "".join(x), req.args))
                    )

275
        if write_out:
Julen Etxaniz's avatar
Julen Etxaniz committed
276
            write_out_info[task_name] = prompt_details
277

278
279
    # Compare all tasks/sets at once to ensure a single training set scan
    if decontaminate:
280
        from lm_eval.decontamination.decontaminate import get_train_overlap
jon-tow's avatar
jon-tow committed
281

282
        print("Finding train/test overlap, please wait...")
Fabrizio Milo's avatar
Fabrizio Milo committed
283
284
285
        overlaps = get_train_overlap(
            docs_for_decontamination, decontamination_ngrams_path, limit
        )
286

Leo Gao's avatar
Leo Gao committed
287
288
289
290
291
    # all responses for each (task, doc)
    process_res_queue = collections.defaultdict(list)

    # execute each type of request
    for reqtype, reqs in requests.items():
292
293
294
295
        # TODO: right now, this code runs multiple separate LM requests for multiple Requests differing
        #       only in index. We could implement some kind of caching, but that would be more of a band-aid
        #       solution. we could also implement some kind of auto-grouping here;
        #       they should end up next to each other.
Leo Gao's avatar
Leo Gao committed
296

Leo Gao's avatar
Leo Gao committed
297
        print("Running", reqtype, "requests")
Leo Gao's avatar
Leo Gao committed
298
        resps = getattr(lm, reqtype)([req.args for req in reqs])
Fabrizio Milo's avatar
Fabrizio Milo committed
299
300
301
        resps = [
            x if req.index is None else x[req.index] for x, req in zip(resps, reqs)
        ]
Leo Gao's avatar
Leo Gao committed
302
303
304

        for resp, (i, task_name, doc, doc_id) in zip(resps, requests_origin[reqtype]):
            process_res_queue[(task_name, doc_id)].append((i, resp))
Fabrizio Milo's avatar
Fabrizio Milo committed
305

306
            if write_out:
Julen Etxaniz's avatar
Julen Etxaniz committed
307
                write_out_info[task_name][doc_id][f"logit_{i}"] = resp
308
309
                task = task_dict[task_name]
                if isinstance(task, lm_eval.base.MultipleChoiceTask):
Julen Etxaniz's avatar
Julen Etxaniz committed
310
                    write_out_info[task_name][doc_id]["truth"] = doc["gold"]
311
                elif isinstance(task, lm_eval.tasks.winogrande.Winogrande):
Julen Etxaniz's avatar
Julen Etxaniz committed
312
                    write_out_info[task_name][doc_id]["truth"] = task.answer_to_num[
313
314
315
                        doc["answer"]
                    ]
                else:
Julen Etxaniz's avatar
Julen Etxaniz committed
316
                    write_out_info[task_name][doc_id]["truth"] = task.doc_to_target(doc)
317

Leo Gao's avatar
Leo Gao committed
318
319
320
321
322
323
324
325
326
327
328
329
330
    vals = collections.defaultdict(list)

    # unpack results and sort back in order and return control to Task
    for (task_name, doc_id), requests in process_res_queue.items():
        requests.sort(key=lambda x: x[0])
        requests = [x[1] for x in requests]

        task = task_dict[task_name]
        doc = docs[(task_name, doc_id)]

        metrics = task.process_results(doc, requests)
        for metric, value in metrics.items():
            vals[(task_name, metric)].append(value)
331

332
            if write_out:
Julen Etxaniz's avatar
Julen Etxaniz committed
333
                write_out_info[task_name][doc_id][metric] = str(value)
334

335
336
337
338
            # Re-use the evaluation for the decontaminated set by just ignoring the overlaps
            if decontaminate and task_name in overlaps:
                if doc_id not in overlaps[task_name]:
                    vals[(task_name, metric + decontaminate_suffix)].append(value)
Fabrizio Milo's avatar
Fabrizio Milo committed
339

Leo Gao's avatar
Leo Gao committed
340
341
342
    # aggregate results
    for (task_name, metric), items in vals.items():
        task = task_dict[task_name]
Fabrizio Milo's avatar
Fabrizio Milo committed
343
        real_metric = metric  # key when looking up the metric with task.aggregation
344
        if metric.endswith(decontaminate_suffix):
Fabrizio Milo's avatar
Fabrizio Milo committed
345
346
347
            real_metric = metric.replace(
                decontaminate_suffix, ""
            )  # decontaminated still uses the same metric
348
        results[task_name][metric] = task.aggregation()[real_metric](items)
Leo Gao's avatar
Leo Gao committed
349

350
351
        # hotfix: bleu, chrf, ter seem to be really expensive to bootstrap
        # so we run them less iterations. still looking for a cleaner way to do this
352

353
        stderr = lm_eval.metrics.stderr_for_metric(
354
            metric=task.aggregation()[real_metric],
Fabrizio Milo's avatar
Fabrizio Milo committed
355
356
357
            bootstrap_iters=min(bootstrap_iters, 1000)
            if metric in ["bleu", "chrf", "ter"]
            else bootstrap_iters,
358
        )
Fabrizio Milo's avatar
Fabrizio Milo committed
359

Leo Gao's avatar
Leo Gao committed
360
361
        if stderr is not None:
            results[task_name][metric + "_stderr"] = stderr(items)
Fabrizio Milo's avatar
Fabrizio Milo committed
362

363
    if write_out:
364
365
366
        import json
        import pathlib

367
368
369
        output_base_path = (
            pathlib.Path(output_base_path)
            if output_base_path is not None
370
371
372
            else pathlib.Path(".")
        )
        try:
373
            output_base_path.mkdir(parents=True, exist_ok=False)
374
375
376
377
378
        except FileExistsError:
            pass

        for task_name, _ in task_dict_items:
            with open(
Julen Etxaniz's avatar
Julen Etxaniz committed
379
                output_base_path.joinpath(f"{task_name}_write_out_info.json"),
380
381
382
                "w",
                encoding="utf8",
            ) as fp:
Julen Etxaniz's avatar
Julen Etxaniz committed
383
                json.dump(write_out_info[task_name], fp, indent=4, ensure_ascii=False)
384

Fabrizio Milo's avatar
Fabrizio Milo committed
385
    return {"results": dict(results), "versions": dict(versions)}
386
387
388


def make_table(result_dict):
389
    """Generate table of results."""
390
391
392
393
394
395
396
397
398
399
400
401
    from pytablewriter import MarkdownTableWriter, LatexTableWriter

    md_writer = MarkdownTableWriter()
    latex_writer = LatexTableWriter()
    md_writer.headers = ["Task", "Version", "Metric", "Value", "", "Stderr"]
    latex_writer.headers = ["Task", "Version", "Metric", "Value", "", "Stderr"]

    values = []

    for k, dic in result_dict["results"].items():
        version = result_dict["versions"][k]
        for m, v in dic.items():
402
403
            if m.endswith("_stderr"):
                continue
404
405
406

            if m + "_stderr" in dic:
                se = dic[m + "_stderr"]
Fabrizio Milo's avatar
Fabrizio Milo committed
407
                values.append([k, version, m, "%.4f" % v, "±", "%.4f" % se])
408
            else:
Fabrizio Milo's avatar
Fabrizio Milo committed
409
                values.append([k, version, m, "%.4f" % v, "", ""])
410
411
412
413
414
415
416
417
            k = ""
            version = ""
    md_writer.value_matrix = values
    latex_writer.value_matrix = values

    # todo: make latex table look good
    # print(latex_writer.dumps())

418
    return md_writer.dumps()